Abstract

We present a model for passively Q-switched microchip lasers and derive simple equations for the pulse width, repetition rate, and pulse energy. We experimentally verified the validity of the model by systematically varying the relevant device parameters. We used the model to derive practical design guidelines for realizing operation parameters that can be varied in large ranges by adoption of the parameters of the semiconductor saturable-absorber mirror and choice of the appropriate gain medium. Applying these design guidelines, we obtained 37-ps pulses, which to our knowledge are the shortest pulses ever generated in a passively Q-switched solid-state laser.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. J. Zayhowski and A. Mooradian, “Single-frequency microchip Nd lasers,” Opt. Lett. 14, 24–26 (1989).
    [CrossRef] [PubMed]
  2. U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
    [CrossRef]
  3. U. Keller, D. A. B. Miller, G. D. Boyd, T. H. Chiu, J. F. Ferguson, and M. T. Asom, “Solid-state low-loss intracavity saturable absorber for Nd:YLF lasers: an antiresonant semiconductor Fabry–Perot saturable absorber,” Opt. Lett. 17, 505–507 (1992).
    [CrossRef] [PubMed]
  4. U. Keller, “Semiconductor nonlinearities for solid-state laser modelocking and Q-switching,” in Nonlinear Optics in Semiconductors, A. Kost and E. Garmire, eds. (Academic, Boston, Mass., 1998), Vol. 59, Chap. 4, pp. 211–285.
  5. Y. Shimony, Z. Burshtein, and Y. Kalisky, “Cr4+:YAG as passive Q-switch and Brewster plate in a pulsed Nd:YAG laser,” IEEE J. Quantum Electron. 31, 1728–1741 (1995).
    [CrossRef]
  6. J. J. Zayhowski and C. Dill III, “Diode-pumped passively Q-switched picosecond microchip lasers,” Opt. Lett. 19, 1427–1429 (1994).
    [CrossRef] [PubMed]
  7. B. Braun, F. X. Kärtner, M. Moser, G. Zhang, and U. Keller, “56-ps passively Q-switched diode-pumped microchip laser,” Opt. Lett. 22, 381–383 (1997).
    [CrossRef] [PubMed]
  8. R. Fluck, B. Braun, E. Gini, H. Melchior, and U. Keller, “Passively Q-switched 1.34-μm Nd:YVO4 microchip laser using semiconductor saturable-absorber mirrors,” Opt. Lett. 22, 991–993 (1997).
    [CrossRef] [PubMed]
  9. R. Fluck, R. Häring, R. Paschotta, E. Gini, H. Melchior, and U. Keller, “Eyesafe pulsed microchip laser using semiconductor saturable absorber mirrors,” Appl. Phys. Lett. 72, 3273–3275 (1998).
    [CrossRef]
  10. R. W. Hellwarth, ed., Advances in Quantum Electronics (Columbia U. Press, New York, 1961).
  11. F. J. McClung and R. W. Hellwarth, “Giant optical pulsations from ruby,” J. Appl. Phys. 33, 828–829 (1962).
    [CrossRef]
  12. R. J. Collins and P. Kisliuk, “Control of population inversion in pulsed optical masers by feedback modulation,” J. Appl. Phys. 33, 2009–2011 (1962).
    [CrossRef]
  13. A. A. Vuylsteke, “Theory of laser regeneration switching,” J. Appl. Phys. 34, 1615–1622 (1963).
    [CrossRef]
  14. W. G. Wagner and B. A. Lengyel, “Evolution of the giant pulse in a laser,” J. Appl. Phys. 34, 2040–2046 (1963).
    [CrossRef]
  15. L. E. Erickson and A. Szabo, “Effects of saturable absorber lifetime on the performance of giant-pulse lasers,” J. Appl. Phys. 37, 4953–4961 (1966).
    [CrossRef]
  16. L. E. Erickson and A. Szabo, “Behavior of saturable-absorber giant-pulse lasers in the limit of large absorber cross section,” J. Appl. Phys. 38, 2540–2542 (1967).
    [CrossRef]
  17. J. J. Zayhowski, “Q-switched operation of a microchip laser,” Opt. Lett. 16, 575–577 (1991).
    [CrossRef]
  18. J. J. Zayhowski and P. L. Kelley, “Optimization of Q-switched Lasers,” IEEE J. Quantum Electron. 27, 2220–2225 (1991).
    [CrossRef]
  19. J. J. Degnan, “Optimization of passively Q-switched lasers,” IEEE J. Quantum Electron. 31, 1890–1901 (1995).
    [CrossRef]
  20. J. J. Zayhowski, “Limits imposed by spatial hole burning on the single-mode operation of standing-wave laser cavities,” Opt. Lett. 15, 431–433 (1990).
    [CrossRef] [PubMed]
  21. B. Braun, K. J. Weingarten, F. X. Kärtner, and U. Keller, “Continuous-wave mode-locked solid-state lasers with enhanced spatial hole-burning. I. Experiments,” Appl. Phys. B: Lasers Opt. 61, 429–437 (1995).
    [CrossRef]
  22. J. J. Zayhowski, “Ultraviolet generation with passively Q-switched microchip lasers,” Opt. Lett. 21, 588–590 (1996).
    [CrossRef] [PubMed]
  23. J. J. Zayhowski, “Thermal guiding in microchip lasers,” in Advanced Solid-State Lasers, H. P. Jenssen and G. Dube, eds., Vol. 6 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1990), pp. 9–14.
  24. S. Longhi, “Theory of transverse modes in end-pumped microchip lasers,” J. Opt. Soc. Am. B 11, 1098–1107 (1994).
    [CrossRef]
  25. L. R. Brovelli, U. Keller, and T. H. Chiu, “Design and operation of antiresonant Fabry–Perot saturable semiconductor absorbers for mode-locked solid-state lasers,” J. Opt. Soc. Am. B 12, 311–322 (1995).
    [CrossRef]
  26. G. L. Witt, R. Calawa, U. Mishra, and E. Weber, eds., Low Temperature (LT) GaAs and Related Materials (Materials Research Society, Pittsburgh, Pa., 1992), Vol. 241.
  27. Kigre, Inc., QX laser glasses data sheet (Kigre, Hilton Head Island, South Carolina, 1996).
  28. B. Beier, J.-P. Meyn, R. Knappe, K.-J. Boller, G. Huber, and R. Wallenstein, “A 180-mW Nd:LaSc3(BO3)4 single-frequency TEM00 microchip laser pumped by an injection-locked diode-laser array,” Appl. Phys. B 58, 381–388 (1994).
    [CrossRef]
  29. J.-P. Meyn, T. Jensen, and G. Huber, “Spectroscopic properties and efficient diode-pumped laser operation of neodymium doped lanthanum scandium borate,” IEEE J. Quantum Electron. 30, 913–917 (1994).
    [CrossRef]
  30. J.-P. Meyn, “Neodym-Lanthan-Scandium-Borat: Ein neues Material für miniaturisierte Festkörperlaser,” Ph.D. dissertation (Universität Hamburg, Hamburg, Germany, 1994).
  31. Casix, crystals and materials catalog (Casix, Inc., Fuzhou, Fujian, China).
  32. P. Laporta, Politecnico de Milano, Dipartimento di Fisica, Piazza Leonardo da Vinci 32, 20133 Milano, Italy (personal communication, 1997).
  33. W. Koechner, Solid-State Laser Engineering (Springer-Verlag, Berlin, 1992).
  34. B. Braun, F. X. Kärtner, U. Keller, J.-P. Meyn, and G. Huber, “Passively Q-switched 180-ps Nd:LSB microchip laser,” Opt. Lett. 21, 405–407 (1996).
    [CrossRef] [PubMed]
  35. E. Snitzer and R. Woodcock, “Yb3+–Er3+ glass laser,” Appl. Phys. Lett. 6, 45–46 (1965).
    [CrossRef]
  36. H. A. Haus, “Parameter ranges for cw passive modelocking,” IEEE J. Quantum Electron. 12, 169–176 (1976).
    [CrossRef]
  37. F. X. Kärtner, L. R. Brovelli, D. Kopf, M. Kamp, I. Calasso, and U. Keller, “Control of solid-state laser dynamics by semiconductor devices,” Opt. Eng. (Bellingham) 34, 2024–2036 (1995).
    [CrossRef]
  38. T. Taira, A. Mukai, Y. Nozawa, and T. Kobayashi, “Single-mode oscillation of laser-diode-pumped Nd:YVO4 microchip lasers,” Opt. Lett. 16, 1955–1957 (1991).
    [CrossRef] [PubMed]
  39. A. E. Siegman, Lasers (University Science Books, Mill Valley, Calif., 1986).
  40. J. R. Bettis, R. A. House II, and A. H. Guenther, “Spot size and pulse duration dependence of laser-induced damage,” in Laser Induced Damage in Optical Materials, NBS Spec. Publ. 462, 338–345 (1976).
  41. L. O. Chua, Computer Aided Analysis of Electronic Circuits: Algorithms and Computational Techniques (Prentice-Hall, Englewood Cliffs, N.J., 1975).
  42. A. Szabo and R. A. Stein, “Theory of laser giant pulsing by a saturable absorber,” J. Appl. Phys. 36, 1562–1566 (1965).
    [CrossRef]

