Abstract

Using high-resolution, Doppler-free spectroscopy, we recorded through resonance-enhanced multiphoton ionization the response of two-photon rotational lines of the Q-branch of CO BX(0, 0) to an independent photoionizing optical field. In direct proportion to the photoionization intensity, transitions Q(0)Q(12) were lifetime broadened and shifted toward positive frequency, from which we extracted absolute cross sections of photoionization (σi) and Stark shift (σs), respectively. Cross sections of σi=10±3×10-18 cm2 and σs=7±2×10-18 cm2 were determined for the case of photoionizing light at 230 nm, tuned in near resonance with the two-photon transition. Photoionization by 345-nm light resulted in similar cross sections, of σi=6±2×10-18 cm2 and σs=8±2×10-18 cm2. We observed a variation of σi and σs with rotational level for photoionization at 230 nm.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. W. Loge, J. J. Tiee, and F. B. Wampler, “Multiphoton induced fluorescence and ionization of carbon monoxide (B 1Σ+),” J. Chem. Phys. 79, 196–202 (1983).
    [CrossRef]
  2. S. Wurm, P. Feulner, and D. Menzel, “Resonance-enhanced multiphoton ionization spectroscopy of X 1Σ+ and a3Π carbon monoxide using electron stimulated desorption as a source for rovibronically excited species,” J. Chem. Phys. 105, 6673–6687 (1996).
    [CrossRef]
  3. L. F. DiMauro and T. A. Miller, “Laser-induced fluorescence of CO+ and the CO a3Πi state produced by multiphoton absorption in a supersonic jet,” Chem. Phys. Lett. 138, 175–180 (1987).
    [CrossRef]
  4. J. P. Looney, J. E. Harrington, K. C. Smyth, T. R. O’Brian, and T. B. Lucatorto, “Measurement of CO pressures in the ultrahigh vacuum regime using resonance-enhanced multiphoton ionization time-of-flight mass spectroscopy,” J. Vac. Sci. Technol. A 11, 3111–3120 (1993).
    [CrossRef]
  5. M. S. Aldén, S. Wallin, and W. Wendt, “Applications of two-photon absorption for detection of CO in combustion gases,” Appl. Phys. B: Photophys. Laser Chem. 33, 205–208 (1984).
    [CrossRef]
  6. J. Haumann, J. M. Seitzman, and R. K. Hanson, “Two-photon digital imaging of CO in combustion flows using planar laser-induced fluorescence,” Opt. Lett. 11, 776–778 (1986).
    [CrossRef] [PubMed]
  7. J. M. Seitzman, J. Haumann, and R. K. Hanson, “Quantitative two-photon LIF imaging of carbon monoxide in combustion gases,” Appl. Opt. 26, 2892–2899 (1987).
    [CrossRef] [PubMed]
  8. D. A. Everest, C. R. Shaddix, and K. C. Smyth, “Quantitative two-photon laser-induced fluorescence imaging of CO in flickering CH4/Air diffusion flames,” Twenty-Sixth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 1161–1169.
  9. N. Georgiev and M. Aldén, “Two-dimensional imaging of flame species using two-photon laser-induced fluorescence,” Appl. Spectrosc. 51, 1229–1237 (1997).
    [CrossRef]
  10. P. J. H. Tjossem and K. C. Smyth, “Multiphoton excitation spectroscopy of the B 1Σ+ and C 1Σ+ Rydberg states of CO,” J. Chem. Phys. 91, 2041–2047 (1989).
    [CrossRef]
  11. J. S. Bernstein, A. Fein, J. B. Choi, T. A. Cool, R. C. Sausa, S. L. Howard, R. J. Locke, and A. W. Miziolek, “Laser-based flame species profile measurements: a comparison with flame model predictions,” Combust. Flame 92, 85–105 (1993).
    [CrossRef]
  12. W. R. Ferrell, C. H. Chen, M. G. Payne, and R. D. Willis, “Two-resonance step ionization spectroscopy of CO,” Chem. Phys. Lett. 97, 460–466 (1983).
    [CrossRef]
  13. H. Bergström, H. Lundberg, and A. Persson, “Investigations of stimulated emission on B–A lines in CO,” Z. Phys. D 21, 323–327 (1991).
    [CrossRef]
  14. S. Kroll and W. K. Bischel, “Two-photon absorption and photoionization cross-section measurements in the 5p56p configuration of xenon,” Phys. Rev. A 41, 1340–1349 (1990).
    [CrossRef]
  15. D. J. Hart and O. L. Bourne, “High-resolution coherent vuv spectroscopy of NO[C2Π(1)~B2Π(10), B2Π(11)] and CO[B1Σ+(0)],” Chem. Phys. 133, 103–112 (1989).
    [CrossRef]
  16. R. E. Imhof, F. H. Read, and S. T. Beckett, “Determination of the transition moment of the B 1Σ+–X 1Σ+ transition in CO,” J. Phys. B 5, 896–902 (1972).
    [CrossRef]
  17. J. H. Moore, Jr., and D. W. Robinson, “Study of some electronic transition probabilities in CO and CN*,” J. Chem. Phys. 48, 4870–4874 (1968).
    [CrossRef]
  18. J. F. M. Aarts and F. J. de Heer, “Emission of radiation in the vacuum ultraviolet by impact of electrons on carbon monoxide,” J. Chem. Phys. 52, 5354–5360 (1970).
    [CrossRef]
  19. L. W. Dotchin, E. L. Chupp, and D. J. Pegg, “Radiative lifetimes and pressure dependence of the relaxation rates of some vibronic levels in N2+, N2, CO+ and CO*,” J. Chem. Phys. 59, 3960–3967 (1973).
    [CrossRef]
  20. L. A. Rahn, R. L. Farrow, M. L. Koszykowski, and P. L. Mattern, “Observation of an optical Stark effect on vibrational and rotational transitions,” Phys. Rev. Lett. 45, 620–623 (1980).
    [CrossRef]
  21. R. L. Farrow and L. A. Rahn, “Optical Stark splitting of rotational Raman transitions,” Phys. Rev. Lett. 48, 395–398 (1982).
    [CrossRef]
  22. M. A. Quesada, A. M. F. Lau, D. H. Parker, and D. W. Chandler, “Observation and theory of Autler Townes splitting in multiphoton ionization of molecules: a new measurement technique of vibronic transition moments,” Phys. Rev. A 36, 4107–4110 (1987).
    [CrossRef] [PubMed]
  23. D. Normand, L.-A. Lompré, A. L’Huillier, J. Morellec, M. Ferray, J. Lavancier, G. Mainfray, and C. Manus, “Ac Stark shifts induced by a YAG laser in the nP and nF Rydberg series in xenon,” J. Opt. Soc. Am. B 6, 1513–1518 (1989).
    [CrossRef]
  24. W. Demtröder, Laser Spectroscopy, 2nd ed. (Springer, New York, 1996), p. 473.
  25. S. Xu, G. Sha, B. Jiang, W. Sun, X. Chen, and C. Zhang, “Two-color study of Autler–Townes splitting and ac Stark shift in multi-photon ionization spectra of CO,” J. Chem. Phys. 100, 6122–6124 (1994).
    [CrossRef]
  26. B. Girard, N. Billy, J. Vigue, and J. C. Lehmann, “Evidence for a dynamical Stark effect in CO(A1Π) two-photon excitation,” Chem. Phys. Lett. 102, 168–173 (1992).
    [CrossRef]
  27. R. P. Lucht, R. L. Farrow, and D. J. Rakestraw, “Saturation effects in gas-phase degenerate four-wave mixing spectroscopy: nonperturbative calculations,” J. Opt. Soc. Am. B 10, 1508–1520 (1993).
    [CrossRef]
  28. A. L’Huillier, L.-A. Lompré, D. Normand, X. Tang, and P. Lambropoulos, “Theoretical aspects of three-photon two-color ionization through ac-Stark-shifted resonant Rydberg states,” J. Opt. Soc. Am. B 6, 1790–1795 (1989).
    [CrossRef]
  29. R. P. Saxon and J. Eichler, “Theoretical calculation of two-photon absorption cross section in atomic oxygen,” Phys. Rev. A 34, 199–34 (1986).
    [CrossRef] [PubMed]
  30. R. Loudon, The Quantum Theory of Light, 2nd ed. (Clarendon, Oxford, 1983) pp. 78–81, 344–347.
  31. S. R. Drayson, “Rapid computation of the Voigt profile,” J. Quant. Spectrosc. Radiat. Transf. 16, 611–614 (1976).
    [CrossRef]
  32. D. J. Bamford, R. P. Saxon, L. E. Jusinski, J. D. Buck, and W. K. Bischel, “Two-photon excitation of atomic oxygen at 200.6, 192.5, and 194.2 nm: absolute cross sections and collisional ionization rate constants,” Phys. Rev. A 37, 3259–3269 (1988).
    [CrossRef] [PubMed]
  33. H. Rottke and H. Zacharias, “Sensitive detection of CO by tunable VUV laser excitation of the B 1Σ+ state,” Opt. Commun. 55, 87–90 (1985).
    [CrossRef]
  34. M. Eidelsberg and F. Rostas, “Spectroscopic, absorption and photodissociation data for CO and isotopic species between 91 and 115 nm,” Astron. Astrophys. 235, 472–489 (1990).
  35. A. A. Radzig and B. M. Smirnov, Reference Data on Atoms, Molecules, and Ions, J. P. Toennies, ed., Vol. 31 of Springer Series in Chemical Physics (Springer-Verlag, New York, 1985), pp. 443–444.
  36. P. A. Martin and M. Fehér, “CASSCF calculations of the multipole moments and dipole polarisability functions of the X 2Σ+ and A 2Π states of CO+,” Chem. Phys. Lett. 232, 491–496 (1995).
    [CrossRef]
  37. P. Erman, E. Rachlew-Kallne, and S. L. Sorenson, “Synchrotron radiation induced photoionization and photodissociation of carbon monoxide in the 14–35 eV region,” Z. Phys. D 30, 315–321 (1994).
    [CrossRef]
  38. K. M. Beck, K. A. H. German, and W. P. Hess, “Thermal state distributions deduced from (2+1) resonance enhanced multiphoton ionization of CO,” Chem. Phys. Lett. 256, 297–304 (1996).
    [CrossRef]

1997

1996

K. M. Beck, K. A. H. German, and W. P. Hess, “Thermal state distributions deduced from (2+1) resonance enhanced multiphoton ionization of CO,” Chem. Phys. Lett. 256, 297–304 (1996).
[CrossRef]

S. Wurm, P. Feulner, and D. Menzel, “Resonance-enhanced multiphoton ionization spectroscopy of X 1Σ+ and a3Π carbon monoxide using electron stimulated desorption as a source for rovibronically excited species,” J. Chem. Phys. 105, 6673–6687 (1996).
[CrossRef]

1995

P. A. Martin and M. Fehér, “CASSCF calculations of the multipole moments and dipole polarisability functions of the X 2Σ+ and A 2Π states of CO+,” Chem. Phys. Lett. 232, 491–496 (1995).
[CrossRef]

1994

P. Erman, E. Rachlew-Kallne, and S. L. Sorenson, “Synchrotron radiation induced photoionization and photodissociation of carbon monoxide in the 14–35 eV region,” Z. Phys. D 30, 315–321 (1994).
[CrossRef]

S. Xu, G. Sha, B. Jiang, W. Sun, X. Chen, and C. Zhang, “Two-color study of Autler–Townes splitting and ac Stark shift in multi-photon ionization spectra of CO,” J. Chem. Phys. 100, 6122–6124 (1994).
[CrossRef]

1993

R. P. Lucht, R. L. Farrow, and D. J. Rakestraw, “Saturation effects in gas-phase degenerate four-wave mixing spectroscopy: nonperturbative calculations,” J. Opt. Soc. Am. B 10, 1508–1520 (1993).
[CrossRef]

J. P. Looney, J. E. Harrington, K. C. Smyth, T. R. O’Brian, and T. B. Lucatorto, “Measurement of CO pressures in the ultrahigh vacuum regime using resonance-enhanced multiphoton ionization time-of-flight mass spectroscopy,” J. Vac. Sci. Technol. A 11, 3111–3120 (1993).
[CrossRef]

J. S. Bernstein, A. Fein, J. B. Choi, T. A. Cool, R. C. Sausa, S. L. Howard, R. J. Locke, and A. W. Miziolek, “Laser-based flame species profile measurements: a comparison with flame model predictions,” Combust. Flame 92, 85–105 (1993).
[CrossRef]

1992

B. Girard, N. Billy, J. Vigue, and J. C. Lehmann, “Evidence for a dynamical Stark effect in CO(A1Π) two-photon excitation,” Chem. Phys. Lett. 102, 168–173 (1992).
[CrossRef]

1991

H. Bergström, H. Lundberg, and A. Persson, “Investigations of stimulated emission on B–A lines in CO,” Z. Phys. D 21, 323–327 (1991).
[CrossRef]

1990

S. Kroll and W. K. Bischel, “Two-photon absorption and photoionization cross-section measurements in the 5p56p configuration of xenon,” Phys. Rev. A 41, 1340–1349 (1990).
[CrossRef]

M. Eidelsberg and F. Rostas, “Spectroscopic, absorption and photodissociation data for CO and isotopic species between 91 and 115 nm,” Astron. Astrophys. 235, 472–489 (1990).

1989

1988

D. J. Bamford, R. P. Saxon, L. E. Jusinski, J. D. Buck, and W. K. Bischel, “Two-photon excitation of atomic oxygen at 200.6, 192.5, and 194.2 nm: absolute cross sections and collisional ionization rate constants,” Phys. Rev. A 37, 3259–3269 (1988).
[CrossRef] [PubMed]

1987

M. A. Quesada, A. M. F. Lau, D. H. Parker, and D. W. Chandler, “Observation and theory of Autler Townes splitting in multiphoton ionization of molecules: a new measurement technique of vibronic transition moments,” Phys. Rev. A 36, 4107–4110 (1987).
[CrossRef] [PubMed]

J. M. Seitzman, J. Haumann, and R. K. Hanson, “Quantitative two-photon LIF imaging of carbon monoxide in combustion gases,” Appl. Opt. 26, 2892–2899 (1987).
[CrossRef] [PubMed]

L. F. DiMauro and T. A. Miller, “Laser-induced fluorescence of CO+ and the CO a3Πi state produced by multiphoton absorption in a supersonic jet,” Chem. Phys. Lett. 138, 175–180 (1987).
[CrossRef]

1986

J. Haumann, J. M. Seitzman, and R. K. Hanson, “Two-photon digital imaging of CO in combustion flows using planar laser-induced fluorescence,” Opt. Lett. 11, 776–778 (1986).
[CrossRef] [PubMed]

R. P. Saxon and J. Eichler, “Theoretical calculation of two-photon absorption cross section in atomic oxygen,” Phys. Rev. A 34, 199–34 (1986).
[CrossRef] [PubMed]

1985

H. Rottke and H. Zacharias, “Sensitive detection of CO by tunable VUV laser excitation of the B 1Σ+ state,” Opt. Commun. 55, 87–90 (1985).
[CrossRef]

1984

M. S. Aldén, S. Wallin, and W. Wendt, “Applications of two-photon absorption for detection of CO in combustion gases,” Appl. Phys. B: Photophys. Laser Chem. 33, 205–208 (1984).
[CrossRef]

1983

G. W. Loge, J. J. Tiee, and F. B. Wampler, “Multiphoton induced fluorescence and ionization of carbon monoxide (B 1Σ+),” J. Chem. Phys. 79, 196–202 (1983).
[CrossRef]

W. R. Ferrell, C. H. Chen, M. G. Payne, and R. D. Willis, “Two-resonance step ionization spectroscopy of CO,” Chem. Phys. Lett. 97, 460–466 (1983).
[CrossRef]

1982

R. L. Farrow and L. A. Rahn, “Optical Stark splitting of rotational Raman transitions,” Phys. Rev. Lett. 48, 395–398 (1982).
[CrossRef]

1980

L. A. Rahn, R. L. Farrow, M. L. Koszykowski, and P. L. Mattern, “Observation of an optical Stark effect on vibrational and rotational transitions,” Phys. Rev. Lett. 45, 620–623 (1980).
[CrossRef]

1976

S. R. Drayson, “Rapid computation of the Voigt profile,” J. Quant. Spectrosc. Radiat. Transf. 16, 611–614 (1976).
[CrossRef]

1973

L. W. Dotchin, E. L. Chupp, and D. J. Pegg, “Radiative lifetimes and pressure dependence of the relaxation rates of some vibronic levels in N2+, N2, CO+ and CO*,” J. Chem. Phys. 59, 3960–3967 (1973).
[CrossRef]

1972

R. E. Imhof, F. H. Read, and S. T. Beckett, “Determination of the transition moment of the B 1Σ+–X 1Σ+ transition in CO,” J. Phys. B 5, 896–902 (1972).
[CrossRef]

1970

J. F. M. Aarts and F. J. de Heer, “Emission of radiation in the vacuum ultraviolet by impact of electrons on carbon monoxide,” J. Chem. Phys. 52, 5354–5360 (1970).
[CrossRef]

1968

J. H. Moore, Jr., and D. W. Robinson, “Study of some electronic transition probabilities in CO and CN*,” J. Chem. Phys. 48, 4870–4874 (1968).
[CrossRef]

Aarts, J. F. M.

J. F. M. Aarts and F. J. de Heer, “Emission of radiation in the vacuum ultraviolet by impact of electrons on carbon monoxide,” J. Chem. Phys. 52, 5354–5360 (1970).
[CrossRef]

Aldén, M.

Aldén, M. S.

M. S. Aldén, S. Wallin, and W. Wendt, “Applications of two-photon absorption for detection of CO in combustion gases,” Appl. Phys. B: Photophys. Laser Chem. 33, 205–208 (1984).
[CrossRef]

Bamford, D. J.

D. J. Bamford, R. P. Saxon, L. E. Jusinski, J. D. Buck, and W. K. Bischel, “Two-photon excitation of atomic oxygen at 200.6, 192.5, and 194.2 nm: absolute cross sections and collisional ionization rate constants,” Phys. Rev. A 37, 3259–3269 (1988).
[CrossRef] [PubMed]

Beck, K. M.

K. M. Beck, K. A. H. German, and W. P. Hess, “Thermal state distributions deduced from (2+1) resonance enhanced multiphoton ionization of CO,” Chem. Phys. Lett. 256, 297–304 (1996).
[CrossRef]

Beckett, S. T.

R. E. Imhof, F. H. Read, and S. T. Beckett, “Determination of the transition moment of the B 1Σ+–X 1Σ+ transition in CO,” J. Phys. B 5, 896–902 (1972).
[CrossRef]

Bergström, H.

H. Bergström, H. Lundberg, and A. Persson, “Investigations of stimulated emission on B–A lines in CO,” Z. Phys. D 21, 323–327 (1991).
[CrossRef]

Bernstein, J. S.

J. S. Bernstein, A. Fein, J. B. Choi, T. A. Cool, R. C. Sausa, S. L. Howard, R. J. Locke, and A. W. Miziolek, “Laser-based flame species profile measurements: a comparison with flame model predictions,” Combust. Flame 92, 85–105 (1993).
[CrossRef]

Billy, N.

B. Girard, N. Billy, J. Vigue, and J. C. Lehmann, “Evidence for a dynamical Stark effect in CO(A1Π) two-photon excitation,” Chem. Phys. Lett. 102, 168–173 (1992).
[CrossRef]

Bischel, W. K.

S. Kroll and W. K. Bischel, “Two-photon absorption and photoionization cross-section measurements in the 5p56p configuration of xenon,” Phys. Rev. A 41, 1340–1349 (1990).
[CrossRef]

D. J. Bamford, R. P. Saxon, L. E. Jusinski, J. D. Buck, and W. K. Bischel, “Two-photon excitation of atomic oxygen at 200.6, 192.5, and 194.2 nm: absolute cross sections and collisional ionization rate constants,” Phys. Rev. A 37, 3259–3269 (1988).
[CrossRef] [PubMed]

Bourne, O. L.

D. J. Hart and O. L. Bourne, “High-resolution coherent vuv spectroscopy of NO[C2Π(1)~B2Π(10), B2Π(11)] and CO[B1Σ+(0)],” Chem. Phys. 133, 103–112 (1989).
[CrossRef]

Buck, J. D.

D. J. Bamford, R. P. Saxon, L. E. Jusinski, J. D. Buck, and W. K. Bischel, “Two-photon excitation of atomic oxygen at 200.6, 192.5, and 194.2 nm: absolute cross sections and collisional ionization rate constants,” Phys. Rev. A 37, 3259–3269 (1988).
[CrossRef] [PubMed]

Chandler, D. W.

