Abstract

Based on a multi-three-wave interaction model, we theoretically analyze the intense amplification competition between fanning noise and the signal beam in doped lithium niobate crystals. Our results show that the signal beam can be most effectively amplified for a specific value of the photovoltaic field because of the amplification competition between fanning noise and the signal beam. When the threshold effect of incident-light intensity for photorefractive light-induced scattering is taken into account in LiNbO3:Fe, M (M=Mg2+, Zn2+, In3+, Sc3+) crystals, the signal beam can be most effectively amplified for a specific pump intensity.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Yeh, Introduction to Photorefractive Nonlinear Optics, Wiley Series in Pure and Applied Optics (Wiley, New York, 1993), pp. 183–247.
  2. Q. B. He and P. Yeh, “Fanning noise reduction in photorefractive amplifiers using incoherent erasures,” Appl. Opt. 33, 283–287 (1994).
    [CrossRef] [PubMed]
  3. G.-Q. Zhang, S.-M. Liu, G.-Y. Tian, J.-J. Xu, Q.-A. Sun, and G.-Y. Zhang, “New noise-suppression technique in photorefractive crystals,” Appl. Opt. 36, 1815–1819 (1997).
    [CrossRef] [PubMed]
  4. H. Rajbenbach, A. Delboulbé, and J. P. Huignard, “Noise suppression in photorefractive image amplifiers,” Opt. Lett. 14, 1275–1277 (1989).
    [CrossRef] [PubMed]
  5. G.-Y. Zhang, J.-J. Xu, S.-M. Liu, Q.-A. Sun, G.-Q. Zhang, Q.-Y. Fang, and C.-L. Ma, “Study of resistance against photorefractive light-induced scattering in LiNbO3:Fe, Mg crystals,” in Photorefractive Fiber and Crystal Devices: Materials, Optical Properties, and Applications, F. T. S. Yu, ed., Proc. SPIE 2529, 14–17 (1995).
    [CrossRef]
  6. T. R. Volk, N. V. Razumovski, A. V. Mamaev, and N. M. Rubinina, “Hologram recording in Zn-doped LiNbO3 crystals,” J. Opt. Soc. Am. B 13, 1457–1460 (1996).
    [CrossRef]
  7. G.-Q. Zhang, G.-Y. Zhang, S.-M. Liu, J.-J. Xu, G.-Y. Tian, and Q.-A. Sun, “Theoretical study of resistance against light-induced scattering in LiNbO3:M (M=Mg2+, Zn2+, In3+, Sc3+) crystals,” Opt. Lett. 22, 1666–1668 (1997).
    [CrossRef]
  8. G.-Q. Zhang, G.-Y. Zhang, S.-M. Liu, J.-J. Xu, Q.-A. Sun, and X.-Z. Zhang, “The threshold effect of incident light intensity for the photorefractive light-induced scattering in LiNbO3:Fe, M (M=Mg2+, Zn2+, In3+) crystals,” J. Appl. Phys. 83, 4392–4396 (1998).
    [CrossRef]
  9. Ref. 1, pp. 118–134.
  10. G. C. Valley and J. F. Lam, “Theory of photorefractive effects in electro-optic crystals,” in Photorefractive Materials and Their Application I, P. Günter and J. P. Huignard, eds. Vol. 61 of Topics in Applied Physics (Springer-Verlag, Berlin, 1988), p. 82.
  11. F. Jermann and K. Buse, “Light-induced thermal gratings in LiNbO3:Fe,” Appl. Phys. B: Lasers Opt. 59, 437–443 (1994).
    [CrossRef]
  12. G. Zhang, Y. Wu, S. Liu, and J. Wang, “Light-climbing effect in thin LiNbO3:Fe, wafers,” Chin. Phys. Lasers 14, 606–609 (1987).
  13. S.-M. Liu, J.-J. Xu, G.-Y. Zhang, and Y.-Q. Wu, “Light-climbing effect in LiNbO3:Fe crystal,” Appl. Opt. 33, 997–999 (1994).
    [CrossRef]
  14. G.-Q. Zhang, G.-Y. Tian, S.-M. Liu, J.-J. Xu, G.-Y. Zhang, and Q.-A. Sun, “Noise amplification mechanism in LiNbO3:Fe crystal sheets,” J. Opt. Soc. Am. B 14, 2823–2830 (1997).
    [CrossRef]
  15. L. B. Au and L. Solymar, “Amplification in photorefractive materials via a higher order wave,” Appl. Phys. B: Photophys. Laser Chem. 45, 125–128 (1988).
    [CrossRef]
  16. Y. Furukawa, K. Kitamura, Y. Ji, G. Montemazzani, M. Zgonik, C. Medrano, and P. Güner, “Photorefractive properties of iron-doped stoichiometric lithium niobate,” Opt. Lett. 22, 501–503 (1997).
    [CrossRef] [PubMed]
  17. K. Kitamura, Y. Furukawa, Y. Ji, M. Zgonik, C. Medrano, G. Montemezzani, and P. Günter, “Photorefractive effect in LiNbO3 crystals enhanced by stoichiometry control,” J. Appl. Phys. 82, 1006–1009 (1997).
    [CrossRef]
  18. F. Jermann, M. Simon, and E. Kratzig, “Photorefractive properties of congruent and stoichiometric lithium niobate at high light intensities,” J. Opt. Soc. Am. B 12, 2066–2070 (1995).
    [CrossRef]
  19. S. M. Kostritskii and O. G. Sevostyanov, “Influence of intrinsic defects on light-induced changes in the refractive index of lithium niobate crystals,” Appl. Phys. B: Lasers Opt. 65, 527–533 (1997).
    [CrossRef]
  20. R. Sommerfeldt, L. Holtmann, E. Kratzig, and B. C. Grabmaier, “Influence of Mg doping and composition on the light-induced charge transport in LiNbO3,” Phys. Status Solidi A 106, 89–98 (1988).
    [CrossRef]
  21. R. Sommerfeldt, L. Holtmann, and E. Kratzig, “The light-induced charge transport in LiNbO3:Mg, Fe crystals,” Ferroelectrics 92, 219–225 (1989).
    [CrossRef]
  22. M. Simon, F. Jermann, T. R. Volk, and E. Kratzig, “Influence of zinc doping on the photorefractive properties of lithium niobate,” Phys. Status Solidi A 149, 723–733 (1995).
    [CrossRef]

1998 (1)

G.-Q. Zhang, G.-Y. Zhang, S.-M. Liu, J.-J. Xu, Q.-A. Sun, and X.-Z. Zhang, “The threshold effect of incident light intensity for the photorefractive light-induced scattering in LiNbO3:Fe, M (M=Mg2+, Zn2+, In3+) crystals,” J. Appl. Phys. 83, 4392–4396 (1998).
[CrossRef]

1997 (6)

1996 (1)

1995 (3)

G.-Y. Zhang, J.-J. Xu, S.-M. Liu, Q.-A. Sun, G.-Q. Zhang, Q.-Y. Fang, and C.-L. Ma, “Study of resistance against photorefractive light-induced scattering in LiNbO3:Fe, Mg crystals,” in Photorefractive Fiber and Crystal Devices: Materials, Optical Properties, and Applications, F. T. S. Yu, ed., Proc. SPIE 2529, 14–17 (1995).
[CrossRef]

F. Jermann, M. Simon, and E. Kratzig, “Photorefractive properties of congruent and stoichiometric lithium niobate at high light intensities,” J. Opt. Soc. Am. B 12, 2066–2070 (1995).
[CrossRef]

M. Simon, F. Jermann, T. R. Volk, and E. Kratzig, “Influence of zinc doping on the photorefractive properties of lithium niobate,” Phys. Status Solidi A 149, 723–733 (1995).
[CrossRef]

1994 (3)

1989 (2)

H. Rajbenbach, A. Delboulbé, and J. P. Huignard, “Noise suppression in photorefractive image amplifiers,” Opt. Lett. 14, 1275–1277 (1989).
[CrossRef] [PubMed]

R. Sommerfeldt, L. Holtmann, and E. Kratzig, “The light-induced charge transport in LiNbO3:Mg, Fe crystals,” Ferroelectrics 92, 219–225 (1989).
[CrossRef]

1988 (2)

R. Sommerfeldt, L. Holtmann, E. Kratzig, and B. C. Grabmaier, “Influence of Mg doping and composition on the light-induced charge transport in LiNbO3,” Phys. Status Solidi A 106, 89–98 (1988).
[CrossRef]

L. B. Au and L. Solymar, “Amplification in photorefractive materials via a higher order wave,” Appl. Phys. B: Photophys. Laser Chem. 45, 125–128 (1988).
[CrossRef]

1987 (1)

G. Zhang, Y. Wu, S. Liu, and J. Wang, “Light-climbing effect in thin LiNbO3:Fe, wafers,” Chin. Phys. Lasers 14, 606–609 (1987).

Au, L. B.

L. B. Au and L. Solymar, “Amplification in photorefractive materials via a higher order wave,” Appl. Phys. B: Photophys. Laser Chem. 45, 125–128 (1988).
[CrossRef]

Buse, K.

