Abstract

Photographic film has commonly been exposed by a single-photon absorption mechanism. We determine the conditions for film exposure by direct two-photon absorption. Using subpicosecond laser pulses, we find that two-photon exposure for commercial film has a threshold fluence and an intensity of 0.0008 J/cm2 and 0.0066 TW/cm2, respectively, well below the optical damage threshold. Multiphoton photography has the potential for higher spatial resolution and affords an opportunity for three-dimensional image storage.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Kirk-Othmer, ed., Encyclopedia of Chemical Technology (Wiley, New York 1978), Vol. 17, p. 611.
  2. E. Yablonovitch and R. B. Vrijen, “Optical projection lithography at half the Rayleigh resolution limit by two photon exposure,” Opt. Eng. (Bellingham) (to be published).
  3. S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 22, 132–134 (1997); E. S. Wu, J. H. Strickler, W. R. Harrell, and W. W. Webb, “Two-photon lithography for microelectronic application,” in Optical/Laser Microlithography V, J. J. D. Cuthbert, ed., Proc. SPIE 1674, 776–782 (1992); J. H. Strickler and W. W. Webb, “Three-dimensional optical data storage in refractive media by 2-photon point excitation,” Opt. Lett. OPLEDP 16, 1780–1782 (1991).
    [CrossRef] [PubMed]
  4. I. M. Catalano, A. Cingolani, and M. Lepore, “Two-photon absorption spectra of direct and indirect materials: ZnO and AgCl,” Phys. Rev. B 33, 7270–7273 (1986).
    [CrossRef]
  5. M. Casalboni, F. Crisanti, R. Francini, and U. M. Grassano, “Two-photon spectroscopy in AgCl,” Solid State Commun. 35, 833–836 (1980).
    [CrossRef]
  6. Commercial film, Kodak technical data publication F-16 (Eastman Kodak, Rochester, N.Y.).
  7. AZO photographic paper, Kodak technical data publication G-10 (Eastman Kodak, Rochester, N.Y.).
  8. J. Kruger and W. Kautek, “Femtosecond-pulse visible laser processing of transparent materials,” Appl. Surf. Sci. 96–98, 430–438 (1996).
    [CrossRef]

1996 (1)

J. Kruger and W. Kautek, “Femtosecond-pulse visible laser processing of transparent materials,” Appl. Surf. Sci. 96–98, 430–438 (1996).
[CrossRef]

1986 (1)

I. M. Catalano, A. Cingolani, and M. Lepore, “Two-photon absorption spectra of direct and indirect materials: ZnO and AgCl,” Phys. Rev. B 33, 7270–7273 (1986).
[CrossRef]

1980 (1)

M. Casalboni, F. Crisanti, R. Francini, and U. M. Grassano, “Two-photon spectroscopy in AgCl,” Solid State Commun. 35, 833–836 (1980).
[CrossRef]

Casalboni, M.

M. Casalboni, F. Crisanti, R. Francini, and U. M. Grassano, “Two-photon spectroscopy in AgCl,” Solid State Commun. 35, 833–836 (1980).
[CrossRef]

Catalano, I. M.

I. M. Catalano, A. Cingolani, and M. Lepore, “Two-photon absorption spectra of direct and indirect materials: ZnO and AgCl,” Phys. Rev. B 33, 7270–7273 (1986).
[CrossRef]

Cingolani, A.

I. M. Catalano, A. Cingolani, and M. Lepore, “Two-photon absorption spectra of direct and indirect materials: ZnO and AgCl,” Phys. Rev. B 33, 7270–7273 (1986).
[CrossRef]

Crisanti, F.

M. Casalboni, F. Crisanti, R. Francini, and U. M. Grassano, “Two-photon spectroscopy in AgCl,” Solid State Commun. 35, 833–836 (1980).
[CrossRef]

Francini, R.

M. Casalboni, F. Crisanti, R. Francini, and U. M. Grassano, “Two-photon spectroscopy in AgCl,” Solid State Commun. 35, 833–836 (1980).
[CrossRef]

Grassano, U. M.

M. Casalboni, F. Crisanti, R. Francini, and U. M. Grassano, “Two-photon spectroscopy in AgCl,” Solid State Commun. 35, 833–836 (1980).
[CrossRef]

Kautek, W.

J. Kruger and W. Kautek, “Femtosecond-pulse visible laser processing of transparent materials,” Appl. Surf. Sci. 96–98, 430–438 (1996).
[CrossRef]

Kruger, J.

J. Kruger and W. Kautek, “Femtosecond-pulse visible laser processing of transparent materials,” Appl. Surf. Sci. 96–98, 430–438 (1996).
[CrossRef]

Lepore, M.

I. M. Catalano, A. Cingolani, and M. Lepore, “Two-photon absorption spectra of direct and indirect materials: ZnO and AgCl,” Phys. Rev. B 33, 7270–7273 (1986).
[CrossRef]

Appl. Surf. Sci. (1)

J. Kruger and W. Kautek, “Femtosecond-pulse visible laser processing of transparent materials,” Appl. Surf. Sci. 96–98, 430–438 (1996).
[CrossRef]

Phys. Rev. B (1)

I. M. Catalano, A. Cingolani, and M. Lepore, “Two-photon absorption spectra of direct and indirect materials: ZnO and AgCl,” Phys. Rev. B 33, 7270–7273 (1986).
[CrossRef]

Solid State Commun. (1)

M. Casalboni, F. Crisanti, R. Francini, and U. M. Grassano, “Two-photon spectroscopy in AgCl,” Solid State Commun. 35, 833–836 (1980).
[CrossRef]

Other (5)

Commercial film, Kodak technical data publication F-16 (Eastman Kodak, Rochester, N.Y.).

AZO photographic paper, Kodak technical data publication G-10 (Eastman Kodak, Rochester, N.Y.).

Kirk-Othmer, ed., Encyclopedia of Chemical Technology (Wiley, New York 1978), Vol. 17, p. 611.

E. Yablonovitch and R. B. Vrijen, “Optical projection lithography at half the Rayleigh resolution limit by two photon exposure,” Opt. Eng. (Bellingham) (to be published).

S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 22, 132–134 (1997); E. S. Wu, J. H. Strickler, W. R. Harrell, and W. W. Webb, “Two-photon lithography for microelectronic application,” in Optical/Laser Microlithography V, J. J. D. Cuthbert, ed., Proc. SPIE 1674, 776–782 (1992); J. H. Strickler and W. W. Webb, “Three-dimensional optical data storage in refractive media by 2-photon point excitation,” Opt. Lett. OPLEDP 16, 1780–1782 (1991).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic illustration of (a) the laser exposure experiment and (b) the resultant film after development.

Fig. 2
Fig. 2

One-photon spectral sensitivity curve for AZO paper (solid curve, adapted from Ref. 7) and extrapolation toward wavelengths used for two-photon exposure (dashed curve).

Fig. 3
Fig. 3

Effect of pulse duration on the laser spot image size for film after 20-s development (○, 120-fs pulses; Δ, 240-fs pulses).

Fig. 4
Fig. 4

Effect of intensity and development time on the laser spot image size for 120-fs laser pulses (Δ, film with 20 s in developing solution: □, film with 40 s in developing solution; ○ AZO photographic paper).

Tables (1)

Tables Icon

Table 1 Processing Steps Involved in Developing Film and Photographic Paper

Metrics