M. A. Quesada, A. M. F. Lau, D. H. Parker, and D. W. Chandler, “Observation and theory of Autler Townes splitting in multiphoton ionization of molecules: a new measurement technique of vibronic transition moments,” Phys. Rev. A 36, 4107–4110 (1987).
[CrossRef] [PubMed]

Chen, C. H.

W. R. Ferrell, C. H. Chen, M. G. Payne, and R. D. Willis, “Two-resonance step ionization spectroscopy of CO,” Chem. Phys. Lett. 97, 460–466 (1983).
[CrossRef]

Chen, X.

S. Xu, G. Sha, B. Jiang, W. Sun, X. Chen, and C. Zhang, “Two-color study of Autler–Townes splitting and ac Stark shift in multi-photon ionization spectra of CO,” J. Chem. Phys. 100, 6122–6124 (1994).
[CrossRef]

Choi, J. B.

J. S. Bernstein, A. Fein, J. B. Choi, T. A. Cool, R. C. Sausa, S. L. Howard, R. J. Locke, and A. W. Miziolek, “Laser-based flame species profile measurements: a comparison with flame model predictions,” Combust. Flame 92, 85–105 (1993).
[CrossRef]

Chupp, E. L.

L. W. Dotchin, E. L. Chupp, and D. J. Pegg, “Radiative lifetimes and pressure dependence of the relaxation rates of some vibronic levels in N2+, N2, CO+ and CO*,” J. Chem. Phys. 59, 3960–3967 (1973).
[CrossRef]

Cool, T. A.

J. S. Bernstein, A. Fein, J. B. Choi, T. A. Cool, R. C. Sausa, S. L. Howard, R. J. Locke, and A. W. Miziolek, “Laser-based flame species profile measurements: a comparison with flame model predictions,” Combust. Flame 92, 85–105 (1993).
[CrossRef]

de Heer, F. J.

J. F. M. Aarts and F. J. de Heer, “Emission of radiation in the vacuum ultraviolet by impact of electrons on carbon monoxide,” J. Chem. Phys. 52, 5354–5360 (1970).
[CrossRef]

DiMauro, L. F.

L. F. DiMauro and T. A. Miller, “Laser-induced fluorescence of CO+ and the CO a3Πi state produced by multiphoton absorption in a supersonic jet,” Chem. Phys. Lett. 138, 175–180 (1987).
[CrossRef]

Dotchin, L. W.

L. W. Dotchin, E. L. Chupp, and D. J. Pegg, “Radiative lifetimes and pressure dependence of the relaxation rates of some vibronic levels in N2+, N2, CO+ and CO*,” J. Chem. Phys. 59, 3960–3967 (1973).
[CrossRef]

Drayson, S. R.

S. R. Drayson, “Rapid computation of the Voigt profile,” J. Quant. Spectrosc. Radiat. Transf. 16, 611–614 (1976).
[CrossRef]

Eichler, J.

R. P. Saxon and J. Eichler, “Theoretical calculation of two-photon absorption cross section in atomic oxygen,” Phys. Rev. A 34, 199–34 (1986).
[CrossRef] [PubMed]

Eidelsberg, M.

M. Eidelsberg and F. Rostas, “Spectroscopic, absorption and photodissociation data for CO and isotopic species between 91 and 115 nm,” Astron. Astrophys. 235, 472–489 (1990).

Erman, P.

P. Erman, E. Rachlew-Kallne, and S. L. Sorenson, “Synchrotron radiation induced photoionization and photodissociation of carbon monoxide in the 14–35 eV region,” Z. Phys. D 30, 315–321 (1994).
[CrossRef]

Farrow, R. L.

R. P. Lucht, R. L. Farrow, and D. J. Rakestraw, “Saturation effects in gas-phase degenerate four-wave mixing spectroscopy: nonperturbative calculations,” J. Opt. Soc. Am. B 10, 1508–1520 (1993).
[CrossRef]

R. L. Farrow and L. A. Rahn, “Optical Stark splitting of rotational Raman transitions,” Phys. Rev. Lett. 48, 395–398 (1982).
[CrossRef]

L. A. Rahn, R. L. Farrow, M. L. Koszykowski, and P. L. Mattern, “Observation of an optical Stark effect on vibrational and rotational transitions,” Phys. Rev. Lett. 45, 620–623 (1980).
[CrossRef]

Fehér, M.

P. A. Martin and M. Fehér, “CASSCF calculations of the multipole moments and dipole polarisability functions of the X 2Σ+ and A 2Π states of CO+,” Chem. Phys. Lett. 232, 491–496 (1995).
[CrossRef]

Fein, A.

J. S. Bernstein, A. Fein, J. B. Choi, T. A. Cool, R. C. Sausa, S. L. Howard, R. J. Locke, and A. W. Miziolek, “Laser-based flame species profile measurements: a comparison with flame model predictions,” Combust. Flame 92, 85–105 (1993).
[CrossRef]

Ferray, M.

Ferrell, W. R.

W. R. Ferrell, C. H. Chen, M. G. Payne, and R. D. Willis, “Two-resonance step ionization spectroscopy of CO,” Chem. Phys. Lett. 97, 460–466 (1983).
[CrossRef]

Feulner, P.

S. Wurm, P. Feulner, and D. Menzel, “Resonance-enhanced multiphoton ionization spectroscopy of X 1Σ+ and a3Π carbon monoxide using electron stimulated desorption as a source for rovibronically excited species,” J. Chem. Phys. 105, 6673–6687 (1996).
[CrossRef]

Georgiev, N.

German, K. A. H.

K. M. Beck, K. A. H. German, and W. P. Hess, “Thermal state distributions deduced from (2+1) resonance enhanced multiphoton ionization of CO,” Chem. Phys. Lett. 256, 297–304 (1996).
[CrossRef]

Girard, B.

B. Girard, N. Billy, J. Vigue, and J. C. Lehmann, “Evidence for a dynamical Stark effect in CO(A1Π) two-photon excitation,” Chem. Phys. Lett. 102, 168–173 (1992).
[CrossRef]

Hanson, R. K.

Harrington, J. E.

J. P. Looney, J. E. Harrington, K. C. Smyth, T. R. O’Brian, and T. B. Lucatorto, “Measurement of CO pressures in the ultrahigh vacuum regime using resonance-enhanced multiphoton ionization time-of-flight mass spectroscopy,” J. Vac. Sci. Technol. A 11, 3111–3120 (1993).
[CrossRef]

Hart, D. J.

D. J. Hart and O. L. Bourne, “High-resolution coherent vuv spectroscopy of NO[C2Π(1)~B2Π(10), B2Π(11)] and CO[B1Σ+(0)],” Chem. Phys. 133, 103–112 (1989).
[CrossRef]

Haumann, J.

Hess, W. P.

K. M. Beck, K. A. H. German, and W. P. Hess, “Thermal state distributions deduced from (2+1) resonance enhanced multiphoton ionization of CO,” Chem. Phys. Lett. 256, 297–304 (1996).
[CrossRef]

Howard, S. L.

J. S. Bernstein, A. Fein, J. B. Choi, T. A. Cool, R. C. Sausa, S. L. Howard, R. J. Locke, and A. W. Miziolek, “Laser-based flame species profile measurements: a comparison with flame model predictions,” Combust. Flame 92, 85–105 (1993).
[CrossRef]

Imhof, R. E.