F. Jermann and K. Buse, “Light-induced thermal gratings in LiNbO3:Fe,” Appl. Phys. B: Lasers Opt. 59, 437–443 (1994).
[CrossRef]

Delboulbé, A.

Fang, Q.-Y.

G.-Y. Zhang, J.-J. Xu, S.-M. Liu, Q.-A. Sun, G.-Q. Zhang, Q.-Y. Fang, and C.-L. Ma, “Study of resistance against photorefractive light-induced scattering in LiNbO3:Fe, Mg crystals,” in Photorefractive Fiber and Crystal Devices: Materials, Optical Properties, and Applications, F. T. S. Yu, ed., Proc. SPIE 2529, 14–17 (1995).
[CrossRef]

Furukawa, Y.

Y. Furukawa, K. Kitamura, Y. Ji, G. Montemazzani, M. Zgonik, C. Medrano, and P. Güner, “Photorefractive properties of iron-doped stoichiometric lithium niobate,” Opt. Lett. 22, 501–503 (1997).
[CrossRef] [PubMed]

K. Kitamura, Y. Furukawa, Y. Ji, M. Zgonik, C. Medrano, G. Montemezzani, and P. Günter, “Photorefractive effect in LiNbO3 crystals enhanced by stoichiometry control,” J. Appl. Phys. 82, 1006–1009 (1997).
[CrossRef]

Grabmaier, B. C.

R. Sommerfeldt, L. Holtmann, E. Kratzig, and B. C. Grabmaier, “Influence of Mg doping and composition on the light-induced charge transport in LiNbO3,” Phys. Status Solidi A 106, 89–98 (1988).
[CrossRef]

Güner, P.

Günter, P.

K. Kitamura, Y. Furukawa, Y. Ji, M. Zgonik, C. Medrano, G. Montemezzani, and P. Günter, “Photorefractive effect in LiNbO3 crystals enhanced by stoichiometry control,” J. Appl. Phys. 82, 1006–1009 (1997).
[CrossRef]

He, Q. B.

Holtmann, L.

R. Sommerfeldt, L. Holtmann, and E. Kratzig, “The light-induced charge transport in LiNbO3:Mg, Fe crystals,” Ferroelectrics 92, 219–225 (1989).
[CrossRef]

R. Sommerfeldt, L. Holtmann, E. Kratzig, and B. C. Grabmaier, “Influence of Mg doping and composition on the light-induced charge transport in LiNbO3,” Phys. Status Solidi A 106, 89–98 (1988).
[CrossRef]

Huignard, J. P.

Jermann, F.

F. Jermann, M. Simon, and E. Kratzig, “Photorefractive properties of congruent and stoichiometric lithium niobate at high light intensities,” J. Opt. Soc. Am. B 12, 2066–2070 (1995).
[CrossRef]

M. Simon, F. Jermann, T. R. Volk, and E. Kratzig, “Influence of zinc doping on the photorefractive properties of lithium niobate,” Phys. Status Solidi A 149, 723–733 (1995).
[CrossRef]

F. Jermann and K. Buse, “Light-induced thermal gratings in LiNbO3:Fe,” Appl. Phys. B: Lasers Opt. 59, 437–443 (1994).
[CrossRef]

Ji, Y.

K. Kitamura, Y. Furukawa, Y. Ji, M. Zgonik, C. Medrano, G. Montemezzani, and P. Günter, “Photorefractive effect in LiNbO3 crystals enhanced by stoichiometry control,” J. Appl. Phys. 82, 1006–1009 (1997).
[CrossRef]

Y. Furukawa, K. Kitamura, Y. Ji, G. Montemazzani, M. Zgonik, C. Medrano, and P. Güner, “Photorefractive properties of iron-doped stoichiometric lithium niobate,” Opt. Lett. 22, 501–503 (1997).
[CrossRef] [PubMed]

Kitamura, K.

Y. Furukawa, K. Kitamura, Y. Ji, G. Montemazzani, M. Zgonik, C. Medrano, and P. Güner, “Photorefractive properties of iron-doped stoichiometric lithium niobate,” Opt. Lett. 22, 501–503 (1997).
[CrossRef] [PubMed]

K. Kitamura, Y. Furukawa, Y. Ji, M. Zgonik, C. Medrano, G. Montemezzani, and P. Günter, “Photorefractive effect in LiNbO3 crystals enhanced by stoichiometry control,” J. Appl. Phys. 82, 1006–1009 (1997).
[CrossRef]

Kostritskii, S. M.

S. M. Kostritskii and O. G. Sevostyanov, “Influence of intrinsic defects on light-induced changes in the refractive index of lithium niobate crystals,” Appl. Phys. B: Lasers Opt. 65, 527–533 (1997).
[CrossRef]

Kratzig, E.

