Abstract

A scheme to generate tunable dual-wavelength picosecond pulses by harmonic and rational-harmonic mode locking of a 1.5-µm Fabry–Perot grating-lens external-cavity laser has been proposed and experimentally demonstrated. The external cavity consists of a weak Fabry–Perot filter, a diffraction grating, a converging lens, and a totally reflecting mirror. Active mode locking has been achieved simultaneously at two different wavelengths in the semiconductor laser over a range of 65 nm. Dual-wavelength pulses with a spectral separation of 0.9 nm, a side-mode suppression ratio greater than 24 dB, and a pulse width of ∼30 ps have been generated. The relative intensity variation between the two lasing wavelengths is smaller than 1.2 dB, without any observable mode hopping. Frequency multiplication of the dual-wavelength pulse train with rational-harmonic mode locking has also been demonstrated. With a 2.5-GHz modulation frequency applied to the semiconductor laser, the pulse repetition rate was multiplied to 5.0 GHz. A total of 10.0 GHz (5.0 GHz×two wavelength channels) optical pulses was obtained. To the authors’ knowledge, this is the first report of multiple-wavelength rational-harmonic mode locking of a semiconductor laser.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. R. Chraplyvy, A. H. Gnauck, R. W. Tkach, J. L. Zyskind, J. W. Sulhoff, A. J. Lucero, Y. Sun, R. M. Jopson, F. Forghieri, R. M. Derosier, C. Wolf, and A. R. McCormick, “1-Tb/s transmission experiment,” IEEE Photonics Technol. Lett. 8, 1264–1266 (1996).
    [CrossRef]
  2. T. Morioka, H. Takara, S. Kawanishi, O. Kamatani, K. Takiguchi, K. Uchiyama, M. Saruwatari, H. Takahashi, M. Yamada, T. Kanamori, and H. Ono, “1 Tbit/s (100 Gbit/s×10 channel) OTDM/WDM transmission using a single supercontinuum WDM source,” Electron. Lett. 32, 906–907 (1996).
    [CrossRef]
  3. C. R. Giles, C. Doerr, M. Zirngibl, C. Joyner, U. Koren, K. F. Dryer, J. Zyskind, J. Sulhoff, L. Stulz, and C. Wolf, “1.8 Petabit/s downstream capacity WDM passive optical network,” Electron. Lett. 33, 1231–1232 (1997).
    [CrossRef]
  4. K. T. Koai, “Dual-wavelength photonic network for wide-area digital TV and data transport,” Electron. Lett. 29, 599–601 (1993).
    [CrossRef]
  5. J.-G. Zhang, “Dual-wavelength optical fiber HDTV distribution networks using self-synchronization technique and multistar topology,” IEEE Trans. Consumer Electron. 40, 985–991 (1994).
    [CrossRef]
  6. D. M. Winker, “Global measurements of clouds and aerosols with the Lidar In-space Technology Experiment,” in Conference on Lasers and Electro-Optics, Vol. 15 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), paper CWN3.
  7. R. Akhmedzhanov, M. O. Bulanin, and I. A. Urunov, “Simultaneous vibrational transitions in absorption spectra of mixtures of hydrogen with N2O, CO2, and CS2 in the gaseous and liquid phases,” Opt. Spektrosk. 65, 113–116 (1988) Simultaneous vibrational transitions in absorption spectra of mixtures of hydrogen with N2O, CO2, and CS2 in the gaseous and liquid phases,” Opt. Spektrosk. 65, 113–116 (1988) [ Opt. Spectrosc. 65, 65–67 (1988).]
  8. H. Biilow and G. Veith, “Polarisation-independent switching in a nonlinear optical loop mirror by a dual-wavelength switching pulse,” Electron. Lett. 29, 588–589 (1993).
    [CrossRef]
  9. D. Burns, G. Hay, and W. Sibbett, “Dual-wavelength external-cavity semiconductor lasers,” in Conference on Lasers and Electro-Optics, Vol. 11 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), paper JThA3.
  10. C.-L. Wang and C.-L. Pan, “Dual-wavelength actively mode-locked laser-diode array with an external grating-loaded cavity,” Opt. Lett. 19, 1456–1458 (1994).
    [CrossRef] [PubMed]
  11. B. Zhu and I. H. White, “Variable delay dual wavelength picosecond optical pulse generation using an actively mode-locked multichannel grating cavity laser,” Appl. Phys. Lett. 65, 2928–2930 (1994).
    [CrossRef]
  12. C. Shu and Y.-C. Lee, “Tunable dual-wavelength picosecond optical pulses generated from a self-injection seeded gain-switched laser diode,” IEEE J. Quantum Electron. 32, 1976–1980 (1996).
    [CrossRef]
  13. H. Shi, J. Finlay, G. A. Alphonse, J. C. Connolly, and P. J. Delfyett, “Multiwavelength 10-GHz picosecond pulse generation from a single-stripe semiconductor diode laser,” IEEE Photonics Technol. Lett. 9, 1439–1441 (1997).
    [CrossRef]
  14. K. S. Lee and C. Shu, “Generation of programmable multiwavelength picosecond pulses using an optical-loop-mirror multiplexer,” Appl. Phys. Lett. 72, 412–414 (1998).
    [CrossRef]
  15. K.-S. Lee and C. Shu, “Stable and widely tunable dual-wavelength continuous-wave operation of a semiconductor laser in a novel Fabry–Perot grating-lens external cavity,” IEEE J. Quantum Electron. 33, 1832–1838 (1997).
    [CrossRef]
  16. B. Schrader, ed., Infrared and Raman Spectroscopy: Methods and Applications (VCH, New York, 1995), Chap. 3.
  17. N. Onodera, A. J. Lowery, L. Zhai, Z. Ahmed, and R. S. Tucker, “Frequency multiplication in actively mode-locked semiconductor lasers,” Appl. Phys. Lett. 62, 1329–1331 (1993).
    [CrossRef]
  18. J. AuYeung, “Theory of active mode locking of a semiconductor laser in an external cavity,” IEEE J. Quantum Electron. 17, 398–404 (1981).
    [CrossRef]
  19. K. Y. Lau, “Short-pulse and high-frequency signal generation in semiconductor lasers,” J. Lightwave Technol. 7, 400–419 (1989).
    [CrossRef]
  20. H. A. Haus, “Theory of modelocking of a laser diode in an external resonator,” J. Appl. Phys. 51, 4042–4049 (1980).
    [CrossRef]

1998 (1)

K. S. Lee and C. Shu, “Generation of programmable multiwavelength picosecond pulses using an optical-loop-mirror multiplexer,” Appl. Phys. Lett. 72, 412–414 (1998).
[CrossRef]

1997 (3)

K.-S. Lee and C. Shu, “Stable and widely tunable dual-wavelength continuous-wave operation of a semiconductor laser in a novel Fabry–Perot grating-lens external cavity,” IEEE J. Quantum Electron. 33, 1832–1838 (1997).
[CrossRef]

H. Shi, J. Finlay, G. A. Alphonse, J. C. Connolly, and P. J. Delfyett, “Multiwavelength 10-GHz picosecond pulse generation from a single-stripe semiconductor diode laser,” IEEE Photonics Technol. Lett. 9, 1439–1441 (1997).
[CrossRef]

C. R. Giles, C. Doerr, M. Zirngibl, C. Joyner, U. Koren, K. F. Dryer, J. Zyskind, J. Sulhoff, L. Stulz, and C. Wolf, “1.8 Petabit/s downstream capacity WDM passive optical network,” Electron. Lett. 33, 1231–1232 (1997).
[CrossRef]

1996 (3)

A. R. Chraplyvy, A. H. Gnauck, R. W. Tkach, J. L. Zyskind, J. W. Sulhoff, A. J. Lucero, Y. Sun, R. M. Jopson, F. Forghieri, R. M. Derosier, C. Wolf, and A. R. McCormick, “1-Tb/s transmission experiment,” IEEE Photonics Technol. Lett. 8, 1264–1266 (1996).
[CrossRef]

T. Morioka, H. Takara, S. Kawanishi, O. Kamatani, K. Takiguchi, K. Uchiyama, M. Saruwatari, H. Takahashi, M. Yamada, T. Kanamori, and H. Ono, “1 Tbit/s (100 Gbit/s×10 channel) OTDM/WDM transmission using a single supercontinuum WDM source,” Electron. Lett. 32, 906–907 (1996).
[CrossRef]

C. Shu and Y.-C. Lee, “Tunable dual-wavelength picosecond optical pulses generated from a self-injection seeded gain-switched laser diode,” IEEE J. Quantum Electron. 32, 1976–1980 (1996).
[CrossRef]

1994 (3)

J.-G. Zhang, “Dual-wavelength optical fiber HDTV distribution networks using self-synchronization technique and multistar topology,” IEEE Trans. Consumer Electron. 40, 985–991 (1994).
[CrossRef]

B. Zhu and I. H. White, “Variable delay dual wavelength picosecond optical pulse generation using an actively mode-locked multichannel grating cavity laser,” Appl. Phys. Lett. 65, 2928–2930 (1994).
[CrossRef]

C.-L. Wang and C.-L. Pan, “Dual-wavelength actively mode-locked laser-diode array with an external grating-loaded cavity,” Opt. Lett. 19, 1456–1458 (1994).
[CrossRef] [PubMed]

1993 (3)

H. Biilow and G. Veith, “Polarisation-independent switching in a nonlinear optical loop mirror by a dual-wavelength switching pulse,” Electron. Lett. 29, 588–589 (1993).
[CrossRef]

K. T. Koai, “Dual-wavelength photonic network for wide-area digital TV and data transport,” Electron. Lett. 29, 599–601 (1993).
[CrossRef]

N. Onodera, A. J. Lowery, L. Zhai, Z. Ahmed, and R. S. Tucker, “Frequency multiplication in actively mode-locked semiconductor lasers,” Appl. Phys. Lett. 62, 1329–1331 (1993).
[CrossRef]

1989 (1)

K. Y. Lau, “Short-pulse and high-frequency signal generation in semiconductor lasers,” J. Lightwave Technol. 7, 400–419 (1989).
[CrossRef]

1988 (1)

R. Akhmedzhanov, M. O. Bulanin, and I. A. Urunov, “Simultaneous vibrational transitions in absorption spectra of mixtures of hydrogen with N2O, CO2, and CS2 in the gaseous and liquid phases,” Opt. Spektrosk. 65, 113–116 (1988) Simultaneous vibrational transitions in absorption spectra of mixtures of hydrogen with N2O, CO2, and CS2 in the gaseous and liquid phases,” Opt. Spektrosk. 65, 113–116 (1988) [ Opt. Spectrosc. 65, 65–67 (1988).]

1981 (1)

J. AuYeung, “Theory of active mode locking of a semiconductor laser in an external cavity,” IEEE J. Quantum Electron. 17, 398–404 (1981).
[CrossRef]

1980 (1)

H. A. Haus, “Theory of modelocking of a laser diode in an external resonator,” J. Appl. Phys. 51, 4042–4049 (1980).
[CrossRef]

Ahmed, Z.

N. Onodera, A. J. Lowery, L. Zhai, Z. Ahmed, and R. S. Tucker, “Frequency multiplication in actively mode-locked semiconductor lasers,” Appl. Phys. Lett. 62, 1329–1331 (1993).
[CrossRef]

Akhmedzhanov, R.

R. Akhmedzhanov, M. O. Bulanin, and I. A. Urunov, “Simultaneous vibrational transitions in absorption spectra of mixtures of hydrogen with N2O, CO2, and CS2 in the gaseous and liquid phases,” Opt. Spektrosk. 65, 113–116 (1988) Simultaneous vibrational transitions in absorption spectra of mixtures of hydrogen with N2O, CO2, and CS2 in the gaseous and liquid phases,” Opt. Spektrosk. 65, 113–116 (1988) [ Opt. Spectrosc. 65, 65–67 (1988).]

Alphonse, G. A.

H. Shi, J. Finlay, G. A. Alphonse, J. C. Connolly, and P. J. Delfyett, “Multiwavelength 10-GHz picosecond pulse generation from a single-stripe semiconductor diode laser,” IEEE Photonics Technol. Lett. 9, 1439–1441 (1997).
[CrossRef]

AuYeung, J.

J. AuYeung, “Theory of active mode locking of a semiconductor laser in an external cavity,” IEEE J. Quantum Electron. 17, 398–404 (1981).
[CrossRef]

Biilow, H.

H. Biilow and G. Veith, “Polarisation-independent switching in a nonlinear optical loop mirror by a dual-wavelength switching pulse,” Electron. Lett. 29, 588–589 (1993).
[CrossRef]

Bulanin, M. O.

R. Akhmedzhanov, M. O. Bulanin, and I. A. Urunov, “Simultaneous vibrational transitions in absorption spectra of mixtures of hydrogen with N2O, CO2, and CS2 in the gaseous and liquid phases,” Opt. Spektrosk. 65, 113–116 (1988) Simultaneous vibrational transitions in absorption spectra of mixtures of hydrogen with N2O, CO2, and CS2 in the gaseous and liquid phases,” Opt. Spektrosk. 65, 113–116 (1988) [ Opt. Spectrosc. 65, 65–67 (1988).]

Chraplyvy, A. R.

A. R. Chraplyvy, A. H. Gnauck, R. W. Tkach, J. L. Zyskind, J. W. Sulhoff, A. J. Lucero, Y. Sun, R. M. Jopson, F. Forghieri, R. M. Derosier, C. Wolf, and A. R. McCormick, “1-Tb/s transmission experiment,” IEEE Photonics Technol. Lett. 8, 1264–1266 (1996).
[CrossRef]

Connolly, J. C.

H. Shi, J. Finlay, G. A. Alphonse, J. C. Connolly, and P. J. Delfyett, “Multiwavelength 10-GHz picosecond pulse generation from a single-stripe semiconductor diode laser,” IEEE Photonics Technol. Lett. 9, 1439–1441 (1997).
[CrossRef]

Delfyett, P. J.

H. Shi, J. Finlay, G. A. Alphonse, J. C. Connolly, and P. J. Delfyett, “Multiwavelength 10-GHz picosecond pulse generation from a single-stripe semiconductor diode laser,” IEEE Photonics Technol. Lett. 9, 1439–1441 (1997).
[CrossRef]

Derosier, R. M.

A. R. Chraplyvy, A. H. Gnauck, R. W. Tkach, J. L. Zyskind, J. W. Sulhoff, A. J. Lucero, Y. Sun, R. M. Jopson, F. Forghieri, R. M. Derosier, C. Wolf, and A. R. McCormick, “1-Tb/s transmission experiment,” IEEE Photonics Technol. Lett. 8, 1264–1266 (1996).
[CrossRef]

Doerr, C.

C. R. Giles, C. Doerr, M. Zirngibl, C. Joyner, U. Koren, K. F. Dryer, J. Zyskind, J. Sulhoff, L. Stulz, and C. Wolf, “1.8 Petabit/s downstream capacity WDM passive optical network,” Electron. Lett. 33, 1231–1232 (1997).
[CrossRef]

Dryer, K. F.

