Abstract

The spectroscopic properties of Mn3+ and Mn2+ ions have been studied in Mn:YAlO3 codoped with Ce and singly Mn-doped YAlO3. Mn3+ absorption at the  5E5T2 transition, the transition between the Jahn–Teller split components of the ground state  5E, and Fano antiresonance mixing between the  3E and  5T2 states have been investigated. The weak absorption at 0.41 µm was attributed to the  6A14A1, 4E transition of Mn2+. Green emission peaking at 530 nm excited with x rays was attributed to the  4T16A1 transition of Mn2+. The reduction of Mn2+ concentration in photoexposed samples may imply the presence of Mn+ ions in YAlO3.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. B. Loutts, M. Warren, L. Taylor, R. R. Rakhimov, H. R. Ries, G. Miller III, M. A. Noginov, M. Curley, N. Noginova, N. Kukhtarev, J. C. Caulfield, and P. Venkateswarlu, “Manganese-doped yttrium orthoaluminate: a potential material for holographic recording and data storage,” Phys. Rev. B 57, 3706–3709 (1998).
    [CrossRef]
  2. M. A. Noginov, N. Noginova, M. Curley, N. Kukhtarev, H. J. Caulfield, P. Venkateswarlu, and G. B. Loutts, “Optical characterization of Mn:YAlO3, material for holographic recording and data storage,” J. Opt. Soc. Am. B 15, 1463–1468 (1998).
    [CrossRef]
  3. M. A. Noginov and G. B. Loutts, “Spectroscopic studies of Mn4+ ions in yttrium orthoaluminate,” J. Opt. Soc. Am. B (to be published).
  4. R. R. Rakhimov, A. L. Wilkerson, G. B. Loutts, M. A. Noginov, N. Noginova, W. Lindsay, and H. R. Ries, “Spin and valence states of manganese ions in manganese-doped yttrium orthoaluminate,” Solid State Commun. 108, 549–554 (1998).
    [CrossRef]
  5. G. Loutts and M. Warren, “Chochralski growth of defect-free yttrium orthoaluminate in iridium crucibles,” presented at the Eastern Regional Conference on Crystal Growth and Epitaxy, September 28–October 1, 1997, Atlantic City, New Jersey.
  6. R. Diehl and G. Brant, “Crystal structure refinement of YAlO3, a promising laser material,” Mater. Res. Bull. 10, 85–90 (1975).
    [CrossRef]
  7. R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 32, 751–767 (1976).
    [CrossRef]
  8. M. J. Weber, “Optical spectra of Ce3+ and Ce3+ sensitized fluorescence in YAlO3,” J. Appl. Phys. 44, 3205–3208 (1973).
    [CrossRef]
  9. D. S. McClure, “Optical spectra of transition-metal ions in corundum,” J. Chem. Phys. 36, 2757–2779 (1962).
    [CrossRef]
  10. K. Petermann and G. Huber, “Broadband fluorescence of transition metal doped garnets and tungstates,” J. Lumin. 31&32, 71–77 (1984).
    [CrossRef]
  11. A. van Die, A. C. H. I. Leenaers, W. F. van der Weg, and G. Blasse, “A search for luminescence of the trivalent manganese ion in solid aluminates,” Mater. Res. Bull. 22, 781–787 (1987).
    [CrossRef]
  12. A. E. Nosenko, R. E. Leshchuk, and B. V. Padlyak, “Valence state of impurity manganese ions in Ca3Ga2Ge4O14:Mn crystals,” J. Appl. Spectrosc. 59, 577–581 (1993).
    [CrossRef]
  13. S. Kück, S. Hartung, S. Hurling, K. Petermann, and G. Huber, “Optical transitions in Mn3+-doped garnets,” Phys. Rev. B 57, 2203–2216 (1998).
    [CrossRef]
  14. B. Henderson and G. F. Imbusch, Optical Spectroscopy of Inorganic Solids (Clarendon, Oxford, 1989).
  15. R. G. Burns, Mineralogical Applications of Crystal Field Theory, 2nd ed. (Cambridge U. Press, Cambridge, 1993).
  16. Y. Yamaguchi, K. Yamagishi, A. Sugimoto, and Y. Nobe, “Optical properties and crystal growth atmosphere of forsterite,” in Advanced Solid-State Lasers, G. Dube and L. Chase, eds. Vol. 10 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 52–56.
  17. U. Fano, “Effects of conjugation interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961).
    [CrossRef]
  18. E. V. Zharikov, “Redkozemel’nyye scandievye granaty: voprosy materialovedeniya” (“Rare earth scandium garnets: the materials science aspects”), in Proceedings of the General Physics Institute, A. M. Prokhorov, Ed. (Nauka, Moscow, 1990), Vol. 26, pp. 50–78.
  19. F. S. Galasso, Structure and Properties of Inorganic Solids (Pergamon, London, 1970).
  20. L. A. Riseberg and M. J. Weber, “Spectrum and anomalous temperature dependence of the 2E→4A2 emission in Y3Al5O12:Mn4+,” Solid State Commun. 9, 791–794 (1974).
    [CrossRef]
  21. M. J. Weber and T. E. Varitimos, “Optical spectra and relaxation of Cr3+ ions in YAlO3,” J. Appl. Phys. 45, 810–816 (1974).
    [CrossRef]
  22. J. W. Stout, “Absorption spectrum of manganous fluorite,” J. Chem. Phys. 31, 709–719 (1959).
    [CrossRef]
  23. R. Clausen and K. Petermann, “Mn2+ and Fe3+ doped oxides for short wavelength solid-state lasers,” J. Lumin. 40&41, 185–186 (1988).
    [CrossRef]
  24. G. R. Green and G. Walker, “Luminescence excitation spectra of Mn2+ in synthetic Forsterite,” Phys. Chem. Miner. 12, 271–278 (1985).
    [CrossRef]
  25. V. A. Antonov, P. A. Arsenev, Sh. A. Vakhidov, and E. M. Ibragimova, “Colour centers in yttrium aluminate crystals activated with transition metal ions,” Phys. Status Solidi A 22, 391–399 (1974).
    [CrossRef]
  26. A. Lempicki, A. J. Wojtowicz, and E. Berman, “Fundamental limits of scintillator performance,” Nucl. Instrum. Methods Phys. Res. A 333, 304–311 (1993).
    [CrossRef]
  27. J. Anderson, P. Dorenbos, and C. W. E. van Eijk, “Calculation of energy levels of cerium in inorganic scintillator crystals,” Mater. Res. Soc. Symp. Proc. 348, 355–365 (1994).
    [CrossRef]
  28. M. Ikeya and N. Itoh, “Electron paramagnetic resonance of a monovalent manganese ion in NaCl,” Solid State Commun. 7, 355–357 (1969).
    [CrossRef]
  29. P. H. Kasai, “Generation and trapping of charged species in rare-gas matrix at 4 K: EPR spectra of Cd+, Cr+, and Mn+,” Phys. Rev. Lett. 21, 67–69 (1968).
    [CrossRef]