F. Jermann, M. Simon, and E. Kratzig, “Photorefractive properties of congruent and stoichiometric lithium niobate at high light intensities,” J. Opt. Soc. Am. B 12, 2066–2070 (1995).
[CrossRef]

M. Simon, F. Jermann, T. R. Volk, and E. Kratzig, “Influence of zinc doping on the photorefractive properties of lithium niobate,” Phys. Status Solidi A 149, 723–733 (1995).
[CrossRef]

R. Sommerfeldt, L. Holtmann, and E. Kratzig, “The light-induced charge transport in LiNbO3:Mg, Fe crystals,” Ferroelectrics 92, 219–225 (1989).
[CrossRef]

R. Sommerfeldt, L. Holtmann, E. Kratzig, and B. C. Grabmaier, “Influence of Mg doping and composition on the light-induced charge transport in LiNbO3,” Phys. Status Solidi A 106, 89–98 (1988).
[CrossRef]

Liu, S.

G. Zhang, Y. Wu, S. Liu, and J. Wang, “Light-climbing effect in thin LiNbO3:Fe, wafers,” Chin. Phys. Lasers 14, 606–609 (1987).

Liu, S.-M.

G.-Q. Zhang, G.-Y. Zhang, S.-M. Liu, J.-J. Xu, Q.-A. Sun, and X.-Z. Zhang, “The threshold effect of incident light intensity for the photorefractive light-induced scattering in LiNbO3:Fe, M (M=Mg2+, Zn2+, In3+) crystals,” J. Appl. Phys. 83, 4392–4396 (1998).
[CrossRef]

G.-Q. Zhang, G.-Y. Zhang, S.-M. Liu, J.-J. Xu, G.-Y. Tian, and Q.-A. Sun, “Theoretical study of resistance against light-induced scattering in LiNbO3:M (M=Mg2+, Zn2+, In3+, Sc3+) crystals,” Opt. Lett. 22, 1666–1668 (1997).
[CrossRef]

G.-Q. Zhang, S.-M. Liu, G.-Y. Tian, J.-J. Xu, Q.-A. Sun, and G.-Y. Zhang, “New noise-suppression technique in photorefractive crystals,” Appl. Opt. 36, 1815–1819 (1997).
[CrossRef] [PubMed]

G.-Q. Zhang, G.-Y. Tian, S.-M. Liu, J.-J. Xu, G.-Y. Zhang, and Q.-A. Sun, “Noise amplification mechanism in LiNbO3:Fe crystal sheets,” J. Opt. Soc. Am. B 14, 2823–2830 (1997).
[CrossRef]

G.-Y. Zhang, J.-J. Xu, S.-M. Liu, Q.-A. Sun, G.-Q. Zhang, Q.-Y. Fang, and C.-L. Ma, “Study of resistance against photorefractive light-induced scattering in LiNbO3:Fe, Mg crystals,” in Photorefractive Fiber and Crystal Devices: Materials, Optical Properties, and Applications, F. T. S. Yu, ed., Proc. SPIE 2529, 14–17 (1995).
[CrossRef]

S.-M. Liu, J.-J. Xu, G.-Y. Zhang, and Y.-Q. Wu, “Light-climbing effect in LiNbO3:Fe crystal,” Appl. Opt. 33, 997–999 (1994).
[CrossRef]

Ma, C.-L.

G.-Y. Zhang, J.-J. Xu, S.-M. Liu, Q.-A. Sun, G.-Q. Zhang, Q.-Y. Fang, and C.-L. Ma, “Study of resistance against photorefractive light-induced scattering in LiNbO3:Fe, Mg crystals,” in Photorefractive Fiber and Crystal Devices: Materials, Optical Properties, and Applications, F. T. S. Yu, ed., Proc. SPIE 2529, 14–17 (1995).
[CrossRef]

Mamaev, A. V.

Medrano, C.

Y. Furukawa, K. Kitamura, Y. Ji, G. Montemazzani, M. Zgonik, C. Medrano, and P. Güner, “Photorefractive properties of iron-doped stoichiometric lithium niobate,” Opt. Lett. 22, 501–503 (1997).
[CrossRef] [PubMed]

K. Kitamura, Y. Furukawa, Y. Ji, M. Zgonik, C. Medrano, G. Montemezzani, and P. Günter, “Photorefractive effect in LiNbO3 crystals enhanced by stoichiometry control,” J. Appl. Phys. 82, 1006–1009 (1997).
[CrossRef]

Montemazzani, G.

Montemezzani, G.