R. E. Imhof, F. H. Read, and S. T. Beckett, “Determination of the transition moment of the B 1Σ+–X 1Σ+ transition in CO,” J. Phys. B 5, 896–902 (1972).
[CrossRef]

Jiang, B.

S. Xu, G. Sha, B. Jiang, W. Sun, X. Chen, and C. Zhang, “Two-color study of Autler–Townes splitting and ac Stark shift in multi-photon ionization spectra of CO,” J. Chem. Phys. 100, 6122–6124 (1994).
[CrossRef]

Jusinski, L. E.

D. J. Bamford, R. P. Saxon, L. E. Jusinski, J. D. Buck, and W. K. Bischel, “Two-photon excitation of atomic oxygen at 200.6, 192.5, and 194.2 nm: absolute cross sections and collisional ionization rate constants,” Phys. Rev. A 37, 3259–3269 (1988).
[CrossRef] [PubMed]

Koszykowski, M. L.

L. A. Rahn, R. L. Farrow, M. L. Koszykowski, and P. L. Mattern, “Observation of an optical Stark effect on vibrational and rotational transitions,” Phys. Rev. Lett. 45, 620–623 (1980).
[CrossRef]

Kroll, S.

S. Kroll and W. K. Bischel, “Two-photon absorption and photoionization cross-section measurements in the 5p56p configuration of xenon,” Phys. Rev. A 41, 1340–1349 (1990).
[CrossRef]

L’Huillier, A.

Lambropoulos, P.

Lau, A. M. F.

M. A. Quesada, A. M. F. Lau, D. H. Parker, and D. W. Chandler, “Observation and theory of Autler Townes splitting in multiphoton ionization of molecules: a new measurement technique of vibronic transition moments,” Phys. Rev. A 36, 4107–4110 (1987).
[CrossRef] [PubMed]

Lavancier, J.

Lehmann, J. C.

B. Girard, N. Billy, J. Vigue, and J. C. Lehmann, “Evidence for a dynamical Stark effect in CO(A1Π) two-photon excitation,” Chem. Phys. Lett. 102, 168–173 (1992).
[CrossRef]

Locke, R. J.

J. S. Bernstein, A. Fein, J. B. Choi, T. A. Cool, R. C. Sausa, S. L. Howard, R. J. Locke, and A. W. Miziolek, “Laser-based flame species profile measurements: a comparison with flame model predictions,” Combust. Flame 92, 85–105 (1993).
[CrossRef]

Loge, G. W.

G. W. Loge, J. J. Tiee, and F. B. Wampler, “Multiphoton induced fluorescence and ionization of carbon monoxide (B 1Σ+),” J. Chem. Phys. 79, 196–202 (1983).
[CrossRef]

Lompré, L.-A.

Looney, J. P.

J. P. Looney, J. E. Harrington, K. C. Smyth, T. R. O’Brian, and T. B. Lucatorto, “Measurement of CO pressures in the ultrahigh vacuum regime using resonance-enhanced multiphoton ionization time-of-flight mass spectroscopy,” J. Vac. Sci. Technol. A 11, 3111–3120 (1993).
[CrossRef]

Lucatorto, T. B.

J. P. Looney, J. E. Harrington, K. C. Smyth, T. R. O’Brian, and T. B. Lucatorto, “Measurement of CO pressures in the ultrahigh vacuum regime using resonance-enhanced multiphoton ionization time-of-flight mass spectroscopy,” J. Vac. Sci. Technol. A 11, 3111–3120 (1993).
[CrossRef]

Lucht, R. P.

Lundberg, H.

H. Bergström, H. Lundberg, and A. Persson, “Investigations of stimulated emission on B–A lines in CO,” Z. Phys. D 21, 323–327 (1991).
[CrossRef]

Mainfray, G.

Manus, C.

Martin, P. A.

P. A. Martin and M. Fehér, “CASSCF calculations of the multipole moments and dipole polarisability functions of the X 2Σ+ and A 2Π states of CO+,” Chem. Phys. Lett. 232, 491–496 (1995).
[CrossRef]

Mattern, P. L.

L. A. Rahn, R. L. Farrow, M. L. Koszykowski, and P. L. Mattern, “Observation of an optical Stark effect on vibrational and rotational transitions,” Phys. Rev. Lett. 45, 620–623 (1980).
[CrossRef]

Menzel, D.

S. Wurm, P. Feulner, and D. Menzel, “Resonance-enhanced multiphoton ionization spectroscopy of X 1Σ+ and a3Π carbon monoxide using electron stimulated desorption as a source for rovibronically excited species,” J. Chem. Phys. 105, 6673–6687 (1996).
[CrossRef]

Miller, T. A.

L. F. DiMauro and T. A. Miller, “Laser-induced fluorescence of CO+ and the CO a3Πi state produced by multiphoton absorption in a supersonic jet,” Chem. Phys. Lett. 138, 175–180 (1987).
[CrossRef]

Miziolek, A. W.

J. S. Bernstein, A. Fein, J. B. Choi, T. A. Cool, R. C. Sausa, S. L. Howard, R. J. Locke, and A. W. Miziolek, “Laser-based flame species profile measurements: a comparison with flame model predictions,” Combust. Flame 92, 85–105 (1993).
[CrossRef]

Moore , Jr., J. H.

J. H. Moore, Jr., and D. W. Robinson, “Study of some electronic transition probabilities in CO and CN*,” J. Chem. Phys. 48, 4870–4874 (1968).
[CrossRef]

Morellec, J.

Normand, D.

O’Brian, T. R.

J. P. Looney, J. E. Harrington, K. C. Smyth, T. R. O’Brian, and T. B. Lucatorto, “Measurement of CO pressures in the ultrahigh vacuum regime using resonance-enhanced multiphoton ionization time-of-flight mass spectroscopy,” J. Vac. Sci. Technol. A 11, 3111–3120 (1993).
[CrossRef]

Parker, D. H.

M. A. Quesada, A. M. F. Lau, D. H. Parker, and D. W. Chandler, “Observation and theory of Autler Townes splitting in multiphoton ionization of molecules: a new measurement technique of vibronic transition moments,” Phys. Rev. A 36, 4107–4110 (1987).
[CrossRef] [PubMed]

Payne, M. G.

W. R. Ferrell, C. H. Chen, M. G. Payne, and R. D. Willis, “Two-resonance step ionization spectroscopy of CO,” Chem. Phys. Lett. 97, 460–466 (1983).
[CrossRef]

Pegg, D. J.

L. W. Dotchin, E. L. Chupp, and D. J. Pegg, “Radiative lifetimes and pressure dependence of the relaxation rates of some vibronic levels in N2+, N2, CO+ and CO*,” J. Chem. Phys. 59, 3960–3967 (1973).
[CrossRef]

Persson, A.

H. Bergström, H. Lundberg, and A. Persson, “Investigations of stimulated emission on B–A lines in CO,” Z. Phys. D 21, 323–327 (1991).
[CrossRef]

Quesada, M. A.