1998 (4)

G. B. Loutts, M. Warren, L. Taylor, R. R. Rakhimov, H. R. Ries, G. Miller III, M. A. Noginov, M. Curley, N. Noginova, N. Kukhtarev, J. C. Caulfield, and P. Venkateswarlu, “Manganese-doped yttrium orthoaluminate: a potential material for holographic recording and data storage,” Phys. Rev. B 57, 3706–3709 (1998).
[CrossRef]

M. A. Noginov, N. Noginova, M. Curley, N. Kukhtarev, H. J. Caulfield, P. Venkateswarlu, and G. B. Loutts, “Optical characterization of Mn:YAlO3, material for holographic recording and data storage,” J. Opt. Soc. Am. B 15, 1463–1468 (1998).
[CrossRef]

R. R. Rakhimov, A. L. Wilkerson, G. B. Loutts, M. A. Noginov, N. Noginova, W. Lindsay, and H. R. Ries, “Spin and valence states of manganese ions in manganese-doped yttrium orthoaluminate,” Solid State Commun. 108, 549–554 (1998).
[CrossRef]

S. Kück, S. Hartung, S. Hurling, K. Petermann, and G. Huber, “Optical transitions in Mn3+-doped garnets,” Phys. Rev. B 57, 2203–2216 (1998).
[CrossRef]

1994 (1)

J. Anderson, P. Dorenbos, and C. W. E. van Eijk, “Calculation of energy levels of cerium in inorganic scintillator crystals,” Mater. Res. Soc. Symp. Proc. 348, 355–365 (1994).
[CrossRef]

1993 (2)

A. E. Nosenko, R. E. Leshchuk, and B. V. Padlyak, “Valence state of impurity manganese ions in Ca3Ga2Ge4O14:Mn crystals,” J. Appl. Spectrosc. 59, 577–581 (1993).
[CrossRef]

A. Lempicki, A. J. Wojtowicz, and E. Berman, “Fundamental limits of scintillator performance,” Nucl. Instrum. Methods Phys. Res. A 333, 304–311 (1993).
[CrossRef]

1988 (1)

R. Clausen and K. Petermann, “Mn2+ and Fe3+ doped oxides for short wavelength solid-state lasers,” J. Lumin. 40&41, 185–186 (1988).
[CrossRef]

1987 (1)

A. van Die, A. C. H. I. Leenaers, W. F. van der Weg, and G. Blasse, “A search for luminescence of the trivalent manganese ion in solid aluminates,” Mater. Res. Bull. 22, 781–787 (1987).
[CrossRef]

1985 (1)

G. R. Green and G. Walker, “Luminescence excitation spectra of Mn2+ in synthetic Forsterite,” Phys. Chem. Miner. 12, 271–278 (1985).
[CrossRef]

1984 (1)

K. Petermann and G. Huber, “Broadband fluorescence of transition metal doped garnets and tungstates,” J. Lumin. 31&32, 71–77 (1984).
[CrossRef]

1976 (1)

R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 32, 751–767 (1976).
[CrossRef]

1975 (1)

R. Diehl and G. Brant, “Crystal structure refinement of YAlO3, a promising laser material,” Mater. Res. Bull. 10, 85–90 (1975).
[CrossRef]

1974 (3)

V. A. Antonov, P. A. Arsenev, Sh. A. Vakhidov, and E. M. Ibragimova, “Colour centers in yttrium aluminate crystals activated with transition metal ions,” Phys. Status Solidi A 22, 391–399 (1974).
[CrossRef]

L. A. Riseberg and M. J. Weber, “Spectrum and anomalous temperature dependence of the 2E→4A2 emission in Y3Al5O12:Mn4+,” Solid State Commun. 9, 791–794 (1974).
[CrossRef]

M. J. Weber and T. E. Varitimos, “Optical spectra and relaxation of Cr3+ ions in YAlO3,” J. Appl. Phys. 45, 810–816 (1974).
[CrossRef]

1973 (1)

M. J. Weber, “Optical spectra of Ce3+ and Ce3+ sensitized fluorescence in YAlO3,” J. Appl. Phys. 44, 3205–3208 (1973).
[CrossRef]

1969 (1)

M. Ikeya and N. Itoh, “Electron paramagnetic resonance of a monovalent manganese ion in NaCl,” Solid State Commun. 7, 355–357 (1969).
[CrossRef]

1968 (1)

P. H. Kasai, “Generation and trapping of charged species in rare-gas matrix at 4 K: EPR spectra of Cd+, Cr+, and Mn+,” Phys. Rev. Lett. 21, 67–69 (1968).
[CrossRef]

1962 (1)

D. S. McClure, “Optical spectra of transition-metal ions in corundum,” J. Chem. Phys. 36, 2757–2779 (1962).
[CrossRef]

1961 (1)

U. Fano, “Effects of conjugation interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961).
[CrossRef]

1959 (1)

J. W. Stout, “Absorption spectrum of manganous fluorite,” J. Chem. Phys. 31, 709–719 (1959).
[CrossRef]

Anderson, J.

J. Anderson, P. Dorenbos, and C. W. E. van Eijk, “Calculation of energy levels of cerium in inorganic scintillator crystals,” Mater. Res. Soc. Symp. Proc. 348, 355–365 (1994).
[CrossRef]

Antonov, V. A.

V. A. Antonov, P. A. Arsenev, Sh. A. Vakhidov, and E. M. Ibragimova, “Colour centers in yttrium aluminate crystals activated with transition metal ions,” Phys. Status Solidi A 22, 391–399 (1974).
[CrossRef]

Arsenev, P. A.

V. A. Antonov, P. A. Arsenev, Sh. A. Vakhidov, and E. M. Ibragimova, “Colour centers in yttrium aluminate crystals activated with transition metal ions,” Phys. Status Solidi A 22, 391–399 (1974).
[CrossRef]

Berman, E.

A. Lempicki, A. J. Wojtowicz, and E. Berman, “Fundamental limits of scintillator performance,” Nucl. Instrum. Methods Phys. Res. A 333, 304–311 (1993).
[CrossRef]

Blasse, G.

A. van Die, A. C. H. I. Leenaers, W. F. van der Weg, and G. Blasse, “A search for luminescence of the trivalent manganese ion in solid aluminates,” Mater. Res. Bull. 22, 781–787 (1987).
[CrossRef]

Brant, G.

R. Diehl and G. Brant, “Crystal structure refinement of YAlO3, a promising laser material,” Mater. Res. Bull. 10, 85–90 (1975).
[CrossRef]

Caulfield, H. J.

Caulfield, J. C.

G. B. Loutts, M. Warren, L. Taylor, R. R. Rakhimov, H. R. Ries, G. Miller III, M. A. Noginov, M. Curley, N. Noginova, N. Kukhtarev, J. C. Caulfield, and P. Venkateswarlu, “Manganese-doped yttrium orthoaluminate: a potential material for holographic recording and data storage,” Phys. Rev. B 57, 3706–3709 (1998).
[CrossRef]

Clausen, R.

R. Clausen and K. Petermann, “Mn2+ and Fe3+ doped oxides for short wavelength solid-state lasers,” J. Lumin. 40&41, 185–186 (1988).
[CrossRef]

Curley, M.

M. A. Noginov, N. Noginova, M. Curley, N. Kukhtarev, H. J. Caulfield, P. Venkateswarlu, and G. B. Loutts, “Optical characterization of Mn:YAlO3, material for holographic recording and data storage,” J. Opt. Soc. Am. B 15, 1463–1468 (1998).
[CrossRef]

G. B. Loutts, M. Warren, L. Taylor, R. R. Rakhimov, H. R. Ries, G. Miller III, M. A. Noginov, M. Curley, N. Noginova, N. Kukhtarev, J. C. Caulfield, and P. Venkateswarlu, “Manganese-doped yttrium orthoaluminate: a potential material for holographic recording and data storage,” Phys. Rev. B 57, 3706–3709 (1998).
[CrossRef]

Diehl, R.

R. Diehl and G. Brant, “Crystal structure refinement of YAlO3, a promising laser material,” Mater. Res. Bull. 10, 85–90 (1975).
[CrossRef]

Dorenbos, P.

J. Anderson, P. Dorenbos, and C. W. E. van Eijk, “Calculation of energy levels of cerium in inorganic scintillator crystals,” Mater. Res. Soc. Symp. Proc. 348, 355–365 (1994).
[CrossRef]

Fano, U.

U. Fano, “Effects of conjugation interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961).
[CrossRef]

Green, G. R.

G. R. Green and G. Walker, “Luminescence excitation spectra of Mn2+ in synthetic Forsterite,” Phys. Chem. Miner. 12, 271–278 (1985).
[CrossRef]

Hartung, S.

S. Kück, S. Hartung, S. Hurling, K. Petermann, and G. Huber, “Optical transitions in Mn3+-doped garnets,” Phys. Rev. B 57, 2203–2216 (1998).
[CrossRef]

Huber, G.

S. Kück, S. Hartung, S. Hurling, K. Petermann, and G. Huber, “Optical transitions in Mn3+-doped garnets,” Phys. Rev. B 57, 2203–2216 (1998).
[CrossRef]

K. Petermann and G. Huber, “Broadband fluorescence of transition metal doped garnets and tungstates,” J. Lumin. 31&32, 71–77 (1984).
[CrossRef]

Hurling, S.

S. Kück, S. Hartung, S. Hurling, K. Petermann, and G. Huber, “Optical transitions in Mn3+-doped garnets,” Phys. Rev. B 57, 2203–2216 (1998).
[CrossRef]

Ibragimova, E. M.

V. A. Antonov, P. A. Arsenev, Sh. A. Vakhidov, and E. M. Ibragimova, “Colour centers in yttrium aluminate crystals activated with transition metal ions,” Phys. Status Solidi A 22, 391–399 (1974).
[CrossRef]

Ikeya, M.

M. Ikeya and N. Itoh, “Electron paramagnetic resonance of a monovalent manganese ion in NaCl,” Solid State Commun. 7, 355–357 (1969).
[CrossRef]

Itoh, N.

M. Ikeya and N. Itoh, “Electron paramagnetic resonance of a monovalent manganese ion in NaCl,” Solid State Commun. 7, 355–357 (1969).
[CrossRef]

Kasai, P. H.

P. H. Kasai, “Generation and trapping of charged species in rare-gas matrix at 4 K: EPR spectra of Cd+, Cr+, and Mn+,” Phys. Rev. Lett. 21, 67–69 (1968).
[CrossRef]

Kück, S.

S. Kück, S. Hartung, S. Hurling, K. Petermann, and G. Huber, “Optical transitions in Mn3+-doped garnets,” Phys. Rev. B 57, 2203–2216 (1998).
[CrossRef]

Kukhtarev, N.

M. A. Noginov, N. Noginova, M. Curley, N. Kukhtarev, H. J. Caulfield, P. Venkateswarlu, and G. B. Loutts, “Optical characterization of Mn:YAlO3, material for holographic recording and data storage,” J. Opt. Soc. Am. B 15, 1463–1468 (1998).
[CrossRef]

G. B. Loutts, M. Warren, L. Taylor, R. R. Rakhimov, H. R. Ries, G. Miller III, M. A. Noginov, M. Curley, N. Noginova, N. Kukhtarev, J. C. Caulfield, and P. Venkateswarlu, “Manganese-doped yttrium orthoaluminate: a potential material for holographic recording and data storage,” Phys. Rev. B 57, 3706–3709 (1998).
[CrossRef]

Leenaers, A. C. H. I.

A. van Die, A. C. H. I. Leenaers, W. F. van der Weg, and G. Blasse, “A search for luminescence of the trivalent manganese ion in solid aluminates,” Mater. Res. Bull. 22, 781–787 (1987).
[CrossRef]

Lempicki, A.

A. Lempicki, A. J. Wojtowicz, and E. Berman, “Fundamental limits of scintillator performance,” Nucl. Instrum. Methods Phys. Res. A 333, 304–311 (1993).
[CrossRef]

Leshchuk, R. E.

A. E. Nosenko, R. E. Leshchuk, and B. V. Padlyak, “Valence state of impurity manganese ions in Ca3Ga2Ge4O14:Mn crystals,” J. Appl. Spectrosc. 59, 577–581 (1993).
[CrossRef]

Lindsay, W.

R. R. Rakhimov, A. L. Wilkerson, G. B. Loutts, M. A. Noginov, N. Noginova, W. Lindsay, and H. R. Ries, “Spin and valence states of manganese ions in manganese-doped yttrium orthoaluminate,” Solid State Commun. 108, 549–554 (1998).
[CrossRef]

Loutts, G. B.

R. R. Rakhimov, A. L. Wilkerson, G. B. Loutts, M. A. Noginov, N. Noginova, W. Lindsay, and H. R. Ries, “Spin and valence states of manganese ions in manganese-doped yttrium orthoaluminate,” Solid State Commun. 108, 549–554 (1998).
[CrossRef]

M. A. Noginov, N. Noginova, M. Curley, N. Kukhtarev, H. J. Caulfield, P. Venkateswarlu, and G. B. Loutts, “Optical characterization of Mn:YAlO3, material for holographic recording and data storage,” J. Opt. Soc. Am. B 15, 1463–1468 (1998).
[CrossRef]

G. B. Loutts, M. Warren, L. Taylor, R. R. Rakhimov, H. R. Ries, G. Miller III, M. A. Noginov, M. Curley, N. Noginova, N. Kukhtarev, J. C. Caulfield, and P. Venkateswarlu, “Manganese-doped yttrium orthoaluminate: a potential material for holographic recording and data storage,” Phys. Rev. B 57, 3706–3709 (1998).
[CrossRef]

McClure, D. S.

D. S. McClure, “Optical spectra of transition-metal ions in corundum,” J. Chem. Phys. 36, 2757–2779 (1962).
[CrossRef]

Miller III, G.

G. B. Loutts, M. Warren, L. Taylor, R. R. Rakhimov, H. R. Ries, G. Miller III, M. A. Noginov, M. Curley, N. Noginova, N. Kukhtarev, J. C. Caulfield, and P. Venkateswarlu, “Manganese-doped yttrium orthoaluminate: a potential material for holographic recording and data storage,” Phys. Rev. B 57, 3706–3709 (1998).
[CrossRef]

Noginov, M. A.

G. B. Loutts, M. Warren, L. Taylor, R. R. Rakhimov, H. R. Ries, G. Miller III, M. A. Noginov, M. Curley, N. Noginova, N. Kukhtarev, J. C. Caulfield, and P. Venkateswarlu, “Manganese-doped yttrium orthoaluminate: a potential material for holographic recording and data storage,” Phys. Rev. B 57, 3706–3709 (1998).
[CrossRef]

M. A. Noginov, N. Noginova, M. Curley, N. Kukhtarev, H. J. Caulfield, P. Venkateswarlu, and G. B. Loutts, “Optical characterization of Mn:YAlO3, material for holographic recording and data storage,” J. Opt. Soc. Am. B 15, 1463–1468 (1998).
[CrossRef]

R. R. Rakhimov, A. L. Wilkerson, G. B. Loutts, M. A. Noginov, N. Noginova, W. Lindsay, and H. R. Ries, “Spin and valence states of manganese ions in manganese-doped yttrium orthoaluminate,” Solid State Commun. 108, 549–554 (1998).
[CrossRef]

Noginova, N.

R. R. Rakhimov, A. L. Wilkerson, G. B. Loutts, M. A. Noginov, N. Noginova, W. Lindsay, and H. R. Ries, “Spin and valence states of manganese ions in manganese-doped yttrium orthoaluminate,” Solid State Commun. 108, 549–554 (1998).
[CrossRef]

M. A. Noginov, N. Noginova, M. Curley, N. Kukhtarev, H. J. Caulfield, P. Venkateswarlu, and G. B. Loutts, “Optical characterization of Mn:YAlO3, material for holographic recording and data storage,” J. Opt. Soc. Am. B 15, 1463–1468 (1998).
[CrossRef]

G. B. Loutts, M. Warren, L. Taylor, R. R. Rakhimov, H. R. Ries, G. Miller III, M. A. Noginov, M. Curley, N. Noginova, N. Kukhtarev, J. C. Caulfield, and P. Venkateswarlu, “Manganese-doped yttrium orthoaluminate: a potential material for holographic recording and data storage,” Phys. Rev. B 57, 3706–3709 (1998).
[CrossRef]

Nosenko, A. E.

A. E. Nosenko, R. E. Leshchuk, and B. V. Padlyak, “Valence state of impurity manganese ions in Ca3Ga2Ge4O14:Mn crystals,” J. Appl. Spectrosc. 59, 577–581 (1993).
[CrossRef]

Padlyak, B. V.

A. E. Nosenko, R. E. Leshchuk, and B. V. Padlyak, “Valence state of impurity manganese ions in Ca3Ga2Ge4O14:Mn crystals,” J. Appl. Spectrosc. 59, 577–581 (1993).
[CrossRef]

Petermann, K.

S. Kück, S. Hartung, S. Hurling, K. Petermann, and G. Huber, “Optical transitions in Mn3+-doped garnets,” Phys. Rev. B 57, 2203–2216 (1998).
[CrossRef]

R. Clausen and K. Petermann, “Mn2+ and Fe3+ doped oxides for short wavelength solid-state lasers,” J. Lumin. 40&41, 185–186 (1988).
[CrossRef]

K. Petermann and G. Huber, “Broadband fluorescence of transition metal doped garnets and tungstates,” J. Lumin. 31&32, 71–77 (1984).
[CrossRef]

Rakhimov, R. R.

R. R. Rakhimov, A. L. Wilkerson, G. B. Loutts, M. A. Noginov, N. Noginova, W. Lindsay, and H. R. Ries, “Spin and valence states of manganese ions in manganese-doped yttrium orthoaluminate,” Solid State Commun. 108, 549–554 (1998).
[CrossRef]

G. B. Loutts, M. Warren, L. Taylor, R. R. Rakhimov, H. R. Ries, G. Miller III, M. A. Noginov, M. Curley, N. Noginova, N. Kukhtarev, J. C. Caulfield, and P. Venkateswarlu, “Manganese-doped yttrium orthoaluminate: a potential material for holographic recording and data storage,” Phys. Rev. B 57, 3706–3709 (1998).
[CrossRef]

Ries, H. R.

G. B. Loutts, M. Warren, L. Taylor, R. R. Rakhimov, H. R. Ries, G. Miller III, M. A. Noginov, M. Curley, N. Noginova, N. Kukhtarev, J. C. Caulfield, and P. Venkateswarlu, “Manganese-doped yttrium orthoaluminate: a potential material for holographic recording and data storage,” Phys. Rev. B 57, 3706–3709 (1998).
[CrossRef]

R. R. Rakhimov, A. L. Wilkerson, G. B. Loutts, M. A. Noginov, N. Noginova, W. Lindsay, and H. R. Ries, “Spin and valence states of manganese ions in manganese-doped yttrium orthoaluminate,” Solid State Commun. 108, 549–554 (1998).
[CrossRef]

Riseberg, L. A.

L. A. Riseberg and M. J. Weber, “Spectrum and anomalous temperature dependence of the 2E→4A2 emission in Y3Al5O12:Mn4+,” Solid State Commun. 9, 791–794 (1974).
[CrossRef]

Shannon, R. D.

R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 32, 751–767 (1976).
[CrossRef]

Stout, J. W.

J. W. Stout, “Absorption spectrum of manganous fluorite,” J. Chem. Phys. 31, 709–719 (1959).
[CrossRef]

Taylor, L.

G. B. Loutts, M. Warren, L. Taylor, R. R. Rakhimov, H. R. Ries, G. Miller III, M. A. Noginov, M. Curley, N. Noginova, N. Kukhtarev, J. C. Caulfield, and P. Venkateswarlu, “Manganese-doped yttrium orthoaluminate: a potential material for holographic recording and data storage,” Phys. Rev. B 57, 3706–3709 (1998).
[CrossRef]

Vakhidov, Sh. A.

V. A. Antonov, P. A. Arsenev, Sh. A. Vakhidov, and E. M. Ibragimova, “Colour centers in yttrium aluminate crystals activated with transition metal ions,” Phys. Status Solidi A 22, 391–399 (1974).
[CrossRef]

van der Weg, W. F.

A. van Die, A. C. H. I. Leenaers, W. F. van der Weg, and G. Blasse, “A search for luminescence of the trivalent manganese ion in solid aluminates,” Mater. Res. Bull. 22, 781–787 (1987).
[CrossRef]

van Die, A.

A. van Die, A. C. H. I. Leenaers, W. F. van der Weg, and G. Blasse, “A search for luminescence of the trivalent manganese ion in solid aluminates,” Mater. Res. Bull. 22, 781–787 (1987).
[CrossRef]

van Eijk, C. W. E.

J. Anderson, P. Dorenbos, and C. W. E. van Eijk, “Calculation of energy levels of cerium in inorganic scintillator crystals,” Mater. Res. Soc. Symp. Proc. 348, 355–365 (1994).
[CrossRef]

Varitimos, T. E.

M. J. Weber and T. E. Varitimos, “Optical spectra and relaxation of Cr3+ ions in YAlO3,” J. Appl. Phys. 45, 810–816 (1974).
[CrossRef]

Venkateswarlu, P.

M. A. Noginov, N. Noginova, M. Curley, N. Kukhtarev, H. J. Caulfield, P. Venkateswarlu, and G. B. Loutts, “Optical characterization of Mn:YAlO3, material for holographic recording and data storage,” J. Opt. Soc. Am. B 15, 1463–1468 (1998).
[CrossRef]

G. B. Loutts, M. Warren, L. Taylor, R. R. Rakhimov, H. R. Ries, G. Miller III, M. A. Noginov, M. Curley, N. Noginova, N. Kukhtarev, J. C. Caulfield, and P. Venkateswarlu, “Manganese-doped yttrium orthoaluminate: a potential material for holographic recording and data storage,” Phys. Rev. B 57, 3706–3709 (1998).
[CrossRef]

Walker, G.

G. R. Green and G. Walker, “Luminescence excitation spectra of Mn2+ in synthetic Forsterite,” Phys. Chem. Miner. 12, 271–278 (1985).
[CrossRef]

Warren, M.

G. B. Loutts, M. Warren, L. Taylor, R. R. Rakhimov, H. R. Ries, G. Miller III, M. A. Noginov, M. Curley, N. Noginova, N. Kukhtarev, J. C. Caulfield, and P. Venkateswarlu, “Manganese-doped yttrium orthoaluminate: a potential material for holographic recording and data storage,” Phys. Rev. B 57, 3706–3709 (1998).
[CrossRef]

Weber, M. J.

L. A. Riseberg and M. J. Weber, “Spectrum and anomalous temperature dependence of the 2E→4A2 emission in Y3Al5O12:Mn4+,” Solid State Commun. 9, 791–794 (1974).
[CrossRef]

M. J. Weber and T. E. Varitimos, “Optical spectra and relaxation of Cr3+ ions in YAlO3,” J. Appl. Phys. 45, 810–816 (1974).
[CrossRef]

M. J. Weber, “Optical spectra of Ce3+ and Ce3+ sensitized fluorescence in YAlO3,” J. Appl. Phys. 44, 3205–3208 (1973).
[CrossRef]

Wilkerson, A. L.

R. R. Rakhimov, A. L. Wilkerson, G. B. Loutts, M. A. Noginov, N. Noginova, W. Lindsay, and H. R. Ries, “Spin and valence states of manganese ions in manganese-doped yttrium orthoaluminate,” Solid State Commun. 108, 549–554 (1998).
[CrossRef]

Wojtowicz, A. J.

A. Lempicki, A. J. Wojtowicz, and E. Berman, “Fundamental limits of scintillator performance,” Nucl. Instrum. Methods Phys. Res. A 333, 304–311 (1993).
[CrossRef]

Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. (1)

R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 32, 751–767 (1976).
[CrossRef]

J. Appl. Phys. (2)

M. J. Weber, “Optical spectra of Ce3+ and Ce3+ sensitized fluorescence in YAlO3,” J. Appl. Phys. 44, 3205–3208 (1973).
[CrossRef]

M. J. Weber and T. E. Varitimos, “Optical spectra and relaxation of Cr3+ ions in YAlO3,” J. Appl. Phys. 45, 810–816 (1974).
[CrossRef]

J. Appl. Spectrosc. (1)

A. E. Nosenko, R. E. Leshchuk, and B. V. Padlyak, “Valence state of impurity manganese ions in Ca3Ga2Ge4O14:Mn crystals,” J. Appl. Spectrosc. 59, 577–581 (1993).
[CrossRef]

J. Chem. Phys. (2)

D. S. McClure, “Optical spectra of transition-metal ions in corundum,” J. Chem. Phys. 36, 2757–2779 (1962).
[CrossRef]

J. W. Stout, “Absorption spectrum of manganous fluorite,” J. Chem. Phys. 31, 709–719 (1959).
[CrossRef]

J. Lumin. (2)

R. Clausen and K. Petermann, “Mn2+ and Fe3+ doped oxides for short wavelength solid-state lasers,” J. Lumin. 40&41, 185–186 (1988).
[CrossRef]

K. Petermann and G. Huber, “Broadband fluorescence of transition metal doped garnets and tungstates,” J. Lumin. 31&32, 71–77 (1984).
[CrossRef]

J. Opt. Soc. Am. B (1)

Mater. Res. Bull. (2)

A. van Die, A. C. H. I. Leenaers, W. F. van der Weg, and G. Blasse, “A search for luminescence of the trivalent manganese ion in solid aluminates,” Mater. Res. Bull. 22, 781–787 (1987).
[CrossRef]

R. Diehl and G. Brant, “Crystal structure refinement of YAlO3, a promising laser material,” Mater. Res. Bull. 10, 85–90 (1975).
[CrossRef]

Mater. Res. Soc. Symp. Proc. (1)

J. Anderson, P. Dorenbos, and C. W. E. van Eijk, “Calculation of energy levels of cerium in inorganic scintillator crystals,” Mater. Res. Soc. Symp. Proc. 348, 355–365 (1994).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. A (1)

A. Lempicki, A. J. Wojtowicz, and E. Berman, “Fundamental limits of scintillator performance,” Nucl. Instrum. Methods Phys. Res. A 333, 304–311 (1993).
[CrossRef]

Phys. Chem. Miner. (1)

G. R. Green and G. Walker, “Luminescence excitation spectra of Mn2+ in synthetic Forsterite,” Phys. Chem. Miner. 12, 271–278 (1985).
[CrossRef]

Phys. Rev. (1)

U. Fano, “Effects of conjugation interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961).
[CrossRef]

Phys. Rev. B (2)

G. B. Loutts, M. Warren, L. Taylor, R. R. Rakhimov, H. R. Ries, G. Miller III, M. A. Noginov, M. Curley, N. Noginova, N. Kukhtarev, J. C. Caulfield, and P. Venkateswarlu, “Manganese-doped yttrium orthoaluminate: a potential material for holographic recording and data storage,” Phys. Rev. B 57, 3706–3709 (1998).
[CrossRef]

S. Kück, S. Hartung, S. Hurling, K. Petermann, and G. Huber, “Optical transitions in Mn3+-doped garnets,” Phys. Rev. B 57, 2203–2216 (1998).
[CrossRef]

Phys. Rev. Lett. (1)

P. H. Kasai, “Generation and trapping of charged species in rare-gas matrix at 4 K: EPR spectra of Cd+, Cr+, and Mn+,” Phys. Rev. Lett. 21, 67–69 (1968).
[CrossRef]

Phys. Status Solidi A (1)

V. A. Antonov, P. A. Arsenev, Sh. A. Vakhidov, and E. M. Ibragimova, “Colour centers in yttrium aluminate crystals activated with transition metal ions,” Phys. Status Solidi A 22, 391–399 (1974).
[CrossRef]

Solid State Commun. (3)

L. A. Riseberg and M. J. Weber, “Spectrum and anomalous temperature dependence of the 2E→4A2 emission in Y3Al5O12:Mn4+,” Solid State Commun. 9, 791–794 (1974).
[CrossRef]

M. Ikeya and N. Itoh, “Electron paramagnetic resonance of a monovalent manganese ion in NaCl,” Solid State Commun. 7, 355–357 (1969).
[CrossRef]

R. R. Rakhimov, A. L. Wilkerson, G. B. Loutts, M. A. Noginov, N. Noginova, W. Lindsay, and H. R. Ries, “Spin and valence states of manganese ions in manganese-doped yttrium orthoaluminate,” Solid State Commun. 108, 549–554 (1998).
[CrossRef]

Other (7)

G. Loutts and M. Warren, “Chochralski growth of defect-free yttrium orthoaluminate in iridium crucibles,” presented at the Eastern Regional Conference on Crystal Growth and Epitaxy, September 28–October 1, 1997, Atlantic City, New Jersey.

M. A. Noginov and G. B. Loutts, “Spectroscopic studies of Mn4+ ions in yttrium orthoaluminate,” J. Opt. Soc. Am. B (to be published).

B. Henderson and G. F. Imbusch, Optical Spectroscopy of Inorganic Solids (Clarendon, Oxford, 1989).

R. G. Burns, Mineralogical Applications of Crystal Field Theory, 2nd ed. (Cambridge U. Press, Cambridge, 1993).

Y. Yamaguchi, K. Yamagishi, A. Sugimoto, and Y. Nobe, “Optical properties and crystal growth atmosphere of forsterite,” in Advanced Solid-State Lasers, G. Dube and L. Chase, eds. Vol. 10 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 52–56.

E. V. Zharikov, “Redkozemel’nyye scandievye granaty: voprosy materialovedeniya” (“Rare earth scandium garnets: the materials science aspects”), in Proceedings of the General Physics Institute, A. M. Prokhorov, Ed. (Nauka, Moscow, 1990), Vol. 26, pp. 50–78.

F. S. Galasso, Structure and Properties of Inorganic Solids (Pergamon, London, 1970).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

a, Absorption spectra of trace 1, Mn(0.5%):YAlO3 (Mn4+); trace 2, Ce(0.05%), Mn(0.5%):YAlO3; Ce(0.1%), trace 3, Mn(0.5%):YAlO3; and trace 4, Ce(0.5%), Mn(0.5%):YAlO3. b, Absorption spectra of trace 1, Ce(0.05%), Mn(0.5%):YAlO3, and trace 2, Mn(0.5%):YAlO3; the last one is scaled to fit Mn4+ absorption in Ce(0.05%), Mn(0.5%):YAlO3. Trace 3, the difference between traces 1 and 2 is the extracted spectrum of Mn3+. c, Extracted spectra of Mn3+ in Ce(0.05%), Mn(0.5%):YAlO3, Ce(0.1%), Mn(0.5%):YAlO3, and Ce(0.5%), Mn(0.5%):YAlO3. The ratios of Mn4+ concentrations in these crystals relative to that in Mn(0.5%):YAlO3 were equal to 0.51, 0.28, and 0.20, respectively. The direction of light propagation k is parallel to crystallographic axis b; the polarization of light E is parallel to crystallographic axis a. All spectra were taken at room temperature.

Fig. 2
Fig. 2

a, Room-temperature absorption spectrum of Ce(0.5%), Mn(0.5%):YAlO3. Trace 1, ka, Eb; trace 2, ka, Ec; trace 3, kb, Ea; trace 4, kb, Ec; trace 5, kc, Ea; trace 6, kc, Eb. b, Enlarged portion of a. c, Scaled-to-fit Mn4+ absorption spectra (centered at ≈0.48 µm) and extracted Mn3+ absorption spectra (centered at ≈0.53 µm) in Ce(0.5%), Mn(0.5%):YAlO3. Traces 1, ka, Eb; traces 2, ka, Ec; traces 3, kb, Ea; traces 4, kb, Ec; traces 5, kc, Ea; traces 6, kc, Eb. Dashed curve represents the absorption spectrum of Ce(0.5%), Mn(0.5%):YAlO3 at kb, Ea; the curves in traces 3 fit this spectrum.

Fig. 3
Fig. 3

Tanabe–Sugano energy-level diagram of a 3d4 system in an octahedral crystal field (calculated in Ref. 14 for C/B=4.61).

Fig. 4
Fig. 4

First derivative (versus wavelength, λ) of the extracted Mn3+ absorption spectra from Fig. 1c.

Fig. 5
Fig. 5

Ultraviolet absorption spectra of thin (0.15 mm–0.35 mm) YAlO3 samples: 1, Mn(0.5%); 2, Ce(0.05%), Mn(0.5%); 3, Ce(0.5%), Mn(0.5%); 4, Mn(0.5%) photoexposed; 5, difference between traces 4 and 1; 6, difference between traces 2 and 1; 7, Ce(0.5%). Dashed curve, effective zero line for trace 6.

Fig. 6
Fig. 6

a, Absorption spectra of 1, unexposed Ce(0.5%), Mn(0.5%):YAlO3; 2, unexposed Mn(0.5%):YAlO3; and 3, photoexposed Mn(0.5%):YAlO3. b, Absorption lines at 411.5 and 414 nm (same as shown in a) with the background broadband subtracted. 1, Exposed Ce(0.5%), Mn(0.5%):YAlO3; 2, unexposed Mn(0.5%):YAlO3; 3, photoexposed Mn(0.5%):YAlO3.

Fig. 7
Fig. 7

Tanabe–Sugano energy-level diagram of a 3d5 system (calculated in Ref. 14 for C/B=5.55).

Fig. 8
Fig. 8

Visible emission excited in Mn(0.5%):YAlO3 with an x-ray beam (λ=0.154 nm). The horizontal bar shows the spectral resolution.

Tables (2)

Tables Icon

Table 1 Concentration of Mn and Ce Ions in the Charge and in the Crystal in the Samples Studied

Tables Icon

Table 2 Site Symmetry and Luminescence Wavelength of Mn2+ Ions in Several Hosts

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ΔEJT(5E)=EIR/4,

Metrics