K. Kitamura, Y. Furukawa, Y. Ji, M. Zgonik, C. Medrano, G. Montemezzani, and P. Günter, “Photorefractive effect in LiNbO3 crystals enhanced by stoichiometry control,” J. Appl. Phys. 82, 1006–1009 (1997).
[CrossRef]

Rajbenbach, H.

Razumovski, N. V.

Rubinina, N. M.

Sevostyanov, O. G.

S. M. Kostritskii and O. G. Sevostyanov, “Influence of intrinsic defects on light-induced changes in the refractive index of lithium niobate crystals,” Appl. Phys. B: Lasers Opt. 65, 527–533 (1997).
[CrossRef]

Simon, M.

F. Jermann, M. Simon, and E. Kratzig, “Photorefractive properties of congruent and stoichiometric lithium niobate at high light intensities,” J. Opt. Soc. Am. B 12, 2066–2070 (1995).
[CrossRef]

M. Simon, F. Jermann, T. R. Volk, and E. Kratzig, “Influence of zinc doping on the photorefractive properties of lithium niobate,” Phys. Status Solidi A 149, 723–733 (1995).
[CrossRef]

Solymar, L.

L. B. Au and L. Solymar, “Amplification in photorefractive materials via a higher order wave,” Appl. Phys. B: Photophys. Laser Chem. 45, 125–128 (1988).
[CrossRef]

Sommerfeldt, R.

R. Sommerfeldt, L. Holtmann, and E. Kratzig, “The light-induced charge transport in LiNbO3:Mg, Fe crystals,” Ferroelectrics 92, 219–225 (1989).
[CrossRef]

R. Sommerfeldt, L. Holtmann, E. Kratzig, and B. C. Grabmaier, “Influence of Mg doping and composition on the light-induced charge transport in LiNbO3,” Phys. Status Solidi A 106, 89–98 (1988).
[CrossRef]

Sun, Q.-A.

G.-Q. Zhang, G.-Y. Zhang, S.-M. Liu, J.-J. Xu, Q.-A. Sun, and X.-Z. Zhang, “The threshold effect of incident light intensity for the photorefractive light-induced scattering in LiNbO3:Fe, M (M=Mg2+, Zn2+, In3+) crystals,” J. Appl. Phys. 83, 4392–4396 (1998).
[CrossRef]

G.-Q. Zhang, G.-Y. Zhang, S.-M. Liu, J.-J. Xu, G.-Y. Tian, and Q.-A. Sun, “Theoretical study of resistance against light-induced scattering in LiNbO3:M (M=Mg2+, Zn2+, In3+, Sc3+) crystals,” Opt. Lett. 22, 1666–1668 (1997).
[CrossRef]

G.-Q. Zhang, S.-M. Liu, G.-Y. Tian, J.-J. Xu, Q.-A. Sun, and G.-Y. Zhang, “New noise-suppression technique in photorefractive crystals,” Appl. Opt. 36, 1815–1819 (1997).
[CrossRef] [PubMed]

G.-Q. Zhang, G.-Y. Tian, S.-M. Liu, J.-J. Xu, G.-Y. Zhang, and Q.-A. Sun, “Noise amplification mechanism in LiNbO3:Fe crystal sheets,” J. Opt. Soc. Am. B 14, 2823–2830 (1997).
[CrossRef]

G.-Y. Zhang, J.-J. Xu, S.-M. Liu, Q.-A. Sun, G.-Q. Zhang, Q.-Y. Fang, and C.-L. Ma, “Study of resistance against photorefractive light-induced scattering in LiNbO3:Fe, Mg crystals,” in Photorefractive Fiber and Crystal Devices: Materials, Optical Properties, and Applications, F. T. S. Yu, ed., Proc. SPIE 2529, 14–17 (1995).
[CrossRef]

Tian, G.-Y.

Volk, T. R.

T. R. Volk, N. V. Razumovski, A. V. Mamaev, and N. M. Rubinina, “Hologram recording in Zn-doped LiNbO3 crystals,” J. Opt. Soc. Am. B 13, 1457–1460 (1996).
[CrossRef]

M. Simon, F. Jermann, T. R. Volk, and E. Kratzig, “Influence of zinc doping on the photorefractive properties of lithium niobate,” Phys. Status Solidi A 149, 723–733 (1995).
[CrossRef]

Wang, J.

G. Zhang, Y. Wu, S. Liu, and J. Wang, “Light-climbing effect in thin LiNbO3:Fe, wafers,” Chin. Phys. Lasers 14, 606–609 (1987).

Wu, Y.