M. A. Quesada, A. M. F. Lau, D. H. Parker, and D. W. Chandler, “Observation and theory of Autler Townes splitting in multiphoton ionization of molecules: a new measurement technique of vibronic transition moments,” Phys. Rev. A 36, 4107–4110 (1987).
[CrossRef] [PubMed]

Rachlew-Kallne, E.

P. Erman, E. Rachlew-Kallne, and S. L. Sorenson, “Synchrotron radiation induced photoionization and photodissociation of carbon monoxide in the 14–35 eV region,” Z. Phys. D 30, 315–321 (1994).
[CrossRef]

Rahn, L. A.

R. L. Farrow and L. A. Rahn, “Optical Stark splitting of rotational Raman transitions,” Phys. Rev. Lett. 48, 395–398 (1982).
[CrossRef]

L. A. Rahn, R. L. Farrow, M. L. Koszykowski, and P. L. Mattern, “Observation of an optical Stark effect on vibrational and rotational transitions,” Phys. Rev. Lett. 45, 620–623 (1980).
[CrossRef]

Rakestraw, D. J.

Read, F. H.

R. E. Imhof, F. H. Read, and S. T. Beckett, “Determination of the transition moment of the B 1Σ+–X 1Σ+ transition in CO,” J. Phys. B 5, 896–902 (1972).
[CrossRef]

Robinson, D. W.

J. H. Moore, Jr., and D. W. Robinson, “Study of some electronic transition probabilities in CO and CN*,” J. Chem. Phys. 48, 4870–4874 (1968).
[CrossRef]

Rostas, F.

M. Eidelsberg and F. Rostas, “Spectroscopic, absorption and photodissociation data for CO and isotopic species between 91 and 115 nm,” Astron. Astrophys. 235, 472–489 (1990).

Rottke, H.

H. Rottke and H. Zacharias, “Sensitive detection of CO by tunable VUV laser excitation of the B 1Σ+ state,” Opt. Commun. 55, 87–90 (1985).
[CrossRef]

Sausa, R. C.

J. S. Bernstein, A. Fein, J. B. Choi, T. A. Cool, R. C. Sausa, S. L. Howard, R. J. Locke, and A. W. Miziolek, “Laser-based flame species profile measurements: a comparison with flame model predictions,” Combust. Flame 92, 85–105 (1993).
[CrossRef]

Saxon, R. P.

D. J. Bamford, R. P. Saxon, L. E. Jusinski, J. D. Buck, and W. K. Bischel, “Two-photon excitation of atomic oxygen at 200.6, 192.5, and 194.2 nm: absolute cross sections and collisional ionization rate constants,” Phys. Rev. A 37, 3259–3269 (1988).
[CrossRef] [PubMed]

R. P. Saxon and J. Eichler, “Theoretical calculation of two-photon absorption cross section in atomic oxygen,” Phys. Rev. A 34, 199–34 (1986).
[CrossRef] [PubMed]

Seitzman, J. M.

Sha, G.

S. Xu, G. Sha, B. Jiang, W. Sun, X. Chen, and C. Zhang, “Two-color study of Autler–Townes splitting and ac Stark shift in multi-photon ionization spectra of CO,” J. Chem. Phys. 100, 6122–6124 (1994).
[CrossRef]

Smyth, K. C.

J. P. Looney, J. E. Harrington, K. C. Smyth, T. R. O’Brian, and T. B. Lucatorto, “Measurement of CO pressures in the ultrahigh vacuum regime using resonance-enhanced multiphoton ionization time-of-flight mass spectroscopy,” J. Vac. Sci. Technol. A 11, 3111–3120 (1993).
[CrossRef]

P. J. H. Tjossem and K. C. Smyth, “Multiphoton excitation spectroscopy of the B 1Σ+ and C 1Σ+ Rydberg states of CO,” J. Chem. Phys. 91, 2041–2047 (1989).
[CrossRef]

Sorenson, S. L.

P. Erman, E. Rachlew-Kallne, and S. L. Sorenson, “Synchrotron radiation induced photoionization and photodissociation of carbon monoxide in the 14–35 eV region,” Z. Phys. D 30, 315–321 (1994).
[CrossRef]

Sun, W.

S. Xu, G. Sha, B. Jiang, W. Sun, X. Chen, and C. Zhang, “Two-color study of Autler–Townes splitting and ac Stark shift in multi-photon ionization spectra of CO,” J. Chem. Phys. 100, 6122–6124 (1994).
[CrossRef]

Tang, X.

Tiee, J. J.

G. W. Loge, J. J. Tiee, and F. B. Wampler, “Multiphoton induced fluorescence and ionization of carbon monoxide (B 1Σ+),” J. Chem. Phys. 79, 196–202 (1983).
[CrossRef]

Tjossem, P. J. H.

P. J. H. Tjossem and K. C. Smyth, “Multiphoton excitation spectroscopy of the B 1Σ+ and C 1Σ+ Rydberg states of CO,” J. Chem. Phys. 91, 2041–2047 (1989).
[CrossRef]

Vigue, J.

B. Girard, N. Billy, J. Vigue, and J. C. Lehmann, “Evidence for a dynamical Stark effect in CO(A1Π) two-photon excitation,” Chem. Phys. Lett. 102, 168–173 (1992).
[CrossRef]

Wallin, S.

M. S. Aldén, S. Wallin, and W. Wendt, “Applications of two-photon absorption for detection of CO in combustion gases,” Appl. Phys. B: Photophys. Laser Chem. 33, 205–208 (1984).
[CrossRef]

Wampler, F. B.

G. W. Loge, J. J. Tiee, and F. B. Wampler, “Multiphoton induced fluorescence and ionization of carbon monoxide (B 1Σ+),” J. Chem. Phys. 79, 196–202 (1983).
[CrossRef]

Wendt, W.

M. S. Aldén, S. Wallin, and W. Wendt, “Applications of two-photon absorption for detection of CO in combustion gases,” Appl. Phys. B: Photophys. Laser Chem. 33, 205–208 (1984).
[CrossRef]

Willis, R. D.

W. R. Ferrell, C. H. Chen, M. G. Payne, and R. D. Willis, “Two-resonance step ionization spectroscopy of CO,” Chem. Phys. Lett. 97, 460–466 (1983).
[CrossRef]

Wurm, S.

S. Wurm, P. Feulner, and D. Menzel, “Resonance-enhanced multiphoton ionization spectroscopy of X 1Σ+ and a3Π carbon monoxide using electron stimulated desorption as a source for rovibronically excited species,” J. Chem. Phys. 105, 6673–6687 (1996).
[CrossRef]

Xu, S.

S. Xu, G. Sha, B. Jiang, W. Sun, X. Chen, and C. Zhang, “Two-color study of Autler–Townes splitting and ac Stark shift in multi-photon ionization spectra of CO,” J. Chem. Phys. 100, 6122–6124 (1994).
[CrossRef]

Zacharias, H.

H. Rottke and H. Zacharias, “Sensitive detection of CO by tunable VUV laser excitation of the B 1Σ+ state,” Opt. Commun. 55, 87–90 (1985).
[CrossRef]

Zhang, C.