C. R. Giles, C. Doerr, M. Zirngibl, C. Joyner, U. Koren, K. F. Dryer, J. Zyskind, J. Sulhoff, L. Stulz, and C. Wolf, “1.8 Petabit/s downstream capacity WDM passive optical network,” Electron. Lett. 33, 1231–1232 (1997).
[CrossRef]

Finlay, J.

H. Shi, J. Finlay, G. A. Alphonse, J. C. Connolly, and P. J. Delfyett, “Multiwavelength 10-GHz picosecond pulse generation from a single-stripe semiconductor diode laser,” IEEE Photonics Technol. Lett. 9, 1439–1441 (1997).
[CrossRef]

Forghieri, F.

A. R. Chraplyvy, A. H. Gnauck, R. W. Tkach, J. L. Zyskind, J. W. Sulhoff, A. J. Lucero, Y. Sun, R. M. Jopson, F. Forghieri, R. M. Derosier, C. Wolf, and A. R. McCormick, “1-Tb/s transmission experiment,” IEEE Photonics Technol. Lett. 8, 1264–1266 (1996).
[CrossRef]

Giles, C. R.

C. R. Giles, C. Doerr, M. Zirngibl, C. Joyner, U. Koren, K. F. Dryer, J. Zyskind, J. Sulhoff, L. Stulz, and C. Wolf, “1.8 Petabit/s downstream capacity WDM passive optical network,” Electron. Lett. 33, 1231–1232 (1997).
[CrossRef]

Gnauck, A. H.

A. R. Chraplyvy, A. H. Gnauck, R. W. Tkach, J. L. Zyskind, J. W. Sulhoff, A. J. Lucero, Y. Sun, R. M. Jopson, F. Forghieri, R. M. Derosier, C. Wolf, and A. R. McCormick, “1-Tb/s transmission experiment,” IEEE Photonics Technol. Lett. 8, 1264–1266 (1996).
[CrossRef]

Haus, H. A.

H. A. Haus, “Theory of modelocking of a laser diode in an external resonator,” J. Appl. Phys. 51, 4042–4049 (1980).
[CrossRef]

Jopson, R. M.

A. R. Chraplyvy, A. H. Gnauck, R. W. Tkach, J. L. Zyskind, J. W. Sulhoff, A. J. Lucero, Y. Sun, R. M. Jopson, F. Forghieri, R. M. Derosier, C. Wolf, and A. R. McCormick, “1-Tb/s transmission experiment,” IEEE Photonics Technol. Lett. 8, 1264–1266 (1996).
[CrossRef]

Joyner, C.

C. R. Giles, C. Doerr, M. Zirngibl, C. Joyner, U. Koren, K. F. Dryer, J. Zyskind, J. Sulhoff, L. Stulz, and C. Wolf, “1.8 Petabit/s downstream capacity WDM passive optical network,” Electron. Lett. 33, 1231–1232 (1997).
[CrossRef]

Kamatani, O.

T. Morioka, H. Takara, S. Kawanishi, O. Kamatani, K. Takiguchi, K. Uchiyama, M. Saruwatari, H. Takahashi, M. Yamada, T. Kanamori, and H. Ono, “1 Tbit/s (100 Gbit/s×10 channel) OTDM/WDM transmission using a single supercontinuum WDM source,” Electron. Lett. 32, 906–907 (1996).
[CrossRef]

Kanamori, T.

T. Morioka, H. Takara, S. Kawanishi, O. Kamatani, K. Takiguchi, K. Uchiyama, M. Saruwatari, H. Takahashi, M. Yamada, T. Kanamori, and H. Ono, “1 Tbit/s (100 Gbit/s×10 channel) OTDM/WDM transmission using a single supercontinuum WDM source,” Electron. Lett. 32, 906–907 (1996).
[CrossRef]

Kawanishi, S.

T. Morioka, H. Takara, S. Kawanishi, O. Kamatani, K. Takiguchi, K. Uchiyama, M. Saruwatari, H. Takahashi, M. Yamada, T. Kanamori, and H. Ono, “1 Tbit/s (100 Gbit/s×10 channel) OTDM/WDM transmission using a single supercontinuum WDM source,” Electron. Lett. 32, 906–907 (1996).
[CrossRef]

Koai, K. T.

K. T. Koai, “Dual-wavelength photonic network for wide-area digital TV and data transport,” Electron. Lett. 29, 599–601 (1993).
[CrossRef]

Koren, U.

C. R. Giles, C. Doerr, M. Zirngibl, C. Joyner, U. Koren, K. F. Dryer, J. Zyskind, J. Sulhoff, L. Stulz, and C. Wolf, “1.8 Petabit/s downstream capacity WDM passive optical network,” Electron. Lett. 33, 1231–1232 (1997).
[CrossRef]

Lau, K. Y.

K. Y. Lau, “Short-pulse and high-frequency signal generation in semiconductor lasers,” J. Lightwave Technol. 7, 400–419 (1989).
[CrossRef]

Lee, K. S.

K. S. Lee and C. Shu, “Generation of programmable multiwavelength picosecond pulses using an optical-loop-mirror multiplexer,” Appl. Phys. Lett. 72, 412–414 (1998).
[CrossRef]

Lee, K.-S.

K.-S. Lee and C. Shu, “Stable and widely tunable dual-wavelength continuous-wave operation of a semiconductor laser in a novel Fabry–Perot grating-lens external cavity,” IEEE J. Quantum Electron. 33, 1832–1838 (1997).
[CrossRef]

Lee, Y.-C.

C. Shu and Y.-C. Lee, “Tunable dual-wavelength picosecond optical pulses generated from a self-injection seeded gain-switched laser diode,” IEEE J. Quantum Electron. 32, 1976–1980 (1996).
[CrossRef]

Lowery, A. J.

N. Onodera, A. J. Lowery, L. Zhai, Z. Ahmed, and R. S. Tucker, “Frequency multiplication in actively mode-locked semiconductor lasers,” Appl. Phys. Lett. 62, 1329–1331 (1993).
[CrossRef]

Lucero, A. J.

A. R. Chraplyvy, A. H. Gnauck, R. W. Tkach, J. L. Zyskind, J. W. Sulhoff, A. J. Lucero, Y. Sun, R. M. Jopson, F. Forghieri, R. M. Derosier, C. Wolf, and A. R. McCormick, “1-Tb/s transmission experiment,” IEEE Photonics Technol. Lett. 8, 1264–1266 (1996).
[CrossRef]

McCormick, A. R.

A. R. Chraplyvy, A. H. Gnauck, R. W. Tkach, J. L. Zyskind, J. W. Sulhoff, A. J. Lucero, Y. Sun, R. M. Jopson, F. Forghieri, R. M. Derosier, C. Wolf, and A. R. McCormick, “1-Tb/s transmission experiment,” IEEE Photonics Technol. Lett. 8, 1264–1266 (1996).
[CrossRef]

Morioka, T.

T. Morioka, H. Takara, S. Kawanishi, O. Kamatani, K. Takiguchi, K. Uchiyama, M. Saruwatari, H. Takahashi, M. Yamada, T. Kanamori, and H. Ono, “1 Tbit/s (100 Gbit/s×10 channel) OTDM/WDM transmission using a single supercontinuum WDM source,” Electron. Lett. 32, 906–907 (1996).
[CrossRef]

Ono, H.

T. Morioka, H. Takara, S. Kawanishi, O. Kamatani, K. Takiguchi, K. Uchiyama, M. Saruwatari, H. Takahashi, M. Yamada, T. Kanamori, and H. Ono, “1 Tbit/s (100 Gbit/s×10 channel) OTDM/WDM transmission using a single supercontinuum WDM source,” Electron. Lett. 32, 906–907 (1996).
[CrossRef]

Onodera, N.

N. Onodera, A. J. Lowery, L. Zhai, Z. Ahmed, and R. S. Tucker, “Frequency multiplication in actively mode-locked semiconductor lasers,” Appl. Phys. Lett. 62, 1329–1331 (1993).
[CrossRef]

Pan, C.-L.

Saruwatari, M.

T. Morioka, H. Takara, S. Kawanishi, O. Kamatani, K. Takiguchi, K. Uchiyama, M. Saruwatari, H. Takahashi, M. Yamada, T. Kanamori, and H. Ono, “1 Tbit/s (100 Gbit/s×10 channel) OTDM/WDM transmission using a single supercontinuum WDM source,” Electron. Lett. 32, 906–907 (1996).
[CrossRef]

Shi, H.

H. Shi, J. Finlay, G. A. Alphonse, J. C. Connolly, and P. J. Delfyett, “Multiwavelength 10-GHz picosecond pulse generation from a single-stripe semiconductor diode laser,” IEEE Photonics Technol. Lett. 9, 1439–1441 (1997).
[CrossRef]

Shu, C.

K. S. Lee and C. Shu, “Generation of programmable multiwavelength picosecond pulses using an optical-loop-mirror multiplexer,” Appl. Phys. Lett. 72, 412–414 (1998).
[CrossRef]

K.-S. Lee and C. Shu, “Stable and widely tunable dual-wavelength continuous-wave operation of a semiconductor laser in a novel Fabry–Perot grating-lens external cavity,” IEEE J. Quantum Electron. 33, 1832–1838 (1997).
[CrossRef]

C. Shu and Y.-C. Lee, “Tunable dual-wavelength picosecond optical pulses generated from a self-injection seeded gain-switched laser diode,” IEEE J. Quantum Electron. 32, 1976–1980 (1996).
[CrossRef]

Stulz, L.

C. R. Giles, C. Doerr, M. Zirngibl, C. Joyner, U. Koren, K. F. Dryer, J. Zyskind, J. Sulhoff, L. Stulz, and C. Wolf, “1.8 Petabit/s downstream capacity WDM passive optical network,” Electron. Lett. 33, 1231–1232 (1997).
[CrossRef]

Sulhoff, J.

C. R. Giles, C. Doerr, M. Zirngibl, C. Joyner, U. Koren, K. F. Dryer, J. Zyskind, J. Sulhoff, L. Stulz, and C. Wolf, “1.8 Petabit/s downstream capacity WDM passive optical network,” Electron. Lett. 33, 1231–1232 (1997).
[CrossRef]

Sulhoff, J. W.