G. Zhang, Y. Wu, S. Liu, and J. Wang, “Light-climbing effect in thin LiNbO3:Fe, wafers,” Chin. Phys. Lasers 14, 606–609 (1987).

Wu, Y.-Q.

Xu, J.-J.

G.-Q. Zhang, G.-Y. Zhang, S.-M. Liu, J.-J. Xu, Q.-A. Sun, and X.-Z. Zhang, “The threshold effect of incident light intensity for the photorefractive light-induced scattering in LiNbO3:Fe, M (M=Mg2+, Zn2+, In3+) crystals,” J. Appl. Phys. 83, 4392–4396 (1998).
[CrossRef]

G.-Q. Zhang, G.-Y. Zhang, S.-M. Liu, J.-J. Xu, G.-Y. Tian, and Q.-A. Sun, “Theoretical study of resistance against light-induced scattering in LiNbO3:M (M=Mg2+, Zn2+, In3+, Sc3+) crystals,” Opt. Lett. 22, 1666–1668 (1997).
[CrossRef]

G.-Q. Zhang, S.-M. Liu, G.-Y. Tian, J.-J. Xu, Q.-A. Sun, and G.-Y. Zhang, “New noise-suppression technique in photorefractive crystals,” Appl. Opt. 36, 1815–1819 (1997).
[CrossRef] [PubMed]

G.-Q. Zhang, G.-Y. Tian, S.-M. Liu, J.-J. Xu, G.-Y. Zhang, and Q.-A. Sun, “Noise amplification mechanism in LiNbO3:Fe crystal sheets,” J. Opt. Soc. Am. B 14, 2823–2830 (1997).
[CrossRef]

G.-Y. Zhang, J.-J. Xu, S.-M. Liu, Q.-A. Sun, G.-Q. Zhang, Q.-Y. Fang, and C.-L. Ma, “Study of resistance against photorefractive light-induced scattering in LiNbO3:Fe, Mg crystals,” in Photorefractive Fiber and Crystal Devices: Materials, Optical Properties, and Applications, F. T. S. Yu, ed., Proc. SPIE 2529, 14–17 (1995).
[CrossRef]

S.-M. Liu, J.-J. Xu, G.-Y. Zhang, and Y.-Q. Wu, “Light-climbing effect in LiNbO3:Fe crystal,” Appl. Opt. 33, 997–999 (1994).
[CrossRef]

Yeh, P.

Zgonik, M.

Y. Furukawa, K. Kitamura, Y. Ji, G. Montemazzani, M. Zgonik, C. Medrano, and P. Güner, “Photorefractive properties of iron-doped stoichiometric lithium niobate,” Opt. Lett. 22, 501–503 (1997).
[CrossRef] [PubMed]

K. Kitamura, Y. Furukawa, Y. Ji, M. Zgonik, C. Medrano, G. Montemezzani, and P. Günter, “Photorefractive effect in LiNbO3 crystals enhanced by stoichiometry control,” J. Appl. Phys. 82, 1006–1009 (1997).
[CrossRef]

Zhang, G.

G. Zhang, Y. Wu, S. Liu, and J. Wang, “Light-climbing effect in thin LiNbO3:Fe, wafers,” Chin. Phys. Lasers 14, 606–609 (1987).

Zhang, G.-Q.

G.-Q. Zhang, G.-Y. Zhang, S.-M. Liu, J.-J. Xu, Q.-A. Sun, and X.-Z. Zhang, “The threshold effect of incident light intensity for the photorefractive light-induced scattering in LiNbO3:Fe, M (M=Mg2+, Zn2+, In3+) crystals,” J. Appl. Phys. 83, 4392–4396 (1998).
[CrossRef]

G.-Q. Zhang, S.-M. Liu, G.-Y. Tian, J.-J. Xu, Q.-A. Sun, and G.-Y. Zhang, “New noise-suppression technique in photorefractive crystals,” Appl. Opt. 36, 1815–1819 (1997).
[CrossRef] [PubMed]

G.-Q. Zhang, G.-Y. Zhang, S.-M. Liu, J.-J. Xu, G.-Y. Tian, and Q.-A. Sun, “Theoretical study of resistance against light-induced scattering in LiNbO3:M (M=Mg2+, Zn2+, In3+, Sc3+) crystals,” Opt. Lett. 22, 1666–1668 (1997).
[CrossRef]

G.-Q. Zhang, G.-Y. Tian, S.-M. Liu, J.-J. Xu, G.-Y. Zhang, and Q.-A. Sun, “Noise amplification mechanism in LiNbO3:Fe crystal sheets,” J. Opt. Soc. Am. B 14, 2823–2830 (1997).
[CrossRef]

G.-Y. Zhang, J.-J. Xu, S.-M. Liu, Q.-A. Sun, G.-Q. Zhang, Q.-Y. Fang, and C.-L. Ma, “Study of resistance against photorefractive light-induced scattering in LiNbO3:Fe, Mg crystals,” in Photorefractive Fiber and Crystal Devices: Materials, Optical Properties, and Applications, F. T. S. Yu, ed., Proc. SPIE 2529, 14–17 (1995).
[CrossRef]

Zhang, G.-Y.