S. Xu, G. Sha, B. Jiang, W. Sun, X. Chen, and C. Zhang, “Two-color study of Autler–Townes splitting and ac Stark shift in multi-photon ionization spectra of CO,” J. Chem. Phys. 100, 6122–6124 (1994).
[CrossRef]

Appl. Opt.

Appl. Phys. B: Photophys. Laser Chem.

M. S. Aldén, S. Wallin, and W. Wendt, “Applications of two-photon absorption for detection of CO in combustion gases,” Appl. Phys. B: Photophys. Laser Chem. 33, 205–208 (1984).
[CrossRef]

Appl. Spectrosc.

Astron. Astrophys.

M. Eidelsberg and F. Rostas, “Spectroscopic, absorption and photodissociation data for CO and isotopic species between 91 and 115 nm,” Astron. Astrophys. 235, 472–489 (1990).

Chem. Phys.

D. J. Hart and O. L. Bourne, “High-resolution coherent vuv spectroscopy of NO[C2Π(1)~B2Π(10), B2Π(11)] and CO[B1Σ+(0)],” Chem. Phys. 133, 103–112 (1989).
[CrossRef]

Chem. Phys. Lett.

L. F. DiMauro and T. A. Miller, “Laser-induced fluorescence of CO+ and the CO a3Πi state produced by multiphoton absorption in a supersonic jet,” Chem. Phys. Lett. 138, 175–180 (1987).
[CrossRef]

W. R. Ferrell, C. H. Chen, M. G. Payne, and R. D. Willis, “Two-resonance step ionization spectroscopy of CO,” Chem. Phys. Lett. 97, 460–466 (1983).
[CrossRef]

P. A. Martin and M. Fehér, “CASSCF calculations of the multipole moments and dipole polarisability functions of the X 2Σ+ and A 2Π states of CO+,” Chem. Phys. Lett. 232, 491–496 (1995).
[CrossRef]

K. M. Beck, K. A. H. German, and W. P. Hess, “Thermal state distributions deduced from (2+1) resonance enhanced multiphoton ionization of CO,” Chem. Phys. Lett. 256, 297–304 (1996).
[CrossRef]

B. Girard, N. Billy, J. Vigue, and J. C. Lehmann, “Evidence for a dynamical Stark effect in CO(A1Π) two-photon excitation,” Chem. Phys. Lett. 102, 168–173 (1992).
[CrossRef]

Combust. Flame

J. S. Bernstein, A. Fein, J. B. Choi, T. A. Cool, R. C. Sausa, S. L. Howard, R. J. Locke, and A. W. Miziolek, “Laser-based flame species profile measurements: a comparison with flame model predictions,” Combust. Flame 92, 85–105 (1993).
[CrossRef]

J. Chem. Phys.

P. J. H. Tjossem and K. C. Smyth, “Multiphoton excitation spectroscopy of the B 1Σ+ and C 1Σ+ Rydberg states of CO,” J. Chem. Phys. 91, 2041–2047 (1989).
[CrossRef]

J. H. Moore, Jr., and D. W. Robinson, “Study of some electronic transition probabilities in CO and CN*,” J. Chem. Phys. 48, 4870–4874 (1968).
[CrossRef]

J. F. M. Aarts and F. J. de Heer, “Emission of radiation in the vacuum ultraviolet by impact of electrons on carbon monoxide,” J. Chem. Phys. 52, 5354–5360 (1970).
[CrossRef]

L. W. Dotchin, E. L. Chupp, and D. J. Pegg, “Radiative lifetimes and pressure dependence of the relaxation rates of some vibronic levels in N2+, N2, CO+ and CO*,” J. Chem. Phys. 59, 3960–3967 (1973).
[CrossRef]

G. W. Loge, J. J. Tiee, and F. B. Wampler, “Multiphoton induced fluorescence and ionization of carbon monoxide (B 1Σ+),” J. Chem. Phys. 79, 196–202 (1983).
[CrossRef]

S. Wurm, P. Feulner, and D. Menzel, “Resonance-enhanced multiphoton ionization spectroscopy of X 1Σ+ and a3Π carbon monoxide using electron stimulated desorption as a source for rovibronically excited species,” J. Chem. Phys. 105, 6673–6687 (1996).
[CrossRef]

S. Xu, G. Sha, B. Jiang, W. Sun, X. Chen, and C. Zhang, “Two-color study of Autler–Townes splitting and ac Stark shift in multi-photon ionization spectra of CO,” J. Chem. Phys. 100, 6122–6124 (1994).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. B

R. E. Imhof, F. H. Read, and S. T. Beckett, “Determination of the transition moment of the B 1Σ+–X 1Σ+ transition in CO,” J. Phys. B 5, 896–902 (1972).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transf.

S. R. Drayson, “Rapid computation of the Voigt profile,” J. Quant. Spectrosc. Radiat. Transf. 16, 611–614 (1976).
[CrossRef]

J. Vac. Sci. Technol. A

J. P. Looney, J. E. Harrington, K. C. Smyth, T. R. O’Brian, and T. B. Lucatorto, “Measurement of CO pressures in the ultrahigh vacuum regime using resonance-enhanced multiphoton ionization time-of-flight mass spectroscopy,” J. Vac. Sci. Technol. A 11, 3111–3120 (1993).
[CrossRef]

Opt. Commun.

H. Rottke and H. Zacharias, “Sensitive detection of CO by tunable VUV laser excitation of the B 1Σ+ state,” Opt. Commun. 55, 87–90 (1985).
[CrossRef]

Opt. Lett.

Phys. Rev. A

D. J. Bamford, R. P. Saxon, L. E. Jusinski, J. D. Buck, and W. K. Bischel, “Two-photon excitation of atomic oxygen at 200.6, 192.5, and 194.2 nm: absolute cross sections and collisional ionization rate constants,” Phys. Rev. A 37, 3259–3269 (1988).
[CrossRef] [PubMed]

R. P. Saxon and J. Eichler, “Theoretical calculation of two-photon absorption cross section in atomic oxygen,” Phys. Rev. A 34, 199–34 (1986).
[CrossRef] [PubMed]

S. Kroll and W. K. Bischel, “Two-photon absorption and photoionization cross-section measurements in the 5p56p configuration of xenon,” Phys. Rev. A 41, 1340–1349 (1990).
[CrossRef]

M. A. Quesada, A. M. F. Lau, D. H. Parker, and D. W. Chandler, “Observation and theory of Autler Townes splitting in multiphoton ionization of molecules: a new measurement technique of vibronic transition moments,” Phys. Rev. A 36, 4107–4110 (1987).
[CrossRef] [PubMed]

Phys. Rev. Lett.

