Abstract

We analyze the stimulated-Raman-scattering-(SRS) process induced by a linearly polarized multifrequency pump field in a normally dispersive single-mode fiber. We show, by theoretical analysis and numerical simulations, that the SRS process may be either controlled by switching all the generated Stokes radiations to the lowest-frequency pump or suppressed for all the frequency components of the pump field. The suppression process is achieved by an appropriate choice of the frequency separation between the pumps and a particular power distribution among the frequency components of the pump field. We present experimental spectra showing the effectiveness of this suppression process for a dual-frequency pumping configuration.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (51)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription