Abstract

When the Rydberg atom prepared in an n0s state (n01) is exposed to a sufficiently intense laser pulse of a duration not exceedingly short compared with the initial-state Kepler period, the resulting photoelectron angular distributions are not only governed by the p partial wave but are shown to be shaped by higher-order waves as well, provided that the frequency assumed permits the higher-angular-momentum Rydberg states about the initial n0s state to be involved in the process owing to multiple resonant Raman transitions.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. G. Muller and M. V. Fedorov, eds., Super-Intense Laser-Atom Physics IV, Vol. 13 of NATO ASI Series 3 on High Technology (Kluwer Academic, Dordrecht, The Netherlands, 1996).
  2. M. V. Fedorov and A. M. Movsesyan, “Interference suppression of photoionization of Rydberg atoms in a strong electromagnetic field,” J. Opt. Soc. Am. B 6, 928–936 (1989).
    [CrossRef]
  3. J. Parker and C. R. Stroud, Jr., “Population trapping in short-pulse laser ionization,” Phys. Rev. A 41, 1602–1608 (1990).
    [CrossRef] [PubMed]
  4. L. Roso-Franco, G. Orriols, and J. H. Eberly, “Rydberg stabilization in a model atom with a flat quasicontinuum,” Laser Phys. 2, 741–746 (1992).
  5. M. Gajda, B. Piraux, and K. Rzażewski, “Ionization of an excited hydrogen atom by a high-frequency circularly polarized pulsed field,” Phys. Rev. A 50, 2528–2539 (1994).
    [CrossRef] [PubMed]
  6. R. R. Jones and P. H. Bucksbaum, “Ionization suppression of Stark states in intense laser fields,” Phys. Rev. Lett. 67, 3215–3218 (1991).
    [CrossRef] [PubMed]
  7. L. D. Noordam, H. Stapelfeldt, D. I. Duncan, and T. F. Gallagher, “Redistribution of Rydberg states by intense picosecond pulses,” Phys. Rev. Lett. 68, 1496–1499 (1992).
    [CrossRef] [PubMed]
  8. J. H. Hoogenraad, R. B. Vrijen, and L. D. Noordam, “Ionization suppression of Rydberg atoms by short laser pulses,” Phys. Rev. A 50, 4133–4138 (1994).
    [CrossRef] [PubMed]
  9. N. E. Tielking and R. R. Jones, “Coherent population transfer among Rydberg states by subpicosecond half-cycle pulses,” Phys. Rev. A 52, 1371–1381 (1995).
    [CrossRef] [PubMed]
  10. See M. V. Fedorov, “Interference stabilization of Rydberg atoms in a strong ionizing field,” Laser Phys. 3, 219–240 (1993) for a review.
  11. A. Wójcik and R. Parzyński, “Rydberg-atom stabilization against photoionization: an analytically solvable model with resonance,” Phys. Rev. A 50, 2475–2489 (1994); “Rydberg atom driven by a sequence of two laser pulses: Ramsey interferometry,” 51, 4787–4796 (1995); “Dark-state effect in Rydberg-atom stabilization,” J. Opt. Soc. Am. B 12, 369–376 (1995).
    [CrossRef] [PubMed]
  12. M. V. Fedorov and N. B. Poluektov, “Λ- and V-type transitions and their role in the interference stabilization of Rydberg atoms,” Laser Phys. 7, 299–304 (1997).
  13. R. Parzyński and S. Wieczorek, “Interference stabilization of Rydberg atoms enhanced by multiple V-type resonances,” Phys. Rev. A 58, 3051–3057 (1998).
    [CrossRef]
  14. K. Im, R. Grobe, and J. H. Eberly, “Photoionization of the hydrogen 4s state by a strong laser pulse: bare-state dynamics and extended-charge-cloud oscillations,” Phys. Rev. A 49, 2853–2860 (1994).
    [CrossRef] [PubMed]
  15. M. V. Fedorov, M. M. Tehranchi, and S. M. Fedorov, “Interference stabilization of Rydberg atoms: numerical calculation and physical models,” J. Phys. B 29, 2907–2924 (1996).
    [CrossRef]
  16. R. Parzyński and A. Wójcik, “Interference stabilization of Rydberg atoms: an analytical model with migration of population to higher-l states,” Laser Phys. 7, 551–557 (1997).
  17. R. Parzyński and A. Grudka, “Raman mixing of Rydberg angular momenta probed by photoelectron angular distributions,” Phys. Rev. A 59, 893–896 (1999).
    [CrossRef]
  18. J. D. Corless and C. R. Stroud, Jr., “Optical mixing of Rydberg angular momenta,” Phys. Rev. Lett. 79, 637–640 (1997).
    [CrossRef]
  19. J. Gauer and D. Feldmann, “MPI of atoms in intense laser pulses: angular distributions of photoelectrons and atoms surving in excited states,” Ref. 1, pp. 123–132.