G.-Q. Zhang, G.-Y. Zhang, S.-M. Liu, J.-J. Xu, Q.-A. Sun, and X.-Z. Zhang, “The threshold effect of incident light intensity for the photorefractive light-induced scattering in LiNbO3:Fe, M (M=Mg2+, Zn2+, In3+) crystals,” J. Appl. Phys. 83, 4392–4396 (1998).
[CrossRef]

G.-Q. Zhang, G.-Y. Zhang, S.-M. Liu, J.-J. Xu, G.-Y. Tian, and Q.-A. Sun, “Theoretical study of resistance against light-induced scattering in LiNbO3:M (M=Mg2+, Zn2+, In3+, Sc3+) crystals,” Opt. Lett. 22, 1666–1668 (1997).
[CrossRef]

G.-Q. Zhang, S.-M. Liu, G.-Y. Tian, J.-J. Xu, Q.-A. Sun, and G.-Y. Zhang, “New noise-suppression technique in photorefractive crystals,” Appl. Opt. 36, 1815–1819 (1997).
[CrossRef] [PubMed]

G.-Q. Zhang, G.-Y. Tian, S.-M. Liu, J.-J. Xu, G.-Y. Zhang, and Q.-A. Sun, “Noise amplification mechanism in LiNbO3:Fe crystal sheets,” J. Opt. Soc. Am. B 14, 2823–2830 (1997).
[CrossRef]

G.-Y. Zhang, J.-J. Xu, S.-M. Liu, Q.-A. Sun, G.-Q. Zhang, Q.-Y. Fang, and C.-L. Ma, “Study of resistance against photorefractive light-induced scattering in LiNbO3:Fe, Mg crystals,” in Photorefractive Fiber and Crystal Devices: Materials, Optical Properties, and Applications, F. T. S. Yu, ed., Proc. SPIE 2529, 14–17 (1995).
[CrossRef]

S.-M. Liu, J.-J. Xu, G.-Y. Zhang, and Y.-Q. Wu, “Light-climbing effect in LiNbO3:Fe crystal,” Appl. Opt. 33, 997–999 (1994).
[CrossRef]

Zhang, X.-Z.

G.-Q. Zhang, G.-Y. Zhang, S.-M. Liu, J.-J. Xu, Q.-A. Sun, and X.-Z. Zhang, “The threshold effect of incident light intensity for the photorefractive light-induced scattering in LiNbO3:Fe, M (M=Mg2+, Zn2+, In3+) crystals,” J. Appl. Phys. 83, 4392–4396 (1998).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. B: Lasers Opt. (2)

F. Jermann and K. Buse, “Light-induced thermal gratings in LiNbO3:Fe,” Appl. Phys. B: Lasers Opt. 59, 437–443 (1994).
[CrossRef]

S. M. Kostritskii and O. G. Sevostyanov, “Influence of intrinsic defects on light-induced changes in the refractive index of lithium niobate crystals,” Appl. Phys. B: Lasers Opt. 65, 527–533 (1997).
[CrossRef]

Appl. Phys. B: Photophys. Laser Chem. (1)

L. B. Au and L. Solymar, “Amplification in photorefractive materials via a higher order wave,” Appl. Phys. B: Photophys. Laser Chem. 45, 125–128 (1988).
[CrossRef]

Chin. Phys. Lasers (1)

G. Zhang, Y. Wu, S. Liu, and J. Wang, “Light-climbing effect in thin LiNbO3:Fe, wafers,” Chin. Phys. Lasers 14, 606–609 (1987).