1998

R. Fluck, R. Häring, R. Paschotta, E. Gini, H. Melchior, and U. Keller, “Eyesafe pulsed microchip laser using semiconductor saturable absorber mirrors,” Appl. Phys. Lett. 72, 3273–3275 (1998).
[CrossRef]

1997

1996

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

J. J. Zayhowski, “Ultraviolet generation with passively Q-switched microchip lasers,” Opt. Lett. 21, 588–590 (1996).
[CrossRef] [PubMed]

B. Braun, F. X. Kärtner, U. Keller, J.-P. Meyn, and G. Huber, “Passively Q-switched 180-ps Nd:LSB microchip laser,” Opt. Lett. 21, 405–407 (1996).
[CrossRef] [PubMed]

1995

L. R. Brovelli, U. Keller, and T. H. Chiu, “Design and operation of antiresonant Fabry–Perot saturable semiconductor absorbers for mode-locked solid-state lasers,” J. Opt. Soc. Am. B 12, 311–322 (1995).
[CrossRef]

B. Braun, K. J. Weingarten, F. X. Kärtner, and U. Keller, “Continuous-wave mode-locked solid-state lasers with enhanced spatial hole-burning. I. Experiments,” Appl. Phys. B: Lasers Opt. 61, 429–437 (1995).
[CrossRef]

F. X. Kärtner, L. R. Brovelli, D. Kopf, M. Kamp, I. Calasso, and U. Keller, “Control of solid-state laser dynamics by semiconductor devices,” Opt. Eng. (Bellingham) 34, 2024–2036 (1995).
[CrossRef]

Y. Shimony, Z. Burshtein, and Y. Kalisky, “Cr4+:YAG as passive Q-switch and Brewster plate in a pulsed Nd:YAG laser,” IEEE J. Quantum Electron. 31, 1728–1741 (1995).
[CrossRef]

J. J. Degnan, “Optimization of passively Q-switched lasers,” IEEE J. Quantum Electron. 31, 1890–1901 (1995).
[CrossRef]

1994

J. J. Zayhowski and C. Dill III, “Diode-pumped passively Q-switched picosecond microchip lasers,” Opt. Lett. 19, 1427–1429 (1994).
[CrossRef] [PubMed]

S. Longhi, “Theory of transverse modes in end-pumped microchip lasers,” J. Opt. Soc. Am. B 11, 1098–1107 (1994).
[CrossRef]

B. Beier, J.-P. Meyn, R. Knappe, K.-J. Boller, G. Huber, and R. Wallenstein, “A 180-mW Nd:LaSc3(BO3)4 single-frequency TEM00 microchip laser pumped by an injection-locked diode-laser array,” Appl. Phys. B 58, 381–388 (1994).
[CrossRef]

J.-P. Meyn, T. Jensen, and G. Huber, “Spectroscopic properties and efficient diode-pumped laser operation of neodymium doped lanthanum scandium borate,” IEEE J. Quantum Electron. 30, 913–917 (1994).
[CrossRef]

1992

1991

1990

1989

1976

J. R. Bettis, R. A. House II, and A. H. Guenther, “Spot size and pulse duration dependence of laser-induced damage,” in Laser Induced Damage in Optical Materials, NBS Spec. Publ. 462, 338–345 (1976).

H. A. Haus, “Parameter ranges for cw passive modelocking,” IEEE J. Quantum Electron. 12, 169–176 (1976).
[CrossRef]

1967

L. E. Erickson and A. Szabo, “Behavior of saturable-absorber giant-pulse lasers in the limit of large absorber cross section,” J. Appl. Phys. 38, 2540–2542 (1967).
[CrossRef]

1966

L. E. Erickson and A. Szabo, “Effects of saturable absorber lifetime on the performance of giant-pulse lasers,” J. Appl. Phys. 37, 4953–4961 (1966).
[CrossRef]

1965

E. Snitzer and R. Woodcock, “Yb3+–Er3+ glass laser,” Appl. Phys. Lett. 6, 45–46 (1965).
[CrossRef]

A. Szabo and R. A. Stein, “Theory of laser giant pulsing by a saturable absorber,” J. Appl. Phys. 36, 1562–1566 (1965).
[CrossRef]

1963

A. A. Vuylsteke, “Theory of laser regeneration switching,” J. Appl. Phys. 34, 1615–1622 (1963).
[CrossRef]

W. G. Wagner and B. A. Lengyel, “Evolution of the giant pulse in a laser,” J. Appl. Phys. 34, 2040–2046 (1963).
[CrossRef]

1962

F. J. McClung and R. W. Hellwarth, “Giant optical pulsations from ruby,” J. Appl. Phys. 33, 828–829 (1962).
[CrossRef]

R. J. Collins and P. Kisliuk, “Control of population inversion in pulsed optical masers by feedback modulation,” J. Appl. Phys. 33, 2009–2011 (1962).
[CrossRef]

Asom, M. T.

Aus der Au, J.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

Beier, B.

B. Beier, J.-P. Meyn, R. Knappe, K.-J. Boller, G. Huber, and R. Wallenstein, “A 180-mW Nd:LaSc3(BO3)4 single-frequency TEM00 microchip laser pumped by an injection-locked diode-laser array,” Appl. Phys. B 58, 381–388 (1994).
[CrossRef]

Bettis, J. R.

J. R. Bettis, R. A. House II, and A. H. Guenther, “Spot size and pulse duration dependence of laser-induced damage,” in Laser Induced Damage in Optical Materials, NBS Spec. Publ. 462, 338–345 (1976).

Boller, K.-J.

B. Beier, J.-P. Meyn, R. Knappe, K.-J. Boller, G. Huber, and R. Wallenstein, “A 180-mW Nd:LaSc3(BO3)4 single-frequency TEM00 microchip laser pumped by an injection-locked diode-laser array,” Appl. Phys. B 58, 381–388 (1994).
[CrossRef]

Boyd, G. D.

Braun, B.

B. Braun, F. X. Kärtner, M. Moser, G. Zhang, and U. Keller, “56-ps passively Q-switched diode-pumped microchip laser,” Opt. Lett. 22, 381–383 (1997).
[CrossRef] [PubMed]

R. Fluck, B. Braun, E. Gini, H. Melchior, and U. Keller, “Passively Q-switched 1.34-μm Nd:YVO4 microchip laser using semiconductor saturable-absorber mirrors,” Opt. Lett. 22, 991–993 (1997).
[CrossRef] [PubMed]

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

B. Braun, F. X. Kärtner, U. Keller, J.-P. Meyn, and G. Huber, “Passively Q-switched 180-ps Nd:LSB microchip laser,” Opt. Lett. 21, 405–407 (1996).
[CrossRef] [PubMed]

B. Braun, K. J. Weingarten, F. X. Kärtner, and U. Keller, “Continuous-wave mode-locked solid-state lasers with enhanced spatial hole-burning. I. Experiments,” Appl. Phys. B: Lasers Opt. 61, 429–437 (1995).
[CrossRef]

Brovelli, L. R.

L. R. Brovelli, U. Keller, and T. H. Chiu, “Design and operation of antiresonant Fabry–Perot saturable semiconductor absorbers for mode-locked solid-state lasers,” J. Opt. Soc. Am. B 12, 311–322 (1995).
[CrossRef]

F. X. Kärtner, L. R. Brovelli, D. Kopf, M. Kamp, I. Calasso, and U. Keller, “Control of solid-state laser dynamics by semiconductor devices,” Opt. Eng. (Bellingham) 34, 2024–2036 (1995).
[CrossRef]

Burshtein, Z.

Y. Shimony, Z. Burshtein, and Y. Kalisky, “Cr4+:YAG as passive Q-switch and Brewster plate in a pulsed Nd:YAG laser,” IEEE J. Quantum Electron. 31, 1728–1741 (1995).
[CrossRef]

Calasso, I.

F. X. Kärtner, L. R. Brovelli, D. Kopf, M. Kamp, I. Calasso, and U. Keller, “Control of solid-state laser dynamics by semiconductor devices,” Opt. Eng. (Bellingham) 34, 2024–2036 (1995).
[CrossRef]

Chiu, T. H.

Collins, R. J.

R. J. Collins and P. Kisliuk, “Control of population inversion in pulsed optical masers by feedback modulation,” J. Appl. Phys. 33, 2009–2011 (1962).
[CrossRef]

Degnan, J. J.

J. J. Degnan, “Optimization of passively Q-switched lasers,” IEEE J. Quantum Electron. 31, 1890–1901 (1995).
[CrossRef]

Dill III, C.

Erickson, L. E.

L. E. Erickson and A. Szabo, “Behavior of saturable-absorber giant-pulse lasers in the limit of large absorber cross section,” J. Appl. Phys. 38, 2540–2542 (1967).
[CrossRef]

L. E. Erickson and A. Szabo, “Effects of saturable absorber lifetime on the performance of giant-pulse lasers,” J. Appl. Phys. 37, 4953–4961 (1966).
[CrossRef]

Ferguson, J. F.

Fluck, R.

R. Fluck, R. Häring, R. Paschotta, E. Gini, H. Melchior, and U. Keller, “Eyesafe pulsed microchip laser using semiconductor saturable absorber mirrors,” Appl. Phys. Lett. 72, 3273–3275 (1998).
[CrossRef]

R. Fluck, B. Braun, E. Gini, H. Melchior, and U. Keller, “Passively Q-switched 1.34-μm Nd:YVO4 microchip laser using semiconductor saturable-absorber mirrors,” Opt. Lett. 22, 991–993 (1997).
[CrossRef] [PubMed]

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

Gini, E.

R. Fluck, R. Häring, R. Paschotta, E. Gini, H. Melchior, and U. Keller, “Eyesafe pulsed microchip laser using semiconductor saturable absorber mirrors,” Appl. Phys. Lett. 72, 3273–3275 (1998).
[CrossRef]

R. Fluck, B. Braun, E. Gini, H. Melchior, and U. Keller, “Passively Q-switched 1.34-μm Nd:YVO4 microchip laser using semiconductor saturable-absorber mirrors,” Opt. Lett. 22, 991–993 (1997).
[CrossRef] [PubMed]

Guenther, A. H.

J. R. Bettis, R. A. House II, and A. H. Guenther, “Spot size and pulse duration dependence of laser-induced damage,” in Laser Induced Damage in Optical Materials, NBS Spec. Publ. 462, 338–345 (1976).

Häring, R.

R. Fluck, R. Häring, R. Paschotta, E. Gini, H. Melchior, and U. Keller, “Eyesafe pulsed microchip laser using semiconductor saturable absorber mirrors,” Appl. Phys. Lett. 72, 3273–3275 (1998).
[CrossRef]

Haus, H. A.

H. A. Haus, “Parameter ranges for cw passive modelocking,” IEEE J. Quantum Electron. 12, 169–176 (1976).
[CrossRef]

Hellwarth, R. W.

F. J. McClung and R. W. Hellwarth, “Giant optical pulsations from ruby,” J. Appl. Phys. 33, 828–829 (1962).
[CrossRef]

Hönninger, C.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

House II, R. A.

J. R. Bettis, R. A. House II, and A. H. Guenther, “Spot size and pulse duration dependence of laser-induced damage,” in Laser Induced Damage in Optical Materials, NBS Spec. Publ. 462, 338–345 (1976).

Huber, G.

B. Braun, F. X. Kärtner, U. Keller, J.-P. Meyn, and G. Huber, “Passively Q-switched 180-ps Nd:LSB microchip laser,” Opt. Lett. 21, 405–407 (1996).
[CrossRef] [PubMed]

J.-P. Meyn, T. Jensen, and G. Huber, “Spectroscopic properties and efficient diode-pumped laser operation of neodymium doped lanthanum scandium borate,” IEEE J. Quantum Electron. 30, 913–917 (1994).
[CrossRef]

B. Beier, J.-P. Meyn, R. Knappe, K.-J. Boller, G. Huber, and R. Wallenstein, “A 180-mW Nd:LaSc3(BO3)4 single-frequency TEM00 microchip laser pumped by an injection-locked diode-laser array,” Appl. Phys. B 58, 381–388 (1994).
[CrossRef]

Jensen, T.

J.-P. Meyn, T. Jensen, and G. Huber, “Spectroscopic properties and efficient diode-pumped laser operation of neodymium doped lanthanum scandium borate,” IEEE J. Quantum Electron. 30, 913–917 (1994).
[CrossRef]

Jung, I. D.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

Kalisky, Y.

Y. Shimony, Z. Burshtein, and Y. Kalisky, “Cr4+:YAG as passive Q-switch and Brewster plate in a pulsed Nd:YAG laser,” IEEE J. Quantum Electron. 31, 1728–1741 (1995).
[CrossRef]

Kamp, M.

F. X. Kärtner, L. R. Brovelli, D. Kopf, M. Kamp, I. Calasso, and U. Keller, “Control of solid-state laser dynamics by semiconductor devices,” Opt. Eng. (Bellingham) 34, 2024–2036 (1995).
[CrossRef]

Kärtner, F. X.

B. Braun, F. X. Kärtner, M. Moser, G. Zhang, and U. Keller, “56-ps passively Q-switched diode-pumped microchip laser,” Opt. Lett. 22, 381–383 (1997).
[CrossRef] [PubMed]

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

B. Braun, F. X. Kärtner, U. Keller, J.-P. Meyn, and G. Huber, “Passively Q-switched 180-ps Nd:LSB microchip laser,” Opt. Lett. 21, 405–407 (1996).
[CrossRef] [PubMed]

F. X. Kärtner, L. R. Brovelli, D. Kopf, M. Kamp, I. Calasso, and U. Keller, “Control of solid-state laser dynamics by semiconductor devices,” Opt. Eng. (Bellingham) 34, 2024–2036 (1995).
[CrossRef]

B. Braun, K. J. Weingarten, F. X. Kärtner, and U. Keller, “Continuous-wave mode-locked solid-state lasers with enhanced spatial hole-burning. I. Experiments,” Appl. Phys. B: Lasers Opt. 61, 429–437 (1995).
[CrossRef]

Keller, U.