1999 (1)

R. Parzyński and A. Grudka, “Raman mixing of Rydberg angular momenta probed by photoelectron angular distributions,” Phys. Rev. A 59, 893–896 (1999).
[CrossRef]

1998 (1)

R. Parzyński and S. Wieczorek, “Interference stabilization of Rydberg atoms enhanced by multiple V-type resonances,” Phys. Rev. A 58, 3051–3057 (1998).
[CrossRef]

1997 (3)

M. V. Fedorov and N. B. Poluektov, “Λ- and V-type transitions and their role in the interference stabilization of Rydberg atoms,” Laser Phys. 7, 299–304 (1997).

J. D. Corless and C. R. Stroud, Jr., “Optical mixing of Rydberg angular momenta,” Phys. Rev. Lett. 79, 637–640 (1997).
[CrossRef]

R. Parzyński and A. Wójcik, “Interference stabilization of Rydberg atoms: an analytical model with migration of population to higher-l states,” Laser Phys. 7, 551–557 (1997).

1996 (1)

M. V. Fedorov, M. M. Tehranchi, and S. M. Fedorov, “Interference stabilization of Rydberg atoms: numerical calculation and physical models,” J. Phys. B 29, 2907–2924 (1996).
[CrossRef]

1995 (1)

N. E. Tielking and R. R. Jones, “Coherent population transfer among Rydberg states by subpicosecond half-cycle pulses,” Phys. Rev. A 52, 1371–1381 (1995).
[CrossRef] [PubMed]

1994 (3)

J. H. Hoogenraad, R. B. Vrijen, and L. D. Noordam, “Ionization suppression of Rydberg atoms by short laser pulses,” Phys. Rev. A 50, 4133–4138 (1994).
[CrossRef] [PubMed]

M. Gajda, B. Piraux, and K. Rzażewski, “Ionization of an excited hydrogen atom by a high-frequency circularly polarized pulsed field,” Phys. Rev. A 50, 2528–2539 (1994).
[CrossRef] [PubMed]

K. Im, R. Grobe, and J. H. Eberly, “Photoionization of the hydrogen 4s state by a strong laser pulse: bare-state dynamics and extended-charge-cloud oscillations,” Phys. Rev. A 49, 2853–2860 (1994).
[CrossRef] [PubMed]

1993 (1)

See M. V. Fedorov, “Interference stabilization of Rydberg atoms in a strong ionizing field,” Laser Phys. 3, 219–240 (1993) for a review.

1992 (2)

L. D. Noordam, H. Stapelfeldt, D. I. Duncan, and T. F. Gallagher, “Redistribution of Rydberg states by intense picosecond pulses,” Phys. Rev. Lett. 68, 1496–1499 (1992).
[CrossRef] [PubMed]

L. Roso-Franco, G. Orriols, and J. H. Eberly, “Rydberg stabilization in a model atom with a flat quasicontinuum,” Laser Phys. 2, 741–746 (1992).

1991 (1)

R. R. Jones and P. H. Bucksbaum, “Ionization suppression of Stark states in intense laser fields,” Phys. Rev. Lett. 67, 3215–3218 (1991).
[CrossRef] [PubMed]

1990 (1)

J. Parker and C. R. Stroud, Jr., “Population trapping in short-pulse laser ionization,” Phys. Rev. A 41, 1602–1608 (1990).
[CrossRef] [PubMed]

1989 (1)

Bucksbaum, P. H.

R. R. Jones and P. H. Bucksbaum, “Ionization suppression of Stark states in intense laser fields,” Phys. Rev. Lett. 67, 3215–3218 (1991).
[CrossRef] [PubMed]

Corless, J. D.

J. D. Corless and C. R. Stroud, Jr., “Optical mixing of Rydberg angular momenta,” Phys. Rev. Lett. 79, 637–640 (1997).
[CrossRef]

Duncan, D. I.

L. D. Noordam, H. Stapelfeldt, D. I. Duncan, and T. F. Gallagher, “Redistribution of Rydberg states by intense picosecond pulses,” Phys. Rev. Lett. 68, 1496–1499 (1992).
[CrossRef] [PubMed]

Eberly, J. H.

K. Im, R. Grobe, and J. H. Eberly, “Photoionization of the hydrogen 4s state by a strong laser pulse: bare-state dynamics and extended-charge-cloud oscillations,” Phys. Rev. A 49, 2853–2860 (1994).
[CrossRef] [PubMed]

L. Roso-Franco, G. Orriols, and J. H. Eberly, “Rydberg stabilization in a model atom with a flat quasicontinuum,” Laser Phys. 2, 741–746 (1992).

Fedorov, M. V.

M. V. Fedorov and N. B. Poluektov, “Λ- and V-type transitions and their role in the interference stabilization of Rydberg atoms,” Laser Phys. 7, 299–304 (1997).

M. V. Fedorov, M. M. Tehranchi, and S. M. Fedorov, “Interference stabilization of Rydberg atoms: numerical calculation and physical models,” J. Phys. B 29, 2907–2924 (1996).
[CrossRef]

See M. V. Fedorov, “Interference stabilization of Rydberg atoms in a strong ionizing field,” Laser Phys. 3, 219–240 (1993) for a review.

M. V. Fedorov and A. M. Movsesyan, “Interference suppression of photoionization of Rydberg atoms in a strong electromagnetic field,” J. Opt. Soc. Am. B 6, 928–936 (1989).
[CrossRef]

Fedorov, S. M.

M. V. Fedorov, M. M. Tehranchi, and S. M. Fedorov, “Interference stabilization of Rydberg atoms: numerical calculation and physical models,” J. Phys. B 29, 2907–2924 (1996).
[CrossRef]

Gajda, M.

M. Gajda, B. Piraux, and K. Rzażewski, “Ionization of an excited hydrogen atom by a high-frequency circularly polarized pulsed field,” Phys. Rev. A 50, 2528–2539 (1994).
[CrossRef] [PubMed]

Gallagher, T. F.

L. D. Noordam, H. Stapelfeldt, D. I. Duncan, and T. F. Gallagher, “Redistribution of Rydberg states by intense picosecond pulses,” Phys. Rev. Lett. 68, 1496–1499 (1992).
[CrossRef] [PubMed]

Grobe, R.

K. Im, R. Grobe, and J. H. Eberly, “Photoionization of the hydrogen 4s state by a strong laser pulse: bare-state dynamics and extended-charge-cloud oscillations,” Phys. Rev. A 49, 2853–2860 (1994).
[CrossRef] [PubMed]

Grudka, A.

R. Parzyński and A. Grudka, “Raman mixing of Rydberg angular momenta probed by photoelectron angular distributions,” Phys. Rev. A 59, 893–896 (1999).
[CrossRef]

Hoogenraad, J. H.

J. H. Hoogenraad, R. B. Vrijen, and L. D. Noordam, “Ionization suppression of Rydberg atoms by short laser pulses,” Phys. Rev. A 50, 4133–4138 (1994).
[CrossRef] [PubMed]

Im, K.

K. Im, R. Grobe, and J. H. Eberly, “Photoionization of the hydrogen 4s state by a strong laser pulse: bare-state dynamics and extended-charge-cloud oscillations,” Phys. Rev. A 49, 2853–2860 (1994).
[CrossRef] [PubMed]

Jones, R. R.

N. E. Tielking and R. R. Jones, “Coherent population transfer among Rydberg states by subpicosecond half-cycle pulses,” Phys. Rev. A 52, 1371–1381 (1995).
[CrossRef] [PubMed]

R. R. Jones and P. H. Bucksbaum, “Ionization suppression of Stark states in intense laser fields,” Phys. Rev. Lett. 67, 3215–3218 (1991).
[CrossRef] [PubMed]

Movsesyan, A. M.

Noordam, L. D.

J. H. Hoogenraad, R. B. Vrijen, and L. D. Noordam, “Ionization suppression of Rydberg atoms by short laser pulses,” Phys. Rev. A 50, 4133–4138 (1994).
[CrossRef] [PubMed]

L. D. Noordam, H. Stapelfeldt, D. I. Duncan, and T. F. Gallagher, “Redistribution of Rydberg states by intense picosecond pulses,” Phys. Rev. Lett. 68, 1496–1499 (1992).
[CrossRef] [PubMed]

Orriols, G.

L. Roso-Franco, G. Orriols, and J. H. Eberly, “Rydberg stabilization in a model atom with a flat quasicontinuum,” Laser Phys. 2, 741–746 (1992).

Parker, J.

J. Parker and C. R. Stroud, Jr., “Population trapping in short-pulse laser ionization,” Phys. Rev. A 41, 1602–1608 (1990).
[CrossRef] [PubMed]

Parzynski, R.

R. Parzyński and A. Grudka, “Raman mixing of Rydberg angular momenta probed by photoelectron angular distributions,” Phys. Rev. A 59, 893–896 (1999).
[CrossRef]

R. Parzyński and S. Wieczorek, “Interference stabilization of Rydberg atoms enhanced by multiple V-type resonances,” Phys. Rev. A 58, 3051–3057 (1998).
[CrossRef]

R. Parzyński and A. Wójcik, “Interference stabilization of Rydberg atoms: an analytical model with migration of population to higher-l states,” Laser Phys. 7, 551–557 (1997).

Piraux, B.

M. Gajda, B. Piraux, and K. Rzażewski, “Ionization of an excited hydrogen atom by a high-frequency circularly polarized pulsed field,” Phys. Rev. A 50, 2528–2539 (1994).
[CrossRef] [PubMed]

Poluektov, N. B.

M. V. Fedorov and N. B. Poluektov, “Λ- and V-type transitions and their role in the interference stabilization of Rydberg atoms,” Laser Phys. 7, 299–304 (1997).

Roso-Franco, L.

L. Roso-Franco, G. Orriols, and J. H. Eberly, “Rydberg stabilization in a model atom with a flat quasicontinuum,” Laser Phys. 2, 741–746 (1992).

Rzazewski, K.

M. Gajda, B. Piraux, and K. Rzażewski, “Ionization of an excited hydrogen atom by a high-frequency circularly polarized pulsed field,” Phys. Rev. A 50, 2528–2539 (1994).
[CrossRef] [PubMed]

Stapelfeldt, H.

L. D. Noordam, H. Stapelfeldt, D. I. Duncan, and T. F. Gallagher, “Redistribution of Rydberg states by intense picosecond pulses,” Phys. Rev. Lett. 68, 1496–1499 (1992).
[CrossRef] [PubMed]

Stroud Jr., C. R.

J. D. Corless and C. R. Stroud, Jr., “Optical mixing of Rydberg angular momenta,” Phys. Rev. Lett. 79, 637–640 (1997).
[CrossRef]

J. Parker and C. R. Stroud, Jr., “Population trapping in short-pulse laser ionization,” Phys. Rev. A 41, 1602–1608 (1990).
[CrossRef] [PubMed]

Tehranchi, M. M.

M. V. Fedorov, M. M. Tehranchi, and S. M. Fedorov, “Interference stabilization of Rydberg atoms: numerical calculation and physical models,” J. Phys. B 29, 2907–2924 (1996).
[CrossRef]

Tielking, N. E.