Ferroelectrics (1)

R. Sommerfeldt, L. Holtmann, and E. Kratzig, “The light-induced charge transport in LiNbO3:Mg, Fe crystals,” Ferroelectrics 92, 219–225 (1989).
[CrossRef]

J. Appl. Phys. (2)

K. Kitamura, Y. Furukawa, Y. Ji, M. Zgonik, C. Medrano, G. Montemezzani, and P. Günter, “Photorefractive effect in LiNbO3 crystals enhanced by stoichiometry control,” J. Appl. Phys. 82, 1006–1009 (1997).
[CrossRef]

G.-Q. Zhang, G.-Y. Zhang, S.-M. Liu, J.-J. Xu, Q.-A. Sun, and X.-Z. Zhang, “The threshold effect of incident light intensity for the photorefractive light-induced scattering in LiNbO3:Fe, M (M=Mg2+, Zn2+, In3+) crystals,” J. Appl. Phys. 83, 4392–4396 (1998).
[CrossRef]

J. Opt. Soc. Am. B (3)

Opt. Lett. (3)

Phys. Status Solidi A (2)

M. Simon, F. Jermann, T. R. Volk, and E. Kratzig, “Influence of zinc doping on the photorefractive properties of lithium niobate,” Phys. Status Solidi A 149, 723–733 (1995).
[CrossRef]

R. Sommerfeldt, L. Holtmann, E. Kratzig, and B. C. Grabmaier, “Influence of Mg doping and composition on the light-induced charge transport in LiNbO3,” Phys. Status Solidi A 106, 89–98 (1988).
[CrossRef]

Proc. SPIE (1)

G.-Y. Zhang, J.-J. Xu, S.-M. Liu, Q.-A. Sun, G.-Q. Zhang, Q.-Y. Fang, and C.-L. Ma, “Study of resistance against photorefractive light-induced scattering in LiNbO3:Fe, Mg crystals,” in Photorefractive Fiber and Crystal Devices: Materials, Optical Properties, and Applications, F. T. S. Yu, ed., Proc. SPIE 2529, 14–17 (1995).
[CrossRef]

Other (3)

Ref. 1, pp. 118–134.

G. C. Valley and J. F. Lam, “Theory of photorefractive effects in electro-optic crystals,” in Photorefractive Materials and Their Application I, P. Günter and J. P. Huignard, eds. Vol. 61 of Topics in Applied Physics (Springer-Verlag, Berlin, 1988), p. 82.

P. Yeh, Introduction to Photorefractive Nonlinear Optics, Wiley Series in Pure and Applied Optics (Wiley, New York, 1993), pp. 183–247.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of the waves involved in the proposed wave interaction model. Ip, pump beam; Is, Is, signal beam and its conjugate beam, respectively, which are symmetrical about the pump beam; Ii, Isyi, ith scattering and the scattering that makes an angle of -θi with the pump beam, which are located in the hatched area and are symmetrical about the pump beam. The hatched area represents the 40 pairs of symmetrical scatterings. C, doped LiNbO3 crystal.

Fig. 2
Fig. 2

Calculated angular dependence of signal-beam gain G and calculated ratio R with corresponding signal incident angle in air θs under various conditions when the amplification of the fanning noise and the signal beam are considered simultaneously. (a) Results with ξ=0.15 and Eph=1.0×107 V/m, (b) results with ξ=0.15 and Eph=4.0×106 V/m, (c) results with ξ=1.0 and Eph=4.0×106 V/m. All other parameters used in the calculations are listed in Table 1.

Fig. 3
Fig. 3

Calculated signal-beam gains G and corresponding ratio R with increasing photovoltaic field Eph at a fixed incident signal angle θs in the crystal when the amplification of the fanning noise and the signal beam are taken into account simultaneously. Here ξ=0.15 and θs=2.5°; all other parameters are listed in Table 1.

Fig. 4
Fig. 4

Calculated signal gains G and corresponding ratio R with increasing initial pump intensity Ip(0) at a fixed incident signal angle θs in crystal when the amplification of the fanning noise and the signal beam are considered simultaneously. ξ=0.15, θs=2.5°, β1=8.0×10-3 s-1, and C1/C=0.9. All other related parameters used in the calculations are listed in Table I of Ref. 8 and in Table 1 in this paper.

Tables (1)

Tables Icon

Table 1 Some of the Parameters Used To Calculate the Curves in Figs. 24

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Φi(s)x=2Lσi(s)Io[2Ii(s) cos θi(s)-Ip)(1+cos Φi(s))+δki(s)L,
Ii(s)x=-2σi(s)LIpIi(s)Iosin Φi(s),
Ipx=4IpIoLi=1mσi cos θiIi sin Φi+σs cos θsIs sin Φs,
Io=Ip+2i=1mIi+Is+Is=Ip+2i=1mIi+2Is-Is(0),
γi(s)=jω2noδni(s)2kc2 cos θi(s)exp(-jφi(s)).
δns=-no32reffsEsc-no32reffsEph cos(θs/2),
reffs=r33ne4 cos θs cos(θs/2)+no2ne2r51 sin θs sin(θs/2)no3ne.
R=2i=1mIiIo×100%.
Eph=KIo(N1+N2)neμKIp(0)(N1+N2)neμ,

Metrics