L. A. Rahn, R. L. Farrow, M. L. Koszykowski, and P. L. Mattern, “Observation of an optical Stark effect on vibrational and rotational transitions,” Phys. Rev. Lett. 45, 620–623 (1980).
[CrossRef]

R. L. Farrow and L. A. Rahn, “Optical Stark splitting of rotational Raman transitions,” Phys. Rev. Lett. 48, 395–398 (1982).
[CrossRef]

Z. Phys. D

H. Bergström, H. Lundberg, and A. Persson, “Investigations of stimulated emission on B–A lines in CO,” Z. Phys. D 21, 323–327 (1991).
[CrossRef]

P. Erman, E. Rachlew-Kallne, and S. L. Sorenson, “Synchrotron radiation induced photoionization and photodissociation of carbon monoxide in the 14–35 eV region,” Z. Phys. D 30, 315–321 (1994).
[CrossRef]

Other

A. A. Radzig and B. M. Smirnov, Reference Data on Atoms, Molecules, and Ions, J. P. Toennies, ed., Vol. 31 of Springer Series in Chemical Physics (Springer-Verlag, New York, 1985), pp. 443–444.

D. A. Everest, C. R. Shaddix, and K. C. Smyth, “Quantitative two-photon laser-induced fluorescence imaging of CO in flickering CH4/Air diffusion flames,” Twenty-Sixth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 1161–1169.

R. Loudon, The Quantum Theory of Light, 2nd ed. (Clarendon, Oxford, 1983) pp. 78–81, 344–347.

W. Demtröder, Laser Spectroscopy, 2nd ed. (Springer, New York, 1996), p. 473.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Arrangement for direct measurements of the photoionization width and Stark shift. Doppler-free spectra are recorded with REMPI at low excitation energies, to be compared with spectra as perturbed by a nonresonant ionization beam at high pulse energies.

Fig. 2
Fig. 2

Illustration of improved spectral resolution, progressing from Doppler-broadened, to Doppler-free with linearly polarized light, to Doppler-free with circularly polarized light. The three REMPI spectra were recorded for 1 Torr CO, 293 K, and a total light energy of 0.5 µJ/pulse.

Fig. 3
Fig. 3

Spatial uniformity of ionization. The sharply focused excitation beam localizes CO-B well within the ionization-beam waist. Of the total volumetric production of CO-B, 80% occurs within ±4.2 mm (delimited by vertical dotted lines) of the excitation-beam focus, over which the weighted ionization intensity [Eq. (5)] varies only ±5%.

Fig. 4
Fig. 4

Temporal uniformity of ionization. The three measured pulse shapes (ionization, forward excitation, and backward excitation) are referenced to the cell center. The two excitation beams generate, by their product [Eq. (6)], 80% of the B-state population within a ±20% intensity variation of the longer-duration ionization pulse.

Fig. 5
Fig. 5

Response of CO BX(0, 0) to nonresonant photoionization at 229.285 nm at an average intensity of 220 MW/cm2. The excitation frequency scanned over Q(0) through Q(8). Cell conditions were 1 Torr CO and 293 K. The top panel compares the reference (dotted curve) and perturbed (solid curve) spectra. The bottom panel shows signals of the stable pulse energies of the ionization beam (IB) and the excitation beam (EB). Also shown are the transmission spikes of the cw dye-laser light through the 750-MHz étalon. The horizontal axis is the dye-laser frequency, linearized through use of the étalon trace.

Fig. 6
Fig. 6

Reduced results for Q(12) perturbed by photoionization at 229.285 nm at an average intensity of 180 MW/cm2. Cell conditions of Fig. 5 apply. The shift and the increased width of the transition were characterized through Voigt fits (solid curves) of the measured line shapes.

Fig. 7
Fig. 7

Cumulative results of Δi (top panel) and Δs (bottom panel) for photoionization at 230 nm. Circles locate the J average of an excitation spectrum (typically covering J=08), and squares are the results of scans isolating Q(12). Vertical bars span the range of Δi and Δs determining the J average. Dashed curves are generated by the rate-equation model [Eqs. (19)–(24)] with the indicated cross sections, obtained as the best fit to the data. Dotted curves bracket results calculated for a ±25% variation of σi in the top panel and σs in the bottom.

Fig. 8
Fig. 8

Cumulative results of Δi (top panel) and Δs (bottom panel) for photoionization at 345 nm. The caption of Fig. 7 applies, except all J-averaged data are from scans covering J=08.

Fig. 9
Fig. 9

J variation of 230-nm ionization cross sections. For scans covering J=08, the ionization width and the shift of individual J are compared with the J average. Symbols (open for width, solid for shift) are the average deviations, error bars span the root-mean-square deviation, and the symbols are displaced about the specific J for clarity of presentation.

Tables (1)

Tables Icon

Table 1 J-Averaged Cross Sections of Photoionization (σi) of COB(v=0) and Stark Shift (σs) of CO BX(0, 0) for 1 Wavelengths in 2+1 Ionization of CO

Equations (28)

Equations on this page are rendered with MathJax. Learn more.

I(r, z, t)dAdt=E(4 ln 2/π)1.5(τD2)-1 exp[-4 ln 2(r/D)2]×exp(-4 ln 2{[t-(t0[±]z/c)]/τ}2)(2πrdr)dt,
D=D(z)=D0[1+(z/zR)2]0.5,
zR=(π/2 ln 2)[(D0)2/λ],
NB[1+(z/zR)2]-1
(I¯i)eff(z)=Ei(4 ln 2/π)1.5/{τi(Di)2[1+(De/Di)2]},
Δt(Ie)for(Ie)backdt-+(Ie)for(Ie)backdt=0.8.
I¯=(4 ln 2/π)1.5EτD02=0.83EτD02.
Δi=ΔνIB-ΔνEB
Δs=(ν0)IB-(ν0)EB,
σi=2πcω(Δi[cm-1])I¯,
σs=2πcω(Δs[cm-1])I¯,
ρ˙11=-β21Ω21(t),
ρ˙22=β21Ω21(t)-Γ2(t)ρ22,
α˙21=-α21Γ2(t)/2+β21ω˜,
β˙21=-β21Γ2(t)/2-α21ω˜+(ρ11-ρ22)Ω21(t)/2,
ω˜=2ωe-ω21-Σ21(t).
α˙21=β˙21=0
Γ2(τe)-1Ω21(Ref. 30),
ρ˙11=-(ρ11-ρ22)[(π/2)Ω212ϕ(ω˜, t)],
ρ˙22=(ρ11-ρ22)[(π/2)Ω212ϕ(ω˜, t)]-(Γ2+A+Q)ρ22,
ρ˙i=Γ2ρ22,
Γ2(t)=σi(i)Ii(t)/ωi+σi(e)Ie(t)/ωe,
ω˜(t)=ω-[σs(i)Ii(t)/ωi+σs(e)Ie(t)/ωe],
ω=2ωe-ω21,
ϕ(ω˜)=ϕ(ω˜, t)=[(4 ln 2/π)0.5/ΔνG]×V(ΔνG, ΔνL, Γ2, ω˜)[s],
ϕi(ω˜, t)=1π(Γ2/2)(Γ2/2)2+ω˜2,
Ω212(t)=(2/π)σ0G[Ie(t)/ωe]2[s-2].
Σ[cm-1]=I¯(e/10)2meω2+I¯α(COX)c2-I¯α(CO+)c2,

Metrics