Abstract

A nonorthogonal theory is used to study the non-Hermitian character of the excess noise in gain-guided transient Raman amplifiers. We calculated the output of the gain-guided transient Raman scattering based on a nonorthogonal mode expansion. We found that the excess noise in a transient gain-guided amplifier increases nonlinearly from 0 (and the Petermann factor nonlinearly from 1) and that the evolution depends mainly on the integrated energy of the pump laser pulse.

© 1999 Optical Society of America

Full Article  |  PDF Article
Related Articles
Stochastic theory of self-induced transparency: linearized approach

Victor V. Kozlov and Andrey B. Matsko
J. Opt. Soc. Am. B 17(6) 1031-1038 (2000)

Quantum theory of Stokes generation with a multimode laser

M. G. Raymer and L. A. Westling
J. Opt. Soc. Am. B 2(9) 1417-1421 (1985)

Theory of the fiber Raman soliton laser

H. A. Haus and M. Nakazawa
J. Opt. Soc. Am. B 4(5) 652-660 (1987)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (31)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription