Abstract

We report the first observation of the simultaneous three-dimensional confinement of both a low-index particle and a high-index particle within a single-beam optical trap by using a strongly focused laser beam containing an optical vortex. Experimental and theoretical investigations of the trap stability are described.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J. Dziedzic, J. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288 (1986).
    [CrossRef] [PubMed]
  2. B. T. Unger and P. L. Marston, “Optical levitation of bubbles in water by the radiation pressure of a laser beam: an acoustically quiet levitator,” J. Acoust. Soc. Am. 83, 970 (1988).
    [CrossRef]
  3. J. C. Crocker and D. Grier, “Microscopic measurement of the pair interaction potential of charge-stabilized colloid,” Phys. Rev. Lett. 73, 352 (1994).
    [CrossRef] [PubMed]
  4. G. Roll, T. Kaiser, and G. Schweiger, “Optical trap sedimentation cell—A new technique for the sizing of microparticles,” J. Aerosol Sci. 27, 105 (1996).
    [CrossRef]
  5. M. Lankers, E. E. M. Khaled, J. Popp, G. Rössling, H. Stahl, and W. Kiefer, “Determination of size changes of optically trapped gas bubbles by elastic light backscattering,” Appl. Opt. 36, 1638 (1997).
    [CrossRef] [PubMed]
  6. W. H. Wright, G. Sonek, Y. Tadir, and M. W. Berns, “Laser trapping in cell biology,” IEEE J. Quantum Electron. 26, 2148 (1990).
    [CrossRef]
  7. A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature (London) 330, 769 (1987).
    [CrossRef]
  8. F. Hoffmann, “Laser microbeams for the manipulation of plant cells and subcellular structures,” Plant Sci. 113, 1 (1996).
    [CrossRef]
  9. C. S. Buer, K. T. Gahagan, G. A. Swartzlander, Jr., and P. Weathers, “Threshold of power for Cucumis melo using an Ar+ laser beam,” in 1996 Conference on In Vitro Cellular and Developmental Biology (Society of In Vitro Biology, Landover, Md., 1996), p. 82A.
  10. C. S. Buer, K. T. Gahagan, G. A. Swartzlander, Jr., and P. Weathers, “Insertion of microscopic objects through plant cell walls using laser microsurgery,” Biotechnol. Bioeng. 60, 348 (1998).
    [CrossRef]
  11. Y. Tadir, W. H. Wright, and O. Vàfa, T. Ord, R. H. Asch, and M. W. Berns, “Micromanipulation of sperm by a laser generated optical trap,” Fertil. Steril. 52, 870 (1989).
    [PubMed]
  12. K. Svoboda and S. Block, “Force and velocity measured for single kinesin molecules,” Cell 77, 773 (1994).
    [CrossRef] [PubMed]
  13. P. J. H. Bronkhorst, G. J. Streekstra, J. Grimbergen, J. Nijh, J. J. Sixma, and G. J. Brakenhoff, “A new method to study shape recovery of red blood cells using multiple optical trapping,” Biophys. J. 69, 1666 (1995).
    [CrossRef] [PubMed]
  14. M. Schindler, “The cell optical displacement assay (CODA)—measurements of cytoskeletal tension in living plant cells with a laser optical trap,” Methods Cell Biol. 49, 71 (1995).
    [CrossRef]
  15. S. Sato, M. Ishigure, and H. Inaba, “Application of higher-order-mode Nd: YAG laser beam for manipulation and rotation of biological cells,” in Conference on Lasers and Electro-Optics (CLEO/U.S.), Vol. 10 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), p. 280.
  16. A. Ashkin, “Forces of a single-beam gradient trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569 (1992).
    [CrossRef] [PubMed]
  17. N. B. Simpson, L. Allen, and M. J. Padgett, “Optical tweezers with increased trapping efficiency,” in Conference on Lasers and Electro-Optics (CLEO/U.S.), Vol. 11 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), p. 73.
  18. K. T. Gahagan and G. A. Swartzlander, Jr., “Optical vortex trapping of particles,” Opt. Lett. 21, 827 (1996).
    [CrossRef] [PubMed]
  19. T. Kuga, Y. Torii, N. Shiokawa, and T. Hirano, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78, 4713 (1997).
    [CrossRef]
  20. D. Rozas, Z. Sacks, and G. A. Swartzlander, Jr., “Experimental observation of fluidlike motion of optical vortices,” Phys. Rev. Lett. 79, 3399 (1997).
    [CrossRef]
  21. D. Rozas, C. T. Law, and G. A. Swartzlander, Jr., “Propagation dynamics of optical vortices,” J. Opt. Soc. Am. B 14, 3054 (1997).
    [CrossRef]
  22. V. Y. Bazhenov, M. S. Soskin, and M. V. Vasnetsov, “Screw dislocations in light wavefronts,” J. Mod. Opt. 39, 985 (1992).
    [CrossRef]
  23. N. R. Heckenberg, R. McDuff, and C. P. Smith, “Generation of optical phase singularities by computer-generated holograms,” Opt. Lett. 17, 221 (1992).
    [CrossRef] [PubMed]
  24. Z. S. Sacks, D. Rozas, and G. A. Swartzlander, Jr., “Holographic formation of optical-vortex filaments,” J. Opt. Soc. Am. B 15, 2226 (1998).
    [CrossRef]
  25. K. T. Gahagan and G. A. Swartzlander, Jr., “Trapping of low-index microparticles in an optical vortex,” J. Opt. Soc. Am. B 15, 524 (1998).
    [CrossRef]
  26. H. He, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical particle trapping with higher-order doughnut beams produced using high efficiency computer generated holograms,” J. Mod. Opt. 42, 217 (1995).
    [CrossRef]
  27. N. B. Simpson, L. Allen, and M. J. Padgett, “Optical tweezers and optical spanners with Laguerre-Gaussian modes,” J. Mod. Opt. 43, 2485 (1996).
    [CrossRef]
  28. H. Misawa, M. Koshioka, K. Sasaki, N. Kitamura, and H. Masuhara, “Three-dimensional optical trapping and laser ablation of a single polymer latex particle in water,” J. Appl. Phys. 70, 3829 (1991).
    [CrossRef]
  29. Tween 80 is a trademark of Aldrich Chemical Company (Milwaukee, Wis.) for the non-ionic surfactant polyoxyethylene (20) sorbitan monooleate.

1998 (3)

1997 (4)

D. Rozas, C. T. Law, and G. A. Swartzlander, Jr., “Propagation dynamics of optical vortices,” J. Opt. Soc. Am. B 14, 3054 (1997).
[CrossRef]

M. Lankers, E. E. M. Khaled, J. Popp, G. Rössling, H. Stahl, and W. Kiefer, “Determination of size changes of optically trapped gas bubbles by elastic light backscattering,” Appl. Opt. 36, 1638 (1997).
[CrossRef] [PubMed]

T. Kuga, Y. Torii, N. Shiokawa, and T. Hirano, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78, 4713 (1997).
[CrossRef]

D. Rozas, Z. Sacks, and G. A. Swartzlander, Jr., “Experimental observation of fluidlike motion of optical vortices,” Phys. Rev. Lett. 79, 3399 (1997).
[CrossRef]

1996 (4)

N. B. Simpson, L. Allen, and M. J. Padgett, “Optical tweezers and optical spanners with Laguerre-Gaussian modes,” J. Mod. Opt. 43, 2485 (1996).
[CrossRef]

F. Hoffmann, “Laser microbeams for the manipulation of plant cells and subcellular structures,” Plant Sci. 113, 1 (1996).
[CrossRef]

G. Roll, T. Kaiser, and G. Schweiger, “Optical trap sedimentation cell—A new technique for the sizing of microparticles,” J. Aerosol Sci. 27, 105 (1996).
[CrossRef]

K. T. Gahagan and G. A. Swartzlander, Jr., “Optical vortex trapping of particles,” Opt. Lett. 21, 827 (1996).
[CrossRef] [PubMed]

1995 (3)

H. He, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical particle trapping with higher-order doughnut beams produced using high efficiency computer generated holograms,” J. Mod. Opt. 42, 217 (1995).
[CrossRef]

P. J. H. Bronkhorst, G. J. Streekstra, J. Grimbergen, J. Nijh, J. J. Sixma, and G. J. Brakenhoff, “A new method to study shape recovery of red blood cells using multiple optical trapping,” Biophys. J. 69, 1666 (1995).
[CrossRef] [PubMed]

M. Schindler, “The cell optical displacement assay (CODA)—measurements of cytoskeletal tension in living plant cells with a laser optical trap,” Methods Cell Biol. 49, 71 (1995).
[CrossRef]

1994 (2)

J. C. Crocker and D. Grier, “Microscopic measurement of the pair interaction potential of charge-stabilized colloid,” Phys. Rev. Lett. 73, 352 (1994).
[CrossRef] [PubMed]

K. Svoboda and S. Block, “Force and velocity measured for single kinesin molecules,” Cell 77, 773 (1994).
[CrossRef] [PubMed]

1992 (3)

V. Y. Bazhenov, M. S. Soskin, and M. V. Vasnetsov, “Screw dislocations in light wavefronts,” J. Mod. Opt. 39, 985 (1992).
[CrossRef]

A. Ashkin, “Forces of a single-beam gradient trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569 (1992).
[CrossRef] [PubMed]

N. R. Heckenberg, R. McDuff, and C. P. Smith, “Generation of optical phase singularities by computer-generated holograms,” Opt. Lett. 17, 221 (1992).
[CrossRef] [PubMed]

1991 (1)

H. Misawa, M. Koshioka, K. Sasaki, N. Kitamura, and H. Masuhara, “Three-dimensional optical trapping and laser ablation of a single polymer latex particle in water,” J. Appl. Phys. 70, 3829 (1991).
[CrossRef]

1990 (1)

W. H. Wright, G. Sonek, Y. Tadir, and M. W. Berns, “Laser trapping in cell biology,” IEEE J. Quantum Electron. 26, 2148 (1990).
[CrossRef]

1989 (1)

Y. Tadir, W. H. Wright, and O. Vàfa, T. Ord, R. H. Asch, and M. W. Berns, “Micromanipulation of sperm by a laser generated optical trap,” Fertil. Steril. 52, 870 (1989).
[PubMed]

1988 (1)

B. T. Unger and P. L. Marston, “Optical levitation of bubbles in water by the radiation pressure of a laser beam: an acoustically quiet levitator,” J. Acoust. Soc. Am. 83, 970 (1988).
[CrossRef]

1987 (1)

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature (London) 330, 769 (1987).
[CrossRef]

1986 (1)

Allen, L.

N. B. Simpson, L. Allen, and M. J. Padgett, “Optical tweezers and optical spanners with Laguerre-Gaussian modes,” J. Mod. Opt. 43, 2485 (1996).
[CrossRef]

Asch, R. H.

Y. Tadir, W. H. Wright, and O. Vàfa, T. Ord, R. H. Asch, and M. W. Berns, “Micromanipulation of sperm by a laser generated optical trap,” Fertil. Steril. 52, 870 (1989).
[PubMed]

Ashkin, A.

A. Ashkin, “Forces of a single-beam gradient trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569 (1992).
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature (London) 330, 769 (1987).
[CrossRef]

A. Ashkin, J. Dziedzic, J. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288 (1986).
[CrossRef] [PubMed]

Bazhenov, V. Y.

V. Y. Bazhenov, M. S. Soskin, and M. V. Vasnetsov, “Screw dislocations in light wavefronts,” J. Mod. Opt. 39, 985 (1992).
[CrossRef]

Berns, M. W.

W. H. Wright, G. Sonek, Y. Tadir, and M. W. Berns, “Laser trapping in cell biology,” IEEE J. Quantum Electron. 26, 2148 (1990).
[CrossRef]

Y. Tadir, W. H. Wright, and O. Vàfa, T. Ord, R. H. Asch, and M. W. Berns, “Micromanipulation of sperm by a laser generated optical trap,” Fertil. Steril. 52, 870 (1989).
[PubMed]

Bjorkholm, J.

Block, S.

K. Svoboda and S. Block, “Force and velocity measured for single kinesin molecules,” Cell 77, 773 (1994).
[CrossRef] [PubMed]

Brakenhoff, G. J.

P. J. H. Bronkhorst, G. J. Streekstra, J. Grimbergen, J. Nijh, J. J. Sixma, and G. J. Brakenhoff, “A new method to study shape recovery of red blood cells using multiple optical trapping,” Biophys. J. 69, 1666 (1995).
[CrossRef] [PubMed]

Bronkhorst, P. J. H.

P. J. H. Bronkhorst, G. J. Streekstra, J. Grimbergen, J. Nijh, J. J. Sixma, and G. J. Brakenhoff, “A new method to study shape recovery of red blood cells using multiple optical trapping,” Biophys. J. 69, 1666 (1995).
[CrossRef] [PubMed]

Buer, C. S.

C. S. Buer, K. T. Gahagan, G. A. Swartzlander, Jr., and P. Weathers, “Insertion of microscopic objects through plant cell walls using laser microsurgery,” Biotechnol. Bioeng. 60, 348 (1998).
[CrossRef]

Chu, S.

Crocker, J. C.

J. C. Crocker and D. Grier, “Microscopic measurement of the pair interaction potential of charge-stabilized colloid,” Phys. Rev. Lett. 73, 352 (1994).
[CrossRef] [PubMed]

Dziedzic, J.

Dziedzic, J. M.

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature (London) 330, 769 (1987).
[CrossRef]

Gahagan, K. T.

Grier, D.

J. C. Crocker and D. Grier, “Microscopic measurement of the pair interaction potential of charge-stabilized colloid,” Phys. Rev. Lett. 73, 352 (1994).
[CrossRef] [PubMed]

Grimbergen, J.

P. J. H. Bronkhorst, G. J. Streekstra, J. Grimbergen, J. Nijh, J. J. Sixma, and G. J. Brakenhoff, “A new method to study shape recovery of red blood cells using multiple optical trapping,” Biophys. J. 69, 1666 (1995).
[CrossRef] [PubMed]

He, H.

H. He, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical particle trapping with higher-order doughnut beams produced using high efficiency computer generated holograms,” J. Mod. Opt. 42, 217 (1995).
[CrossRef]

Heckenberg, N. R.

H. He, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical particle trapping with higher-order doughnut beams produced using high efficiency computer generated holograms,” J. Mod. Opt. 42, 217 (1995).
[CrossRef]

N. R. Heckenberg, R. McDuff, and C. P. Smith, “Generation of optical phase singularities by computer-generated holograms,” Opt. Lett. 17, 221 (1992).
[CrossRef] [PubMed]

Hirano, T.

T. Kuga, Y. Torii, N. Shiokawa, and T. Hirano, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78, 4713 (1997).
[CrossRef]

Hoffmann, F.

F. Hoffmann, “Laser microbeams for the manipulation of plant cells and subcellular structures,” Plant Sci. 113, 1 (1996).
[CrossRef]

Kaiser, T.

G. Roll, T. Kaiser, and G. Schweiger, “Optical trap sedimentation cell—A new technique for the sizing of microparticles,” J. Aerosol Sci. 27, 105 (1996).
[CrossRef]

Khaled, E. E. M.

Kiefer, W.

Kitamura, N.

H. Misawa, M. Koshioka, K. Sasaki, N. Kitamura, and H. Masuhara, “Three-dimensional optical trapping and laser ablation of a single polymer latex particle in water,” J. Appl. Phys. 70, 3829 (1991).
[CrossRef]

Koshioka, M.

H. Misawa, M. Koshioka, K. Sasaki, N. Kitamura, and H. Masuhara, “Three-dimensional optical trapping and laser ablation of a single polymer latex particle in water,” J. Appl. Phys. 70, 3829 (1991).
[CrossRef]

Kuga, T.

T. Kuga, Y. Torii, N. Shiokawa, and T. Hirano, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78, 4713 (1997).
[CrossRef]

Lankers, M.

Law, C. T.

Marston, P. L.

B. T. Unger and P. L. Marston, “Optical levitation of bubbles in water by the radiation pressure of a laser beam: an acoustically quiet levitator,” J. Acoust. Soc. Am. 83, 970 (1988).
[CrossRef]

Masuhara, H.

H. Misawa, M. Koshioka, K. Sasaki, N. Kitamura, and H. Masuhara, “Three-dimensional optical trapping and laser ablation of a single polymer latex particle in water,” J. Appl. Phys. 70, 3829 (1991).
[CrossRef]

McDuff, R.

Misawa, H.

H. Misawa, M. Koshioka, K. Sasaki, N. Kitamura, and H. Masuhara, “Three-dimensional optical trapping and laser ablation of a single polymer latex particle in water,” J. Appl. Phys. 70, 3829 (1991).
[CrossRef]

Nijh, J.

P. J. H. Bronkhorst, G. J. Streekstra, J. Grimbergen, J. Nijh, J. J. Sixma, and G. J. Brakenhoff, “A new method to study shape recovery of red blood cells using multiple optical trapping,” Biophys. J. 69, 1666 (1995).
[CrossRef] [PubMed]

Ord, T.

Y. Tadir, W. H. Wright, and O. Vàfa, T. Ord, R. H. Asch, and M. W. Berns, “Micromanipulation of sperm by a laser generated optical trap,” Fertil. Steril. 52, 870 (1989).
[PubMed]

Padgett, M. J.

N. B. Simpson, L. Allen, and M. J. Padgett, “Optical tweezers and optical spanners with Laguerre-Gaussian modes,” J. Mod. Opt. 43, 2485 (1996).
[CrossRef]

Popp, J.

Roll, G.

G. Roll, T. Kaiser, and G. Schweiger, “Optical trap sedimentation cell—A new technique for the sizing of microparticles,” J. Aerosol Sci. 27, 105 (1996).
[CrossRef]

Rössling, G.

Rozas, D.

Rubinsztein-Dunlop, H.

H. He, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical particle trapping with higher-order doughnut beams produced using high efficiency computer generated holograms,” J. Mod. Opt. 42, 217 (1995).
[CrossRef]

Sacks, Z.

D. Rozas, Z. Sacks, and G. A. Swartzlander, Jr., “Experimental observation of fluidlike motion of optical vortices,” Phys. Rev. Lett. 79, 3399 (1997).
[CrossRef]

Sacks, Z. S.

Sasaki, K.

H. Misawa, M. Koshioka, K. Sasaki, N. Kitamura, and H. Masuhara, “Three-dimensional optical trapping and laser ablation of a single polymer latex particle in water,” J. Appl. Phys. 70, 3829 (1991).
[CrossRef]

Schindler, M.

M. Schindler, “The cell optical displacement assay (CODA)—measurements of cytoskeletal tension in living plant cells with a laser optical trap,” Methods Cell Biol. 49, 71 (1995).
[CrossRef]

Schweiger, G.

G. Roll, T. Kaiser, and G. Schweiger, “Optical trap sedimentation cell—A new technique for the sizing of microparticles,” J. Aerosol Sci. 27, 105 (1996).
[CrossRef]

Shiokawa, N.

T. Kuga, Y. Torii, N. Shiokawa, and T. Hirano, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78, 4713 (1997).
[CrossRef]

Simpson, N. B.

N. B. Simpson, L. Allen, and M. J. Padgett, “Optical tweezers and optical spanners with Laguerre-Gaussian modes,” J. Mod. Opt. 43, 2485 (1996).
[CrossRef]

Sixma, J. J.

P. J. H. Bronkhorst, G. J. Streekstra, J. Grimbergen, J. Nijh, J. J. Sixma, and G. J. Brakenhoff, “A new method to study shape recovery of red blood cells using multiple optical trapping,” Biophys. J. 69, 1666 (1995).
[CrossRef] [PubMed]

Smith, C. P.

Sonek, G.

W. H. Wright, G. Sonek, Y. Tadir, and M. W. Berns, “Laser trapping in cell biology,” IEEE J. Quantum Electron. 26, 2148 (1990).
[CrossRef]

Soskin, M. S.

V. Y. Bazhenov, M. S. Soskin, and M. V. Vasnetsov, “Screw dislocations in light wavefronts,” J. Mod. Opt. 39, 985 (1992).
[CrossRef]

Stahl, H.

Streekstra, G. J.

P. J. H. Bronkhorst, G. J. Streekstra, J. Grimbergen, J. Nijh, J. J. Sixma, and G. J. Brakenhoff, “A new method to study shape recovery of red blood cells using multiple optical trapping,” Biophys. J. 69, 1666 (1995).
[CrossRef] [PubMed]

Svoboda, K.

K. Svoboda and S. Block, “Force and velocity measured for single kinesin molecules,” Cell 77, 773 (1994).
[CrossRef] [PubMed]

Swartzlander Jr., G. A.

Tadir, Y.

W. H. Wright, G. Sonek, Y. Tadir, and M. W. Berns, “Laser trapping in cell biology,” IEEE J. Quantum Electron. 26, 2148 (1990).
[CrossRef]

Y. Tadir, W. H. Wright, and O. Vàfa, T. Ord, R. H. Asch, and M. W. Berns, “Micromanipulation of sperm by a laser generated optical trap,” Fertil. Steril. 52, 870 (1989).
[PubMed]

Torii, Y.

T. Kuga, Y. Torii, N. Shiokawa, and T. Hirano, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78, 4713 (1997).
[CrossRef]

Unger, B. T.

B. T. Unger and P. L. Marston, “Optical levitation of bubbles in water by the radiation pressure of a laser beam: an acoustically quiet levitator,” J. Acoust. Soc. Am. 83, 970 (1988).
[CrossRef]

Vàfa, O.

Y. Tadir, W. H. Wright, and O. Vàfa, T. Ord, R. H. Asch, and M. W. Berns, “Micromanipulation of sperm by a laser generated optical trap,” Fertil. Steril. 52, 870 (1989).
[PubMed]

Vasnetsov, M. V.

V. Y. Bazhenov, M. S. Soskin, and M. V. Vasnetsov, “Screw dislocations in light wavefronts,” J. Mod. Opt. 39, 985 (1992).
[CrossRef]

Weathers, P.

C. S. Buer, K. T. Gahagan, G. A. Swartzlander, Jr., and P. Weathers, “Insertion of microscopic objects through plant cell walls using laser microsurgery,” Biotechnol. Bioeng. 60, 348 (1998).
[CrossRef]

Wright, W. H.

W. H. Wright, G. Sonek, Y. Tadir, and M. W. Berns, “Laser trapping in cell biology,” IEEE J. Quantum Electron. 26, 2148 (1990).
[CrossRef]

Y. Tadir, W. H. Wright, and O. Vàfa, T. Ord, R. H. Asch, and M. W. Berns, “Micromanipulation of sperm by a laser generated optical trap,” Fertil. Steril. 52, 870 (1989).
[PubMed]

Yamane, T.

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature (London) 330, 769 (1987).
[CrossRef]

Appl. Opt. (1)

Biophys. J. (2)

P. J. H. Bronkhorst, G. J. Streekstra, J. Grimbergen, J. Nijh, J. J. Sixma, and G. J. Brakenhoff, “A new method to study shape recovery of red blood cells using multiple optical trapping,” Biophys. J. 69, 1666 (1995).
[CrossRef] [PubMed]

A. Ashkin, “Forces of a single-beam gradient trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569 (1992).
[CrossRef] [PubMed]

Biotechnol. Bioeng. (1)

C. S. Buer, K. T. Gahagan, G. A. Swartzlander, Jr., and P. Weathers, “Insertion of microscopic objects through plant cell walls using laser microsurgery,” Biotechnol. Bioeng. 60, 348 (1998).
[CrossRef]

Cell (1)

K. Svoboda and S. Block, “Force and velocity measured for single kinesin molecules,” Cell 77, 773 (1994).
[CrossRef] [PubMed]

Fertil. Steril. (1)

Y. Tadir, W. H. Wright, and O. Vàfa, T. Ord, R. H. Asch, and M. W. Berns, “Micromanipulation of sperm by a laser generated optical trap,” Fertil. Steril. 52, 870 (1989).
[PubMed]

IEEE J. Quantum Electron. (1)

W. H. Wright, G. Sonek, Y. Tadir, and M. W. Berns, “Laser trapping in cell biology,” IEEE J. Quantum Electron. 26, 2148 (1990).
[CrossRef]

J. Acoust. Soc. Am. (1)

B. T. Unger and P. L. Marston, “Optical levitation of bubbles in water by the radiation pressure of a laser beam: an acoustically quiet levitator,” J. Acoust. Soc. Am. 83, 970 (1988).
[CrossRef]

J. Aerosol Sci. (1)

G. Roll, T. Kaiser, and G. Schweiger, “Optical trap sedimentation cell—A new technique for the sizing of microparticles,” J. Aerosol Sci. 27, 105 (1996).
[CrossRef]

J. Appl. Phys. (1)

H. Misawa, M. Koshioka, K. Sasaki, N. Kitamura, and H. Masuhara, “Three-dimensional optical trapping and laser ablation of a single polymer latex particle in water,” J. Appl. Phys. 70, 3829 (1991).
[CrossRef]

J. Mod. Opt. (3)

V. Y. Bazhenov, M. S. Soskin, and M. V. Vasnetsov, “Screw dislocations in light wavefronts,” J. Mod. Opt. 39, 985 (1992).
[CrossRef]

H. He, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical particle trapping with higher-order doughnut beams produced using high efficiency computer generated holograms,” J. Mod. Opt. 42, 217 (1995).
[CrossRef]

N. B. Simpson, L. Allen, and M. J. Padgett, “Optical tweezers and optical spanners with Laguerre-Gaussian modes,” J. Mod. Opt. 43, 2485 (1996).
[CrossRef]

J. Opt. Soc. Am. B (3)

Methods Cell Biol. (1)

M. Schindler, “The cell optical displacement assay (CODA)—measurements of cytoskeletal tension in living plant cells with a laser optical trap,” Methods Cell Biol. 49, 71 (1995).
[CrossRef]

Nature (London) (1)

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature (London) 330, 769 (1987).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. Lett. (3)

T. Kuga, Y. Torii, N. Shiokawa, and T. Hirano, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78, 4713 (1997).
[CrossRef]

D. Rozas, Z. Sacks, and G. A. Swartzlander, Jr., “Experimental observation of fluidlike motion of optical vortices,” Phys. Rev. Lett. 79, 3399 (1997).
[CrossRef]

J. C. Crocker and D. Grier, “Microscopic measurement of the pair interaction potential of charge-stabilized colloid,” Phys. Rev. Lett. 73, 352 (1994).
[CrossRef] [PubMed]

Plant Sci. (1)

F. Hoffmann, “Laser microbeams for the manipulation of plant cells and subcellular structures,” Plant Sci. 113, 1 (1996).
[CrossRef]

Other (4)

C. S. Buer, K. T. Gahagan, G. A. Swartzlander, Jr., and P. Weathers, “Threshold of power for Cucumis melo using an Ar+ laser beam,” in 1996 Conference on In Vitro Cellular and Developmental Biology (Society of In Vitro Biology, Landover, Md., 1996), p. 82A.

S. Sato, M. Ishigure, and H. Inaba, “Application of higher-order-mode Nd: YAG laser beam for manipulation and rotation of biological cells,” in Conference on Lasers and Electro-Optics (CLEO/U.S.), Vol. 10 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), p. 280.

N. B. Simpson, L. Allen, and M. J. Padgett, “Optical tweezers with increased trapping efficiency,” in Conference on Lasers and Electro-Optics (CLEO/U.S.), Vol. 11 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), p. 73.

Tween 80 is a trademark of Aldrich Chemical Company (Milwaukee, Wis.) for the non-ionic surfactant polyoxyethylene (20) sorbitan monooleate.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Intensity profile of a vortex beam with a Gaussian waist w0 and characteristic core of size wv. (b) Stable trapping positions, ztrap and ztrap for low- and high-index particles, respectively. The focal plane (f.p.) is assigned the position z=0.

Fig. 2
Fig. 2

Schematic of the optical trapping system comprising an argon-ion laser beam (Ar+), computer-generated hologram (CGH) of an optical vortex, lens (L1 and L2) and beam expanders (BX1 and BX2), a beam splitter (BS) and a mirror (M), a neutral-density filter (ND) and a long-pass color filter (Filter), charge-coupled device cameras (CCD1 and CCD2) connected to a television monitor or a framegrabber (TV), and a camera translation stage (T-Stage), a microscope objective (Obj), background illumination (Illumination), and a sample chamber (Cell) mounted on an xyz translation stage. The back conjugate plane (image plane) of the objective is demarked (x, y).

Fig. 3
Fig. 3

Simultaneous trapping of a low-index HGS and a droplet of high-index immersion oil in water in a vortex trap. Frame 1 depicts an oil droplet (Rp=3 µm) trapped ∼35 µm below the coverslip. The crosshairs mark the location of the optical axis. The plane z=ztrap (20 µm below the coverslip) is imaged. An untrapped HGS (Rp=7 µm) rests just below the coverslip (to the left and above the oil droplet). The dashed circle represents the approximate location of the trap boundary in the plane of the HGS. In frames 2–5 the HGS moves toward the center of the trap, then down to z=ztrap (and into focus). In the remaining frames the two particles are transversely translated relative to a third, untrapped sphere.

Fig. 4
Fig. 4

Aberrations from the coverslip–water interface when the beam focus is located a distance of (a) df30 µm, and (b) df100 µm below the interface. Paraxial rays (not shown) scatter from the trapped HGS. Focused nonparaxial rays are necessary to form a high-index trap. Rays at angles as large as 45° contribute to the trap in (a). However, the rays are unfocused in (b), and thus the high-index particle cannot be trapped.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E(ρ, ϕ, z=0)=E0 exp(ilϕ)tanhρwvexp-ρ2w02
Δd=n0 dfnc1-cos γmcos γm0

Metrics