A. R. Chraplyvy, A. H. Gnauck, R. W. Tkach, J. L. Zyskind, J. W. Sulhoff, A. J. Lucero, Y. Sun, R. M. Jopson, F. Forghieri, R. M. Derosier, C. Wolf, and A. R. McCormick, “1-Tb/s transmission experiment,” IEEE Photonics Technol. Lett. 8, 1264–1266 (1996).
[CrossRef]

Sun, Y.

A. R. Chraplyvy, A. H. Gnauck, R. W. Tkach, J. L. Zyskind, J. W. Sulhoff, A. J. Lucero, Y. Sun, R. M. Jopson, F. Forghieri, R. M. Derosier, C. Wolf, and A. R. McCormick, “1-Tb/s transmission experiment,” IEEE Photonics Technol. Lett. 8, 1264–1266 (1996).
[CrossRef]

Takahashi, H.

T. Morioka, H. Takara, S. Kawanishi, O. Kamatani, K. Takiguchi, K. Uchiyama, M. Saruwatari, H. Takahashi, M. Yamada, T. Kanamori, and H. Ono, “1 Tbit/s (100 Gbit/s×10 channel) OTDM/WDM transmission using a single supercontinuum WDM source,” Electron. Lett. 32, 906–907 (1996).
[CrossRef]

Takara, H.

T. Morioka, H. Takara, S. Kawanishi, O. Kamatani, K. Takiguchi, K. Uchiyama, M. Saruwatari, H. Takahashi, M. Yamada, T. Kanamori, and H. Ono, “1 Tbit/s (100 Gbit/s×10 channel) OTDM/WDM transmission using a single supercontinuum WDM source,” Electron. Lett. 32, 906–907 (1996).
[CrossRef]

Takiguchi, K.

T. Morioka, H. Takara, S. Kawanishi, O. Kamatani, K. Takiguchi, K. Uchiyama, M. Saruwatari, H. Takahashi, M. Yamada, T. Kanamori, and H. Ono, “1 Tbit/s (100 Gbit/s×10 channel) OTDM/WDM transmission using a single supercontinuum WDM source,” Electron. Lett. 32, 906–907 (1996).
[CrossRef]

Tkach, R. W.

A. R. Chraplyvy, A. H. Gnauck, R. W. Tkach, J. L. Zyskind, J. W. Sulhoff, A. J. Lucero, Y. Sun, R. M. Jopson, F. Forghieri, R. M. Derosier, C. Wolf, and A. R. McCormick, “1-Tb/s transmission experiment,” IEEE Photonics Technol. Lett. 8, 1264–1266 (1996).
[CrossRef]

Tucker, R. S.

N. Onodera, A. J. Lowery, L. Zhai, Z. Ahmed, and R. S. Tucker, “Frequency multiplication in actively mode-locked semiconductor lasers,” Appl. Phys. Lett. 62, 1329–1331 (1993).
[CrossRef]

Uchiyama, K.

T. Morioka, H. Takara, S. Kawanishi, O. Kamatani, K. Takiguchi, K. Uchiyama, M. Saruwatari, H. Takahashi, M. Yamada, T. Kanamori, and H. Ono, “1 Tbit/s (100 Gbit/s×10 channel) OTDM/WDM transmission using a single supercontinuum WDM source,” Electron. Lett. 32, 906–907 (1996).
[CrossRef]

Urunov, I. A.

R. Akhmedzhanov, M. O. Bulanin, and I. A. Urunov, “Simultaneous vibrational transitions in absorption spectra of mixtures of hydrogen with N2O, CO2, and CS2 in the gaseous and liquid phases,” Opt. Spektrosk. 65, 113–116 (1988) Simultaneous vibrational transitions in absorption spectra of mixtures of hydrogen with N2O, CO2, and CS2 in the gaseous and liquid phases,” Opt. Spektrosk. 65, 113–116 (1988) [ Opt. Spectrosc. 65, 65–67 (1988).]

Veith, G.

H. Biilow and G. Veith, “Polarisation-independent switching in a nonlinear optical loop mirror by a dual-wavelength switching pulse,” Electron. Lett. 29, 588–589 (1993).
[CrossRef]

Wang, C.-L.

White, I. H.

B. Zhu and I. H. White, “Variable delay dual wavelength picosecond optical pulse generation using an actively mode-locked multichannel grating cavity laser,” Appl. Phys. Lett. 65, 2928–2930 (1994).
[CrossRef]

Wolf, C.

C. R. Giles, C. Doerr, M. Zirngibl, C. Joyner, U. Koren, K. F. Dryer, J. Zyskind, J. Sulhoff, L. Stulz, and C. Wolf, “1.8 Petabit/s downstream capacity WDM passive optical network,” Electron. Lett. 33, 1231–1232 (1997).
[CrossRef]

A. R. Chraplyvy, A. H. Gnauck, R. W. Tkach, J. L. Zyskind, J. W. Sulhoff, A. J. Lucero, Y. Sun, R. M. Jopson, F. Forghieri, R. M. Derosier, C. Wolf, and A. R. McCormick, “1-Tb/s transmission experiment,” IEEE Photonics Technol. Lett. 8, 1264–1266 (1996).
[CrossRef]

Yamada, M.

T. Morioka, H. Takara, S. Kawanishi, O. Kamatani, K. Takiguchi, K. Uchiyama, M. Saruwatari, H. Takahashi, M. Yamada, T. Kanamori, and H. Ono, “1 Tbit/s (100 Gbit/s×10 channel) OTDM/WDM transmission using a single supercontinuum WDM source,” Electron. Lett. 32, 906–907 (1996).
[CrossRef]

Zhai, L.

N. Onodera, A. J. Lowery, L. Zhai, Z. Ahmed, and R. S. Tucker, “Frequency multiplication in actively mode-locked semiconductor lasers,” Appl. Phys. Lett. 62, 1329–1331 (1993).
[CrossRef]

Zhang, J.-G.

J.-G. Zhang, “Dual-wavelength optical fiber HDTV distribution networks using self-synchronization technique and multistar topology,” IEEE Trans. Consumer Electron. 40, 985–991 (1994).
[CrossRef]

Zhu, B.

B. Zhu and I. H. White, “Variable delay dual wavelength picosecond optical pulse generation using an actively mode-locked multichannel grating cavity laser,” Appl. Phys. Lett. 65, 2928–2930 (1994).
[CrossRef]

Zirngibl, M.

C. R. Giles, C. Doerr, M. Zirngibl, C. Joyner, U. Koren, K. F. Dryer, J. Zyskind, J. Sulhoff, L. Stulz, and C. Wolf, “1.8 Petabit/s downstream capacity WDM passive optical network,” Electron. Lett. 33, 1231–1232 (1997).
[CrossRef]

Zyskind, J.

C. R. Giles, C. Doerr, M. Zirngibl, C. Joyner, U. Koren, K. F. Dryer, J. Zyskind, J. Sulhoff, L. Stulz, and C. Wolf, “1.8 Petabit/s downstream capacity WDM passive optical network,” Electron. Lett. 33, 1231–1232 (1997).
[CrossRef]

Zyskind, J. L.

A. R. Chraplyvy, A. H. Gnauck, R. W. Tkach, J. L. Zyskind, J. W. Sulhoff, A. J. Lucero, Y. Sun, R. M. Jopson, F. Forghieri, R. M. Derosier, C. Wolf, and A. R. McCormick, “1-Tb/s transmission experiment,” IEEE Photonics Technol. Lett. 8, 1264–1266 (1996).
[CrossRef]

Appl. Phys. Lett. (3)

B. Zhu and I. H. White, “Variable delay dual wavelength picosecond optical pulse generation using an actively mode-locked multichannel grating cavity laser,” Appl. Phys. Lett. 65, 2928–2930 (1994).
[CrossRef]

K. S. Lee and C. Shu, “Generation of programmable multiwavelength picosecond pulses using an optical-loop-mirror multiplexer,” Appl. Phys. Lett. 72, 412–414 (1998).
[CrossRef]

N. Onodera, A. J. Lowery, L. Zhai, Z. Ahmed, and R. S. Tucker, “Frequency multiplication in actively mode-locked semiconductor lasers,” Appl. Phys. Lett. 62, 1329–1331 (1993).
[CrossRef]

Electron. Lett. (4)

T. Morioka, H. Takara, S. Kawanishi, O. Kamatani, K. Takiguchi, K. Uchiyama, M. Saruwatari, H. Takahashi, M. Yamada, T. Kanamori, and H. Ono, “1 Tbit/s (100 Gbit/s×10 channel) OTDM/WDM transmission using a single supercontinuum WDM source,” Electron. Lett. 32, 906–907 (1996).
[CrossRef]

C. R. Giles, C. Doerr, M. Zirngibl, C. Joyner, U. Koren, K. F. Dryer, J. Zyskind, J. Sulhoff, L. Stulz, and C. Wolf, “1.8 Petabit/s downstream capacity WDM passive optical network,” Electron. Lett. 33, 1231–1232 (1997).
[CrossRef]

K. T. Koai, “Dual-wavelength photonic network for wide-area digital TV and data transport,” Electron. Lett. 29, 599–601 (1993).
[CrossRef]

H. Biilow and G. Veith, “Polarisation-independent switching in a nonlinear optical loop mirror by a dual-wavelength switching pulse,” Electron. Lett. 29, 588–589 (1993).
[CrossRef]

IEEE J. Quantum Electron. (3)

J. AuYeung, “Theory of active mode locking of a semiconductor laser in an external cavity,” IEEE J. Quantum Electron. 17, 398–404 (1981).
[CrossRef]

K.-S. Lee and C. Shu, “Stable and widely tunable dual-wavelength continuous-wave operation of a semiconductor laser in a novel Fabry–Perot grating-lens external cavity,” IEEE J. Quantum Electron. 33, 1832–1838 (1997).
[CrossRef]

C. Shu and Y.-C. Lee, “Tunable dual-wavelength picosecond optical pulses generated from a self-injection seeded gain-switched laser diode,” IEEE J. Quantum Electron. 32, 1976–1980 (1996).
[CrossRef]

IEEE Photonics Technol. Lett. (2)

H. Shi, J. Finlay, G. A. Alphonse, J. C. Connolly, and P. J. Delfyett, “Multiwavelength 10-GHz picosecond pulse generation from a single-stripe semiconductor diode laser,” IEEE Photonics Technol. Lett. 9, 1439–1441 (1997).
[CrossRef]

A. R. Chraplyvy, A. H. Gnauck, R. W. Tkach, J. L. Zyskind, J. W. Sulhoff, A. J. Lucero, Y. Sun, R. M. Jopson, F. Forghieri, R. M. Derosier, C. Wolf, and A. R. McCormick, “1-Tb/s transmission experiment,” IEEE Photonics Technol. Lett. 8, 1264–1266 (1996).
[CrossRef]

IEEE Trans. Consumer Electron. (1)

J.-G. Zhang, “Dual-wavelength optical fiber HDTV distribution networks using self-synchronization technique and multistar topology,” IEEE Trans. Consumer Electron. 40, 985–991 (1994).
[CrossRef]

J. Appl. Phys. (1)

H. A. Haus, “Theory of modelocking of a laser diode in an external resonator,” J. Appl. Phys. 51, 4042–4049 (1980).
[CrossRef]

J. Lightwave Technol. (1)

K. Y. Lau, “Short-pulse and high-frequency signal generation in semiconductor lasers,” J. Lightwave Technol. 7, 400–419 (1989).
[CrossRef]

Opt. Lett. (1)

Opt. Spectrosc. (1)

R. Akhmedzhanov, M. O. Bulanin, and I. A. Urunov, “Simultaneous vibrational transitions in absorption spectra of mixtures of hydrogen with N2O, CO2, and CS2 in the gaseous and liquid phases,” Opt. Spektrosk. 65, 113–116 (1988) Simultaneous vibrational transitions in absorption spectra of mixtures of hydrogen with N2O, CO2, and CS2 in the gaseous and liquid phases,” Opt. Spektrosk. 65, 113–116 (1988) [ Opt. Spectrosc. 65, 65–67 (1988).]

Other (3)

D. Burns, G. Hay, and W. Sibbett, “Dual-wavelength external-cavity semiconductor lasers,” in Conference on Lasers and Electro-Optics, Vol. 11 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), paper JThA3.

D. M. Winker, “Global measurements of clouds and aerosols with the Lidar In-space Technology Experiment,” in Conference on Lasers and Electro-Optics, Vol. 15 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), paper CWN3.

B. Schrader, ed., Infrared and Raman Spectroscopy: Methods and Applications (VCH, New York, 1995), Chap. 3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic illustration of the tunable dual-wavelength mode-locked F-PGLEC laser. The light rays (R1, R2, R3) represent different wavelengths, such that λ(R1)>λ(R2)>λ(R3). PD, 25-GHz photodetector; DSO, digital sampling oscilloscope; OSA, optical spectrum analyzer; PM, powermeter.

Fig. 2
Fig. 2

Optical spectra of (a) the residual longitudinal modes of the AR-coated laser and (b) the dual-wavelength pulses generated with optical feedback from the external cavity. Inset, optical spectrum of the dual-wavelength pulses on the linear scale. The spectra are measured with an optical spectrum analyzer with a wavelength resolution of 0.08 nm.

Fig. 3
Fig. 3

(a) Dual-wavelength pulse with a deconvolved width of 26.2 ps. Inset, the 1.333-GHz dual-wavelength pulse train. (b) Filtered pulses at (i) λ1 and (ii) λ2 with deconvolved widths of 22.4 and 25.0 ps, respectively. λ1, 1.5003 µm; λ2, 1.5012 µm.

Fig. 4
Fig. 4

Optical spectra of the dual-wavelength picosecond pulses over a 65-nm tuning range. The results are obtained by adjustment of the spatial separation Δl between the mirror and the lens.

Fig. 5
Fig. 5

Deconvolved pulse width and modulation frequency of the dual-wavelength picosecond outputs. All the pulse widths are shorter than 30 ps. The full-range modulation frequency detuning is ∼0.03 GHz.

Fig. 6
Fig. 6

Wavelength tuning characteristic of the mode-locked F-PGLEC laser.

Fig. 7
Fig. 7

Side-mode suppression ratio and relative intensity variation of the dual-wavelength mode-locked pulses. All the SMSR’s are greater than 24 dB, and the full-range relative intensity variations are smaller than 1.2 dB throughout the tuning range.

Fig. 8
Fig. 8

Rational-harmonic mode-locked pulse trains at dual wavelengths of 1.5003 and 1.5012 µm. The modulation frequencies fmod applied to the semiconductor laser and the corresponding repetition rates frep are shown.

Fig. 9
Fig. 9

rf spectra of the dual-wavelength rational-harmonic mode-locked pulses. The applied modulation frequencies fmod and the corresponding pulse repetition rates frep are shown. The cavity resonance frequency of the F-PGLEC configuration is ∼0.333 GHz.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

sin(α-Δα)-sin α+sin(β+Δβ)-sin β=Δβ cos β,
ΔL=-mcfm2Δfm,
fmod=m+pqf0
frep=qfmod=(mq+p)f0,

Metrics