N. E. Tielking and R. R. Jones, “Coherent population transfer among Rydberg states by subpicosecond half-cycle pulses,” Phys. Rev. A 52, 1371–1381 (1995).
[CrossRef] [PubMed]

Vrijen, R. B.

J. H. Hoogenraad, R. B. Vrijen, and L. D. Noordam, “Ionization suppression of Rydberg atoms by short laser pulses,” Phys. Rev. A 50, 4133–4138 (1994).
[CrossRef] [PubMed]

Wieczorek, S.

R. Parzyński and S. Wieczorek, “Interference stabilization of Rydberg atoms enhanced by multiple V-type resonances,” Phys. Rev. A 58, 3051–3057 (1998).
[CrossRef]

Wójcik, A.

R. Parzyński and A. Wójcik, “Interference stabilization of Rydberg atoms: an analytical model with migration of population to higher-l states,” Laser Phys. 7, 551–557 (1997).

J. Opt. Soc. Am. B (1)

J. Phys. B (1)

M. V. Fedorov, M. M. Tehranchi, and S. M. Fedorov, “Interference stabilization of Rydberg atoms: numerical calculation and physical models,” J. Phys. B 29, 2907–2924 (1996).
[CrossRef]

Laser Phys. (4)

R. Parzyński and A. Wójcik, “Interference stabilization of Rydberg atoms: an analytical model with migration of population to higher-l states,” Laser Phys. 7, 551–557 (1997).

M. V. Fedorov and N. B. Poluektov, “Λ- and V-type transitions and their role in the interference stabilization of Rydberg atoms,” Laser Phys. 7, 299–304 (1997).

L. Roso-Franco, G. Orriols, and J. H. Eberly, “Rydberg stabilization in a model atom with a flat quasicontinuum,” Laser Phys. 2, 741–746 (1992).

See M. V. Fedorov, “Interference stabilization of Rydberg atoms in a strong ionizing field,” Laser Phys. 3, 219–240 (1993) for a review.

Phys. Rev. A (7)

J. H. Hoogenraad, R. B. Vrijen, and L. D. Noordam, “Ionization suppression of Rydberg atoms by short laser pulses,” Phys. Rev. A 50, 4133–4138 (1994).
[CrossRef] [PubMed]

N. E. Tielking and R. R. Jones, “Coherent population transfer among Rydberg states by subpicosecond half-cycle pulses,” Phys. Rev. A 52, 1371–1381 (1995).
[CrossRef] [PubMed]

M. Gajda, B. Piraux, and K. Rzażewski, “Ionization of an excited hydrogen atom by a high-frequency circularly polarized pulsed field,” Phys. Rev. A 50, 2528–2539 (1994).
[CrossRef] [PubMed]

R. Parzyński and S. Wieczorek, “Interference stabilization of Rydberg atoms enhanced by multiple V-type resonances,” Phys. Rev. A 58, 3051–3057 (1998).
[CrossRef]

K. Im, R. Grobe, and J. H. Eberly, “Photoionization of the hydrogen 4s state by a strong laser pulse: bare-state dynamics and extended-charge-cloud oscillations,” Phys. Rev. A 49, 2853–2860 (1994).
[CrossRef] [PubMed]

J. Parker and C. R. Stroud, Jr., “Population trapping in short-pulse laser ionization,” Phys. Rev. A 41, 1602–1608 (1990).
[CrossRef] [PubMed]

R. Parzyński and A. Grudka, “Raman mixing of Rydberg angular momenta probed by photoelectron angular distributions,” Phys. Rev. A 59, 893–896 (1999).
[CrossRef]

Phys. Rev. Lett. (3)

J. D. Corless and C. R. Stroud, Jr., “Optical mixing of Rydberg angular momenta,” Phys. Rev. Lett. 79, 637–640 (1997).
[CrossRef]

R. R. Jones and P. H. Bucksbaum, “Ionization suppression of Stark states in intense laser fields,” Phys. Rev. Lett. 67, 3215–3218 (1991).
[CrossRef] [PubMed]