R. Fluck, R. Häring, R. Paschotta, E. Gini, H. Melchior, and U. Keller, “Eyesafe pulsed microchip laser using semiconductor saturable absorber mirrors,” Appl. Phys. Lett. 72, 3273–3275 (1998).
[CrossRef]

B. Braun, F. X. Kärtner, M. Moser, G. Zhang, and U. Keller, “56-ps passively Q-switched diode-pumped microchip laser,” Opt. Lett. 22, 381–383 (1997).
[CrossRef] [PubMed]

R. Fluck, B. Braun, E. Gini, H. Melchior, and U. Keller, “Passively Q-switched 1.34-μm Nd:YVO4 microchip laser using semiconductor saturable-absorber mirrors,” Opt. Lett. 22, 991–993 (1997).
[CrossRef] [PubMed]

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

B. Braun, F. X. Kärtner, U. Keller, J.-P. Meyn, and G. Huber, “Passively Q-switched 180-ps Nd:LSB microchip laser,” Opt. Lett. 21, 405–407 (1996).
[CrossRef] [PubMed]

F. X. Kärtner, L. R. Brovelli, D. Kopf, M. Kamp, I. Calasso, and U. Keller, “Control of solid-state laser dynamics by semiconductor devices,” Opt. Eng. (Bellingham) 34, 2024–2036 (1995).
[CrossRef]

B. Braun, K. J. Weingarten, F. X. Kärtner, and U. Keller, “Continuous-wave mode-locked solid-state lasers with enhanced spatial hole-burning. I. Experiments,” Appl. Phys. B: Lasers Opt. 61, 429–437 (1995).
[CrossRef]

L. R. Brovelli, U. Keller, and T. H. Chiu, “Design and operation of antiresonant Fabry–Perot saturable semiconductor absorbers for mode-locked solid-state lasers,” J. Opt. Soc. Am. B 12, 311–322 (1995).
[CrossRef]

U. Keller, D. A. B. Miller, G. D. Boyd, T. H. Chiu, J. F. Ferguson, and M. T. Asom, “Solid-state low-loss intracavity saturable absorber for Nd:YLF lasers: an antiresonant semiconductor Fabry–Perot saturable absorber,” Opt. Lett. 17, 505–507 (1992).
[CrossRef] [PubMed]

Kelley, P. L.

J. J. Zayhowski and P. L. Kelley, “Optimization of Q-switched Lasers,” IEEE J. Quantum Electron. 27, 2220–2225 (1991).
[CrossRef]

Kisliuk, P.

R. J. Collins and P. Kisliuk, “Control of population inversion in pulsed optical masers by feedback modulation,” J. Appl. Phys. 33, 2009–2011 (1962).
[CrossRef]

Knappe, R.

B. Beier, J.-P. Meyn, R. Knappe, K.-J. Boller, G. Huber, and R. Wallenstein, “A 180-mW Nd:LaSc3(BO3)4 single-frequency TEM00 microchip laser pumped by an injection-locked diode-laser array,” Appl. Phys. B 58, 381–388 (1994).
[CrossRef]

Kobayashi, T.

Kopf, D.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

F. X. Kärtner, L. R. Brovelli, D. Kopf, M. Kamp, I. Calasso, and U. Keller, “Control of solid-state laser dynamics by semiconductor devices,” Opt. Eng. (Bellingham) 34, 2024–2036 (1995).
[CrossRef]

Lengyel, B. A.

W. G. Wagner and B. A. Lengyel, “Evolution of the giant pulse in a laser,” J. Appl. Phys. 34, 2040–2046 (1963).
[CrossRef]

Longhi, S.

Matuschek, N.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

McClung, F. J.

F. J. McClung and R. W. Hellwarth, “Giant optical pulsations from ruby,” J. Appl. Phys. 33, 828–829 (1962).
[CrossRef]

Melchior, H.

R. Fluck, R. Häring, R. Paschotta, E. Gini, H. Melchior, and U. Keller, “Eyesafe pulsed microchip laser using semiconductor saturable absorber mirrors,” Appl. Phys. Lett. 72, 3273–3275 (1998).
[CrossRef]

R. Fluck, B. Braun, E. Gini, H. Melchior, and U. Keller, “Passively Q-switched 1.34-μm Nd:YVO4 microchip laser using semiconductor saturable-absorber mirrors,” Opt. Lett. 22, 991–993 (1997).
[CrossRef] [PubMed]

Meyn, J.-P.

B. Braun, F. X. Kärtner, U. Keller, J.-P. Meyn, and G. Huber, “Passively Q-switched 180-ps Nd:LSB microchip laser,” Opt. Lett. 21, 405–407 (1996).
[CrossRef] [PubMed]

B. Beier, J.-P. Meyn, R. Knappe, K.-J. Boller, G. Huber, and R. Wallenstein, “A 180-mW Nd:LaSc3(BO3)4 single-frequency TEM00 microchip laser pumped by an injection-locked diode-laser array,” Appl. Phys. B 58, 381–388 (1994).
[CrossRef]

J.-P. Meyn, T. Jensen, and G. Huber, “Spectroscopic properties and efficient diode-pumped laser operation of neodymium doped lanthanum scandium borate,” IEEE J. Quantum Electron. 30, 913–917 (1994).
[CrossRef]

Miller, D. A. B.

Mooradian, A.

Moser, M.

Mukai, A.

Nozawa, Y.

Paschotta, R.

R. Fluck, R. Häring, R. Paschotta, E. Gini, H. Melchior, and U. Keller, “Eyesafe pulsed microchip laser using semiconductor saturable absorber mirrors,” Appl. Phys. Lett. 72, 3273–3275 (1998).
[CrossRef]

Shimony, Y.

Y. Shimony, Z. Burshtein, and Y. Kalisky, “Cr4+:YAG as passive Q-switch and Brewster plate in a pulsed Nd:YAG laser,” IEEE J. Quantum Electron. 31, 1728–1741 (1995).
[CrossRef]

Snitzer, E.

E. Snitzer and R. Woodcock, “Yb3+–Er3+ glass laser,” Appl. Phys. Lett. 6, 45–46 (1965).
[CrossRef]

Stein, R. A.

