Abstract

We have observed electromagnetically induced transparency (EIT) in rare-earth Pr3+-doped Y2SiO5 over the spectral hole-burning temperature. The transmission of the probe laser beam is increased by a factor of exp(1.4) at 12 K when a coupling laser of 1.2 kW/cm2 is applied to the system. The observation of EIT over the spectral hole-burning temperature in a rare-earth–doped solid represents important progress toward high-density echo-based optical memories at higher temperatures.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Lin, T. Wang, and T. W. Mossberg, “Demonstration of 8-Gbit/in.2 areal storage density based on swept-carrier frequency-selective optical memory,” Opt. Lett. 20, 1658 (1995).
    [CrossRef] [PubMed]
  2. X. A. Shen and R. Kachru, “Optical header recognition by spectroholographic filtering,” Opt. Lett. 20, 2508 (1995).
    [CrossRef] [PubMed]
  3. U. P. Wild, S. E. Bucher, and F. A. Burkhalter, “Hole burning, Stark effect, and data storage,” Appl. Opt. 24, 1526 (1985).
    [CrossRef] [PubMed]
  4. D. Psaltis, D. Brady, X.-G. Gu, and S. Lin, “Holography in artificial neural networks,” Nature (London) 343, 325 (1990); A. Chiou, “Anisotropic cross talk in an optical interconnection by using a self-pumped phase-conjugate mirror at the Fourier plane,” Opt. Lett. 17, 1018 (1992).
    [CrossRef] [PubMed]
  5. B. S. Ham, M. S. Shahriar, M. K. Kim, and P. R. Hemmer, “Frequency-selective time-domain optical data storage by electromagnetically induced transparency in a rare-earth-doped solid,” Opt. Lett. 22, 1849 (1997).
    [CrossRef]
  6. B. S. Ham, M. S. Shahriar, M. K. Kim, and P. R. Hemmer, “Spin coherence excitation and rephasing with optically shelved atoms,” Phys. Rev. B 58, R11825 (1998).
    [CrossRef]
  7. K. J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593 (1991); for general review of EIT, see S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36 (1997).
    [CrossRef] [PubMed]
  8. B. S. Ham, M. S. Shahriar, and P. R. Hemmer, “Enhanced nondegenerate four-wave mixing owing to electromagnetically induced transparency in a spectral hole-burning crystal,” Opt. Lett. 22, 1138 (1997), and references therein.
    [CrossRef] [PubMed]
  9. B. S. Ham, P. R. Hemmer, and M. S. Shahriar, “Efficient electromagnetically induced transparency in a rare-earth doped crystal,” Opt. Commun. 144, 227 (1997).
    [CrossRef]
  10. Y. Zhao, C. Wu, B. S. Ham, M. K. Kim, and E. Awad, “Microwave induced transparency in ruby,” Phys. Rev. Lett. 79, 641 (1997).
    [CrossRef]
  11. S. E. Harris and Z.-F. Luo, “Preparation energy for electromagnetically induced transparency,” Phys. Rev. A 52, R928 (1995).
    [CrossRef] [PubMed]
  12. R. W. Equall, R. L. Cone, and R. M. Macfarlane, “Homogeneous broadening and hyperfine structure of optical transitions in Pr3+:Y2SiO5,” Phys. Rev. B 52, 3963 (1995).
    [CrossRef]
  13. K. Holliday, M. Croci, E. Vauthey, and U. P. Wild, “Spectral hole burning and holography in an Y2SiO5:Pr3+ crystal,” Phys. Rev. B 47, 14741 (1993).
    [CrossRef]
  14. R. M. Shelby, R. M. Macfarlane, and C. S. Yannoni, “Optical measurement of spin-lattice relaxation of dilute nuclei: LaF3:Pr3+,” Phys. Rev. B 21, 5004 (1980).
    [CrossRef]
  15. R. M. Macfarlane, C. S. Yannoni, and R. M. Shelby, “Optical line narrowing by nuclear spin decoupling in Pr3+:LaF3,” Opt. Commun. 32, 101 (1980).
    [CrossRef]

1998 (1)

B. S. Ham, M. S. Shahriar, M. K. Kim, and P. R. Hemmer, “Spin coherence excitation and rephasing with optically shelved atoms,” Phys. Rev. B 58, R11825 (1998).
[CrossRef]

1997 (4)

1995 (4)

H. Lin, T. Wang, and T. W. Mossberg, “Demonstration of 8-Gbit/in.2 areal storage density based on swept-carrier frequency-selective optical memory,” Opt. Lett. 20, 1658 (1995).
[CrossRef] [PubMed]

X. A. Shen and R. Kachru, “Optical header recognition by spectroholographic filtering,” Opt. Lett. 20, 2508 (1995).
[CrossRef] [PubMed]

S. E. Harris and Z.-F. Luo, “Preparation energy for electromagnetically induced transparency,” Phys. Rev. A 52, R928 (1995).
[CrossRef] [PubMed]

R. W. Equall, R. L. Cone, and R. M. Macfarlane, “Homogeneous broadening and hyperfine structure of optical transitions in Pr3+:Y2SiO5,” Phys. Rev. B 52, 3963 (1995).
[CrossRef]

1993 (1)

K. Holliday, M. Croci, E. Vauthey, and U. P. Wild, “Spectral hole burning and holography in an Y2SiO5:Pr3+ crystal,” Phys. Rev. B 47, 14741 (1993).
[CrossRef]

1985 (1)

1980 (2)

R. M. Shelby, R. M. Macfarlane, and C. S. Yannoni, “Optical measurement of spin-lattice relaxation of dilute nuclei: LaF3:Pr3+,” Phys. Rev. B 21, 5004 (1980).
[CrossRef]

R. M. Macfarlane, C. S. Yannoni, and R. M. Shelby, “Optical line narrowing by nuclear spin decoupling in Pr3+:LaF3,” Opt. Commun. 32, 101 (1980).
[CrossRef]

Awad, E.

Y. Zhao, C. Wu, B. S. Ham, M. K. Kim, and E. Awad, “Microwave induced transparency in ruby,” Phys. Rev. Lett. 79, 641 (1997).
[CrossRef]

Bucher, S. E.

Burkhalter, F. A.

Cone, R. L.

R. W. Equall, R. L. Cone, and R. M. Macfarlane, “Homogeneous broadening and hyperfine structure of optical transitions in Pr3+:Y2SiO5,” Phys. Rev. B 52, 3963 (1995).
[CrossRef]

Croci, M.

K. Holliday, M. Croci, E. Vauthey, and U. P. Wild, “Spectral hole burning and holography in an Y2SiO5:Pr3+ crystal,” Phys. Rev. B 47, 14741 (1993).
[CrossRef]

Equall, R. W.

R. W. Equall, R. L. Cone, and R. M. Macfarlane, “Homogeneous broadening and hyperfine structure of optical transitions in Pr3+:Y2SiO5,” Phys. Rev. B 52, 3963 (1995).
[CrossRef]

Ham, B. S.

B. S. Ham, M. S. Shahriar, M. K. Kim, and P. R. Hemmer, “Spin coherence excitation and rephasing with optically shelved atoms,” Phys. Rev. B 58, R11825 (1998).
[CrossRef]

B. S. Ham, M. S. Shahriar, M. K. Kim, and P. R. Hemmer, “Frequency-selective time-domain optical data storage by electromagnetically induced transparency in a rare-earth-doped solid,” Opt. Lett. 22, 1849 (1997).
[CrossRef]

Y. Zhao, C. Wu, B. S. Ham, M. K. Kim, and E. Awad, “Microwave induced transparency in ruby,” Phys. Rev. Lett. 79, 641 (1997).
[CrossRef]

B. S. Ham, P. R. Hemmer, and M. S. Shahriar, “Efficient electromagnetically induced transparency in a rare-earth doped crystal,” Opt. Commun. 144, 227 (1997).
[CrossRef]

B. S. Ham, M. S. Shahriar, and P. R. Hemmer, “Enhanced nondegenerate four-wave mixing owing to electromagnetically induced transparency in a spectral hole-burning crystal,” Opt. Lett. 22, 1138 (1997), and references therein.
[CrossRef] [PubMed]

Harris, S. E.

S. E. Harris and Z.-F. Luo, “Preparation energy for electromagnetically induced transparency,” Phys. Rev. A 52, R928 (1995).
[CrossRef] [PubMed]

Hemmer, P. R.

Holliday, K.

K. Holliday, M. Croci, E. Vauthey, and U. P. Wild, “Spectral hole burning and holography in an Y2SiO5:Pr3+ crystal,” Phys. Rev. B 47, 14741 (1993).
[CrossRef]

Kachru, R.

Kim, M. K.

B. S. Ham, M. S. Shahriar, M. K. Kim, and P. R. Hemmer, “Spin coherence excitation and rephasing with optically shelved atoms,” Phys. Rev. B 58, R11825 (1998).
[CrossRef]

B. S. Ham, M. S. Shahriar, M. K. Kim, and P. R. Hemmer, “Frequency-selective time-domain optical data storage by electromagnetically induced transparency in a rare-earth-doped solid,” Opt. Lett. 22, 1849 (1997).
[CrossRef]

Y. Zhao, C. Wu, B. S. Ham, M. K. Kim, and E. Awad, “Microwave induced transparency in ruby,” Phys. Rev. Lett. 79, 641 (1997).
[CrossRef]

Lin, H.

Luo, Z.-F.

S. E. Harris and Z.-F. Luo, “Preparation energy for electromagnetically induced transparency,” Phys. Rev. A 52, R928 (1995).
[CrossRef] [PubMed]

Macfarlane, R. M.

R. W. Equall, R. L. Cone, and R. M. Macfarlane, “Homogeneous broadening and hyperfine structure of optical transitions in Pr3+:Y2SiO5,” Phys. Rev. B 52, 3963 (1995).
[CrossRef]

R. M. Shelby, R. M. Macfarlane, and C. S. Yannoni, “Optical measurement of spin-lattice relaxation of dilute nuclei: LaF3:Pr3+,” Phys. Rev. B 21, 5004 (1980).
[CrossRef]

R. M. Macfarlane, C. S. Yannoni, and R. M. Shelby, “Optical line narrowing by nuclear spin decoupling in Pr3+:LaF3,” Opt. Commun. 32, 101 (1980).
[CrossRef]

Mossberg, T. W.

Shahriar, M. S.

Shelby, R. M.

R. M. Shelby, R. M. Macfarlane, and C. S. Yannoni, “Optical measurement of spin-lattice relaxation of dilute nuclei: LaF3:Pr3+,” Phys. Rev. B 21, 5004 (1980).
[CrossRef]

R. M. Macfarlane, C. S. Yannoni, and R. M. Shelby, “Optical line narrowing by nuclear spin decoupling in Pr3+:LaF3,” Opt. Commun. 32, 101 (1980).
[CrossRef]

Shen, X. A.

Vauthey, E.

K. Holliday, M. Croci, E. Vauthey, and U. P. Wild, “Spectral hole burning and holography in an Y2SiO5:Pr3+ crystal,” Phys. Rev. B 47, 14741 (1993).
[CrossRef]

Wang, T.

Wild, U. P.

K. Holliday, M. Croci, E. Vauthey, and U. P. Wild, “Spectral hole burning and holography in an Y2SiO5:Pr3+ crystal,” Phys. Rev. B 47, 14741 (1993).
[CrossRef]

U. P. Wild, S. E. Bucher, and F. A. Burkhalter, “Hole burning, Stark effect, and data storage,” Appl. Opt. 24, 1526 (1985).
[CrossRef] [PubMed]

Wu, C.

Y. Zhao, C. Wu, B. S. Ham, M. K. Kim, and E. Awad, “Microwave induced transparency in ruby,” Phys. Rev. Lett. 79, 641 (1997).
[CrossRef]

Yannoni, C. S.

R. M. Shelby, R. M. Macfarlane, and C. S. Yannoni, “Optical measurement of spin-lattice relaxation of dilute nuclei: LaF3:Pr3+,” Phys. Rev. B 21, 5004 (1980).
[CrossRef]

R. M. Macfarlane, C. S. Yannoni, and R. M. Shelby, “Optical line narrowing by nuclear spin decoupling in Pr3+:LaF3,” Opt. Commun. 32, 101 (1980).
[CrossRef]

Zhao, Y.

Y. Zhao, C. Wu, B. S. Ham, M. K. Kim, and E. Awad, “Microwave induced transparency in ruby,” Phys. Rev. Lett. 79, 641 (1997).
[CrossRef]

Appl. Opt. (1)

Opt. Commun. (2)

B. S. Ham, P. R. Hemmer, and M. S. Shahriar, “Efficient electromagnetically induced transparency in a rare-earth doped crystal,” Opt. Commun. 144, 227 (1997).
[CrossRef]

R. M. Macfarlane, C. S. Yannoni, and R. M. Shelby, “Optical line narrowing by nuclear spin decoupling in Pr3+:LaF3,” Opt. Commun. 32, 101 (1980).
[CrossRef]

Opt. Lett. (4)

Phys. Rev. A (1)

S. E. Harris and Z.-F. Luo, “Preparation energy for electromagnetically induced transparency,” Phys. Rev. A 52, R928 (1995).
[CrossRef] [PubMed]

Phys. Rev. B (4)

R. W. Equall, R. L. Cone, and R. M. Macfarlane, “Homogeneous broadening and hyperfine structure of optical transitions in Pr3+:Y2SiO5,” Phys. Rev. B 52, 3963 (1995).
[CrossRef]

K. Holliday, M. Croci, E. Vauthey, and U. P. Wild, “Spectral hole burning and holography in an Y2SiO5:Pr3+ crystal,” Phys. Rev. B 47, 14741 (1993).
[CrossRef]

R. M. Shelby, R. M. Macfarlane, and C. S. Yannoni, “Optical measurement of spin-lattice relaxation of dilute nuclei: LaF3:Pr3+,” Phys. Rev. B 21, 5004 (1980).
[CrossRef]

B. S. Ham, M. S. Shahriar, M. K. Kim, and P. R. Hemmer, “Spin coherence excitation and rephasing with optically shelved atoms,” Phys. Rev. B 58, R11825 (1998).
[CrossRef]

Phys. Rev. Lett. (1)

Y. Zhao, C. Wu, B. S. Ham, M. K. Kim, and E. Awad, “Microwave induced transparency in ruby,” Phys. Rev. Lett. 79, 641 (1997).
[CrossRef]

Other (2)

K. J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593 (1991); for general review of EIT, see S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36 (1997).
[CrossRef] [PubMed]

D. Psaltis, D. Brady, X.-G. Gu, and S. Lin, “Holography in artificial neural networks,” Nature (London) 343, 325 (1990); A. Chiou, “Anisotropic cross talk in an optical interconnection by using a self-pumped phase-conjugate mirror at the Fourier plane,” Opt. Lett. 17, 1018 (1992).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the experimental setup.

Fig. 2
Fig. 2

Probe transmission versus temperature. The probe laser power is 60 µW.

Fig. 3
Fig. 3

Probe transmission versus coupling laser detuning at 12 K.

Fig. 4
Fig. 4

Probe transmission versus time. At t=0, the coupling laser is off.

Fig. 5
Fig. 5

Probe transparency versus coupling laser intensity.

Fig. 6
Fig. 6

Probe transparency versus temperature for fixed coupling laser intensity.

Metrics