L. D. Noordam, H. Stapelfeldt, D. I. Duncan, and T. F. Gallagher, “Redistribution of Rydberg states by intense picosecond pulses,” Phys. Rev. Lett. 68, 1496–1499 (1992).
[CrossRef] [PubMed]

Other (3)

A. Wójcik and R. Parzyński, “Rydberg-atom stabilization against photoionization: an analytically solvable model with resonance,” Phys. Rev. A 50, 2475–2489 (1994); “Rydberg atom driven by a sequence of two laser pulses: Ramsey interferometry,” 51, 4787–4796 (1995); “Dark-state effect in Rydberg-atom stabilization,” J. Opt. Soc. Am. B 12, 369–376 (1995).
[CrossRef] [PubMed]

J. Gauer and D. Feldmann, “MPI of atoms in intense laser pulses: angular distributions of photoelectrons and atoms surving in excited states,” Ref. 1, pp. 123–132.

H. G. Muller and M. V. Fedorov, eds., Super-Intense Laser-Atom Physics IV, Vol. 13 of NATO ASI Series 3 on High Technology (Kluwer Academic, Dordrecht, The Netherlands, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Rydberg-atom photoionization from the n0s=40s state, extended to include the higher-order effect, i.e., the migration of the initial population toward higher-angular-momentum Rydberg states of lj=2, 4, 6, 8 via the resonant channel exploiting the 8lλ states with lλ=1, 3, 5, 7.

Fig. 2
Fig. 2

Photoelectron angular distributions versus laser intensity for a square pulse of duration t=τ=9.7 ps equal to the Kepler period of the initially populated 40s Rydberg state. Arrows indicate the direction of light polarization with respect to which the angle of the photoelectron emission θ is measured. The PAD’s for higher intensities are diminished by the factors 6.7, 6.7, and 3.3, respectively, compared with those of the lowest intensity.

Fig. 3
Fig. 3

Exact versus approximate photoelectron angular distributions (all PAD’s to the same scale) at an intensity of 1010 W/cm2 and a pulse duration t/τ=1. At each distribution, the contributing photoelectron partial waves lc are given.

Fig. 4
Fig. 4

Effect of shortening of the pulse duration on PAD (all PAD’s to the same scale) at an intensity of 1010 W/cm2.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

bc(t)=αij=0NZj(θ, ϕ)0tKj(t)exp[iδc(t-t)]dt,
Zj(θ, ϕ)=n03/2lc=2j±1βlc*Ylc0(θ, ϕ)Vn0,lj=2jEc,lc,
K˜j=-in03/2PGj(Ωj,n0 jb˜j+Ωj+1,n0 jb˜j+1)+Gjsδj0n03/2,
Kj(t)=-i πujΔn03/2[Ωj,n0 j bj(t)+Ωj+1,n0 jbj+1(t)]+ujn03/2δj0.
bj(t)=i(-1)juΩn0 k=1NCkjf (sk, t),
Ckj=(-1)k+1 2N+1×sinkπN+1sinN+1-jN+1kπ,
f(sk, t)=exp(skt)-1sk,
sk=-2πuΔ(Ωn0/Δ)21-coskπN+1.
bc(t)=αiexp(iδct)n03/2uf(-iδc, t)Zj=0(θ, ϕ)+πΔ(uΩn0)2j=0Nk=1N(-1)j(Ckj-Ckj+1)×(sk)-1[f(sk-iδc, t)-f(-iδc, t)]Zj(θ, ϕ).
P(θ)=0|bc(t)|2dEc=α2n032π|u|2t|Zj=0(θ, ϕ)|2+πΔ2Ωn04|u|4j, j=0Nk,k=1N(-1)j+j(Ckj-Ckj+1)(Ckj-Ckj+1)×(sksk*)-1[f(sk+sk*, t)-f(sk, t)-f(sk*, t)+t]Zj(θ, ϕ)Zj*(θ, ϕ)+2πΔΩn02 Reu*u2j=0Nk=1N(-1)j(Ckj-Ckj+1)sk-1[f(sk, t)-t]Zj=0*(θ, ϕ)Zj(θ, ϕ).

Metrics