A. Szabo and R. A. Stein, “Theory of laser giant pulsing by a saturable absorber,” J. Appl. Phys. 36, 1562–1566 (1965).
[CrossRef]

Szabo, A.

L. E. Erickson and A. Szabo, “Behavior of saturable-absorber giant-pulse lasers in the limit of large absorber cross section,” J. Appl. Phys. 38, 2540–2542 (1967).
[CrossRef]

L. E. Erickson and A. Szabo, “Effects of saturable absorber lifetime on the performance of giant-pulse lasers,” J. Appl. Phys. 37, 4953–4961 (1966).
[CrossRef]

A. Szabo and R. A. Stein, “Theory of laser giant pulsing by a saturable absorber,” J. Appl. Phys. 36, 1562–1566 (1965).
[CrossRef]

Taira, T.

Vuylsteke, A. A.

A. A. Vuylsteke, “Theory of laser regeneration switching,” J. Appl. Phys. 34, 1615–1622 (1963).
[CrossRef]

Wagner, W. G.

W. G. Wagner and B. A. Lengyel, “Evolution of the giant pulse in a laser,” J. Appl. Phys. 34, 2040–2046 (1963).
[CrossRef]

Wallenstein, R.

B. Beier, J.-P. Meyn, R. Knappe, K.-J. Boller, G. Huber, and R. Wallenstein, “A 180-mW Nd:LaSc3(BO3)4 single-frequency TEM00 microchip laser pumped by an injection-locked diode-laser array,” Appl. Phys. B 58, 381–388 (1994).
[CrossRef]

Weingarten, K. J.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

B. Braun, K. J. Weingarten, F. X. Kärtner, and U. Keller, “Continuous-wave mode-locked solid-state lasers with enhanced spatial hole-burning. I. Experiments,” Appl. Phys. B: Lasers Opt. 61, 429–437 (1995).
[CrossRef]

Woodcock, R.

E. Snitzer and R. Woodcock, “Yb3+–Er3+ glass laser,” Appl. Phys. Lett. 6, 45–46 (1965).
[CrossRef]

Zayhowski, J. J.

Zhang, G.

Appl. Phys. B

B. Beier, J.-P. Meyn, R. Knappe, K.-J. Boller, G. Huber, and R. Wallenstein, “A 180-mW Nd:LaSc3(BO3)4 single-frequency TEM00 microchip laser pumped by an injection-locked diode-laser array,” Appl. Phys. B 58, 381–388 (1994).
[CrossRef]

Appl. Phys. B: Lasers Opt.

B. Braun, K. J. Weingarten, F. X. Kärtner, and U. Keller, “Continuous-wave mode-locked solid-state lasers with enhanced spatial hole-burning. I. Experiments,” Appl. Phys. B: Lasers Opt. 61, 429–437 (1995).
[CrossRef]

Appl. Phys. Lett.

R. Fluck, R. Häring, R. Paschotta, E. Gini, H. Melchior, and U. Keller, “Eyesafe pulsed microchip laser using semiconductor saturable absorber mirrors,” Appl. Phys. Lett. 72, 3273–3275 (1998).
[CrossRef]

E. Snitzer and R. Woodcock, “Yb3+–Er3+ glass laser,” Appl. Phys. Lett. 6, 45–46 (1965).
[CrossRef]

IEEE J. Quantum Electron.

H. A. Haus, “Parameter ranges for cw passive modelocking,” IEEE J. Quantum Electron. 12, 169–176 (1976).
[CrossRef]

J.-P. Meyn, T. Jensen, and G. Huber, “Spectroscopic properties and efficient diode-pumped laser operation of neodymium doped lanthanum scandium borate,” IEEE J. Quantum Electron. 30, 913–917 (1994).
[CrossRef]

Y. Shimony, Z. Burshtein, and Y. Kalisky, “Cr4+:YAG as passive Q-switch and Brewster plate in a pulsed Nd:YAG laser,” IEEE J. Quantum Electron. 31, 1728–1741 (1995).
[CrossRef]

J. J. Zayhowski and P. L. Kelley, “Optimization of Q-switched Lasers,” IEEE J. Quantum Electron. 27, 2220–2225 (1991).
[CrossRef]

J. J. Degnan, “Optimization of passively Q-switched lasers,” IEEE J. Quantum Electron. 31, 1890–1901 (1995).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

J. Appl. Phys.

F. J. McClung and R. W. Hellwarth, “Giant optical pulsations from ruby,” J. Appl. Phys. 33, 828–829 (1962).
[CrossRef]

R. J. Collins and P. Kisliuk, “Control of population inversion in pulsed optical masers by feedback modulation,” J. Appl. Phys. 33, 2009–2011 (1962).
[CrossRef]

A. A. Vuylsteke, “Theory of laser regeneration switching,” J. Appl. Phys. 34, 1615–1622 (1963).
[CrossRef]

W. G. Wagner and B. A. Lengyel, “Evolution of the giant pulse in a laser,” J. Appl. Phys. 34, 2040–2046 (1963).
[CrossRef]

L. E. Erickson and A. Szabo, “Effects of saturable absorber lifetime on the performance of giant-pulse lasers,” J. Appl. Phys. 37, 4953–4961 (1966).
[CrossRef]

L. E. Erickson and A. Szabo, “Behavior of saturable-absorber giant-pulse lasers in the limit of large absorber cross section,” J. Appl. Phys. 38, 2540–2542 (1967).
[CrossRef]

A. Szabo and R. A. Stein, “Theory of laser giant pulsing by a saturable absorber,” J. Appl. Phys. 36, 1562–1566 (1965).
[CrossRef]

J. Opt. Soc. Am. B

NBS Spec. Publ.

J. R. Bettis, R. A. House II, and A. H. Guenther, “Spot size and pulse duration dependence of laser-induced damage,” in Laser Induced Damage in Optical Materials, NBS Spec. Publ. 462, 338–345 (1976).

Opt. Eng. (Bellingham)

F. X. Kärtner, L. R. Brovelli, D. Kopf, M. Kamp, I. Calasso, and U. Keller, “Control of solid-state laser dynamics by semiconductor devices,” Opt. Eng. (Bellingham) 34, 2024–2036 (1995).
[CrossRef]

Opt. Lett.

T. Taira, A. Mukai, Y. Nozawa, and T. Kobayashi, “Single-mode oscillation of laser-diode-pumped Nd:YVO4 microchip lasers,” Opt. Lett. 16, 1955–1957 (1991).
[CrossRef] [PubMed]

J. J. Zayhowski and A. Mooradian, “Single-frequency microchip Nd lasers,” Opt. Lett. 14, 24–26 (1989).
[CrossRef] [PubMed]

B. Braun, F. X. Kärtner, U. Keller, J.-P. Meyn, and G. Huber, “Passively Q-switched 180-ps Nd:LSB microchip laser,” Opt. Lett. 21, 405–407 (1996).
[CrossRef] [PubMed]

J. J. Zayhowski, “Q-switched operation of a microchip laser,” Opt. Lett. 16, 575–577 (1991).
[CrossRef]

J. J. Zayhowski, “Limits imposed by spatial hole burning on the single-mode operation of standing-wave laser cavities,” Opt. Lett. 15, 431–433 (1990).
[CrossRef] [PubMed]

J. J. Zayhowski, “Ultraviolet generation with passively Q-switched microchip lasers,” Opt. Lett. 21, 588–590 (1996).
[CrossRef] [PubMed]

U. Keller, D. A. B. Miller, G. D. Boyd, T. H. Chiu, J. F. Ferguson, and M. T. Asom, “Solid-state low-loss intracavity saturable absorber for Nd:YLF lasers: an antiresonant semiconductor Fabry–Perot saturable absorber,” Opt. Lett. 17, 505–507 (1992).
[CrossRef] [PubMed]

J. J. Zayhowski and C. Dill III, “Diode-pumped passively Q-switched picosecond microchip lasers,” Opt. Lett. 19, 1427–1429 (1994).
[CrossRef] [PubMed]

B. Braun, F. X. Kärtner, M. Moser, G. Zhang, and U. Keller, “56-ps passively Q-switched diode-pumped microchip laser,” Opt. Lett. 22, 381–383 (1997).
[CrossRef] [PubMed]

R. Fluck, B. Braun, E. Gini, H. Melchior, and U. Keller, “Passively Q-switched 1.34-μm Nd:YVO4 microchip laser using semiconductor saturable-absorber mirrors,” Opt. Lett. 22, 991–993 (1997).
[CrossRef] [PubMed]

Other

U. Keller, “Semiconductor nonlinearities for solid-state laser modelocking and Q-switching,” in Nonlinear Optics in Semiconductors, A. Kost and E. Garmire, eds. (Academic, Boston, Mass., 1998), Vol. 59, Chap. 4, pp. 211–285.

R. W. Hellwarth, ed., Advances in Quantum Electronics (Columbia U. Press, New York, 1961).

J. J. Zayhowski, “Thermal guiding in microchip lasers,” in Advanced Solid-State Lasers, H. P. Jenssen and G. Dube, eds., Vol. 6 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1990), pp. 9–14.

L. O. Chua, Computer Aided Analysis of Electronic Circuits: Algorithms and Computational Techniques (Prentice-Hall, Englewood Cliffs, N.J., 1975).

A. E. Siegman, Lasers (University Science Books, Mill Valley, Calif., 1986).

G. L. Witt, R. Calawa, U. Mishra, and E. Weber, eds., Low Temperature (LT) GaAs and Related Materials (Materials Research Society, Pittsburgh, Pa., 1992), Vol. 241.

Kigre, Inc., QX laser glasses data sheet (Kigre, Hilton Head Island, South Carolina, 1996).

J.-P. Meyn, “Neodym-Lanthan-Scandium-Borat: Ein neues Material für miniaturisierte Festkörperlaser,” Ph.D. dissertation (Universität Hamburg, Hamburg, Germany, 1994).

Casix, crystals and materials catalog (Casix, Inc., Fuzhou, Fujian, China).

P. Laporta, Politecnico de Milano, Dipartimento di Fisica, Piazza Leonardo da Vinci 32, 20133 Milano, Italy (personal communication, 1997).

W. Koechner, Solid-State Laser Engineering (Springer-Verlag, Berlin, 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Oscilloscope trace of the single-frequency 37-ps Q-switched pulse with a peak power of 1.4 kW and a repetition rate of 160 kHz.

Fig. 2
Fig. 2

Evolution of power, loss, and gain on the time scale of the pulse width obtained from numerical integration of the rate equations (Appendix A). As soon as the gain exceeds the loss, the power grows. The peak of the Q-switched pulse is reached when the gain equals the total losses. The parameters used are taken for a 200-µm-thick Nd:YVO4 crystal and are as follows: TR=2.61 ps, l=14%, τL=50 µs, FL=37.3 mJ/cm2, τA=200 ps, FA=40 µJ/cm2, pump parameter r=3, q0=5%, and A=(35 µm)2π.

Fig. 3
Fig. 3

Evolution of power, loss, and gain on the time scale of the repetition period for r=2 and r=3 obtained from a numerical integration of the rate equations (Appendix A). As soon as the gain reaches the unsaturated loss level a pulse is emitted and the gain is reduced by Δ g. The next pulse is emitted when the pump has replaced the extracted energy. The repetition rate is proportional to r-1. Besides r the simulation parameters are the same as in Fig. 2.

Fig. 4
Fig. 4

Dependence of gain reduction Δ g on the total nonsaturable losses obtained from the rate equations (Appendix A). For lq0 the approximation Δ g2q0 holds with at least 20% accuracy.

Fig. 5
Fig. 5

Output pulse energy normalized to the saturation energy of the gain medium versus the total nonsaturable losses, for parasitic losses lp=γ q0 and two different fixed initial gains, obtained from the rate equations (Appendix A). Solid curves, the same values of γ in the same order as for the dashed curves. As soon as there are nonvanishing parasitic losses, maximum pulse energy is achieved for values of l close to lq0gi/2.

Fig. 6
Fig. 6

Structure of a SESAM with a dielectric top reflector and the standing-wave intensity pattern in this structure. The effective penetration depth is of the order of only a few micrometers. QW’s, quantum wells.

Fig. 7
Fig. 7

Measured change in reflectivity versus incident pulse fluence (filled squares) and theoretical fit (solid curves) for a SESAM consisting of 18 quantum wells and (a) a 25% and (b) a 50% top reflector. The measured temporal pulse response is shown in (c) (filled squares) together with an exponential fit (solid curve).

Fig. 8
Fig. 8

Schematic of the Q-switched Nd:YVO4 microchip laser with a SESAM in direct contact with the crystal. The microchip cavity is pumped through a dichroic beam splitter, which transmits the pump beam at 808 nm and reflects the output beam at 1064 nm. HR, highly reflecting; HT, highly transmitting.

Fig. 9
Fig. 9

Pulse width, repetition rate, and output pulse fluence as a function of the pump power for two different modulation depths. Thin horizontal lines, theoretical values that correspond to those shown by the solid and dashed curves. The experiments were carried out with a 435-µm-thick 3% doped Nd:YVO4 crystal, AR coated on both sides, and a 9% output coupler. The parasitic losses lp were 3% for the setup with the higher ΔR and 2% for the lower modulation.

Fig. 10
Fig. 10

Pulse width, repetition rate, and output pulse fluence as a function of the pump power for two different output couplers. Thin horizontal lines, theoretical values that correspond to those shown by the solid and dashed curves. The experiments were carried out with a 435-µm-thick 3% doped Nd:YVO4 crystal, AR coated on both sides, and ΔR=10.3%. The parasitic losses lp were 3%.

Fig. 11
Fig. 11

Pulse energy and effective laser area as a function of the pump power. The measurement was carried out with a 435-µm thick 3% doped Nd:YVO4 crystal, AR coated on both sides, ΔR=7.3%, and Tout=9%. The pulse energy is strongly correlated with the effective area, resulting in a constant fluence F=Ep/A (see Fig. 9).

Fig. 12
Fig. 12

Pulse width, pulse energy, and output pulse fluence as a function of the effective area, which we controlled by varying the pump spot size. The experiments were carried out with a 435-µm-thick 3% doped Nd:YVO4 crystal, AR coated on both sides, and ΔR=7.3%, Tout=4.2%. The pump power was held constant at 160 mW. lp=2%. The dashed curve is a linear fit to the pulse energy, which appears to be directly proportional to the effective area, without any additive constant.

Fig. 13
Fig. 13

Pulse width as a function of the cavity length, measured with a cavity as shown in the inset: A 200-µm-thick 3% doped Nd:YVO4 crystal was bonded to an uncoated SESAM with an effective modulation depth ΔR4.3%. Resonator stability was ensured by a curved 1% output coupler (radius of curvature, 10 cm) also for large air gaps between crystal and output coupler. With the linear fit (dashed curve) and expression (9) the modulation depth was calculated to be ΔRcal=4.5%. OC, output coupler.

Fig. 14
Fig. 14

Pulse width, repetition rate, pulse energy, and peak power as a function of the pump power of an eye-safe 1.5-µm microchip laser using 1-mm-thick Er:Yb:glass (Kigre Inc., QX/Er) as the gain medium; ΔR1.5%, Tout=5%. The parasitic losses lp were estimated to be 1.5%. The pulse energy, the pulse width, and the peak power appear to be independent of the pump power.

Tables (2)

Tables Icon

Table 1 Comparison of Material Properties of Nd:YVO4, Nd:LSB, Nd:YAG, Yb:YAG, and Er:Yb:Glassa

Tables Icon

Table 2 Overview of Results Achieved with Several SESAM’s and Microchip Crystalsa

Equations (35)

Equations on this page are rendered with MathJax. Learn more.

Estored=ALg N2hνL.
Estored=hνL2σLAg=ELg,
EL=hνL2σLA
Δ g=gi-gf
Ep=ELΔ g loutlout+lpELgi.
gi=l+q0.
Δ g2q0.
EphνL2σLA2q0 loutlout+lp,q0l.
τp3.52TRq0.
frep=ηs(PP-PP,th)Epr-1.
PP=hνPA2σLτLηPg0,PP,th=hνP A2σLτLηP(l+q0).
frep=g0-(l+q0)Δ gτLg0-(l+q0)2q0τL.
g=2(σLN2-σLabsN1)Lg,
g=2(σL+σLabs)N2Lg-lg,
Estored=hνL2(σL+σLabs)A(g+lg)=EL(g+lg),
EL=hν2(σL+σLabs)A.
IA=EAAτA
ΔR=1-exp(-q0).
-1TR I dqdIcwsteadystate>rτLcwsteadystate.
σLNDc2n>l+ΔRTR,
m=Δfgc2nLg=2nΔfgαc.
τp3.52TRΔR.
Ep=hνL2σLA2ΔR loutlout+lp,
Ppeak=Sp Epτp(ΔR)2ATRσLηOC.
TR dP(t)dt=[g(t)-q(t)-l]P(t),
dg(t)dt=-g(t)-g0τL-g(t)P(t)EL,
dq(t)dt=-q(t)-q0τA-q(t)P(t)EA.
TR dPdt=(g-q-l)P,
dgdt=-gPEL,
dqdt=-qPEA.
q=q0(g/gi)β,
β=EL/EA.
P(g)=-ELTR(g-gi)+lELTRlnggi+EATRq0ggiβ-1.
P(g=gf)=0=gi-gf+l ln(gf/gi)+1βq0[(gf/gi)β-1].
0Δ g+l lnl+q0-Δ gl+q0.

Metrics