Abstract

External seeding of stimulated Raman scattering (SRS) is applied to enhance the signal from the minority species in multicomponent microdroplets. However, to avoid complications in discriminating the elastically scattered seed laser from the minority-species SRS, we utilize the fact that the seeded SRS band of the minority species (at νmin) can efficiently pump SRS of the majority species (at νmaj). The resultant signal appears at a shift of νmin+maj, which is easily discriminated from the elastic scatter of the seed laser at a shift of νmin. Our method results in a threefold reduction in the minimum detectable concentration of toluene in toluene/ethanol droplets as compared with conventional SRS.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. H. Fung, D. G. Imre, and I. N. Tang, Aerosol. Sci. Technol. 25, 479 (1994).
    [CrossRef]
  2. H.-B. Lin and A. J. Campillo, Opt. Lett. 20, 1589 (1995).
    [CrossRef] [PubMed]
  3. M. Golombok and D. B. Pye, Opt. Lett. B 15, 872 (1990).
    [CrossRef]
  4. A. Serpenguzel, J. C. Swindal, R. K. Chang, and P. W. Acker, Appl. Opt. 31, 3543 (1992).
    [CrossRef]
  5. J. H. Eickmans, S.-X. Qian, and R. K. Chang, Part. Charact. 4, 85 (1987).
    [CrossRef]
  6. A. Biswas, R. L. Armstrong, and R. G. Pinnick, Opt. Lett. 15, 1191 (1990).
    [CrossRef] [PubMed]
  7. Md. M. Mazumder, K. Schaschek, R. K. Chang, and J. B. Gillespie, Chem. Phys. Lett. 239, 361 (1995).
    [CrossRef]
  8. D. H. Leach, R. K. Chang, W. P. Acker, and S. C. Hill, J. Opt. Soc. Am. B 10, 34 (1993).
    [CrossRef]
  9. A. S. Kwok and R. K. Chang, Opt. Lett. 17, 1262 (1992).
    [CrossRef] [PubMed]
  10. L. Pasternack, J. W. Fleming, and J. C. Owrutsky, J. Opt. Soc. Am. B 13, 1510 (1996).
    [CrossRef]
  11. M. H. Fields, J. Popp, and R. K. Chang, Opt. Lett. 21, 1457 (1996).
    [CrossRef] [PubMed]
  12. M. H. Fields, Ph.D. dissertation (Yale University, New Haven, Conn., 1997).
  13. R. N. Berglund and B. Y. H. Liu, Environ. Sci. Technol. 7, 147 (1973).
    [CrossRef]
  14. H.-B. Lin, J. D. Eversole, and A. J. Campillo, Rev. Sci. Instrum. 61, 1018 (1990).
    [CrossRef]

1996

1995

H.-B. Lin and A. J. Campillo, Opt. Lett. 20, 1589 (1995).
[CrossRef] [PubMed]

Md. M. Mazumder, K. Schaschek, R. K. Chang, and J. B. Gillespie, Chem. Phys. Lett. 239, 361 (1995).
[CrossRef]

1994

K. H. Fung, D. G. Imre, and I. N. Tang, Aerosol. Sci. Technol. 25, 479 (1994).
[CrossRef]

1993

1992

1990

M. Golombok and D. B. Pye, Opt. Lett. B 15, 872 (1990).
[CrossRef]

A. Biswas, R. L. Armstrong, and R. G. Pinnick, Opt. Lett. 15, 1191 (1990).
[CrossRef] [PubMed]

H.-B. Lin, J. D. Eversole, and A. J. Campillo, Rev. Sci. Instrum. 61, 1018 (1990).
[CrossRef]

1987

J. H. Eickmans, S.-X. Qian, and R. K. Chang, Part. Charact. 4, 85 (1987).
[CrossRef]

1973

R. N. Berglund and B. Y. H. Liu, Environ. Sci. Technol. 7, 147 (1973).
[CrossRef]

Acker, P. W.

Acker, W. P.

Armstrong, R. L.

Berglund, R. N.

R. N. Berglund and B. Y. H. Liu, Environ. Sci. Technol. 7, 147 (1973).
[CrossRef]

Biswas, A.

Campillo, A. J.

H.-B. Lin and A. J. Campillo, Opt. Lett. 20, 1589 (1995).
[CrossRef] [PubMed]

H.-B. Lin, J. D. Eversole, and A. J. Campillo, Rev. Sci. Instrum. 61, 1018 (1990).
[CrossRef]

Chang, R. K.

Eickmans, J. H.

J. H. Eickmans, S.-X. Qian, and R. K. Chang, Part. Charact. 4, 85 (1987).
[CrossRef]

Eversole, J. D.

H.-B. Lin, J. D. Eversole, and A. J. Campillo, Rev. Sci. Instrum. 61, 1018 (1990).
[CrossRef]

Fields, M. H.

Fleming, J. W.

Fung, K. H.

K. H. Fung, D. G. Imre, and I. N. Tang, Aerosol. Sci. Technol. 25, 479 (1994).
[CrossRef]

Gillespie, J. B.

Md. M. Mazumder, K. Schaschek, R. K. Chang, and J. B. Gillespie, Chem. Phys. Lett. 239, 361 (1995).
[CrossRef]

Golombok, M.

M. Golombok and D. B. Pye, Opt. Lett. B 15, 872 (1990).
[CrossRef]

Hill, S. C.

Imre, D. G.

K. H. Fung, D. G. Imre, and I. N. Tang, Aerosol. Sci. Technol. 25, 479 (1994).
[CrossRef]

Kwok, A. S.

Leach, D. H.

Lin, H.-B.

H.-B. Lin and A. J. Campillo, Opt. Lett. 20, 1589 (1995).
[CrossRef] [PubMed]

H.-B. Lin, J. D. Eversole, and A. J. Campillo, Rev. Sci. Instrum. 61, 1018 (1990).
[CrossRef]

Liu, B. Y. H.

R. N. Berglund and B. Y. H. Liu, Environ. Sci. Technol. 7, 147 (1973).
[CrossRef]

Mazumder, Md. M.

Md. M. Mazumder, K. Schaschek, R. K. Chang, and J. B. Gillespie, Chem. Phys. Lett. 239, 361 (1995).
[CrossRef]

Owrutsky, J. C.

Pasternack, L.

Pinnick, R. G.

Popp, J.

Pye, D. B.

M. Golombok and D. B. Pye, Opt. Lett. B 15, 872 (1990).
[CrossRef]

Qian, S.-X.

J. H. Eickmans, S.-X. Qian, and R. K. Chang, Part. Charact. 4, 85 (1987).
[CrossRef]

Schaschek, K.

Md. M. Mazumder, K. Schaschek, R. K. Chang, and J. B. Gillespie, Chem. Phys. Lett. 239, 361 (1995).
[CrossRef]

Serpenguzel, A.

Swindal, J. C.

Tang, I. N.

K. H. Fung, D. G. Imre, and I. N. Tang, Aerosol. Sci. Technol. 25, 479 (1994).
[CrossRef]

Aerosol. Sci. Technol.

K. H. Fung, D. G. Imre, and I. N. Tang, Aerosol. Sci. Technol. 25, 479 (1994).
[CrossRef]

Appl. Opt.

Chem. Phys. Lett.

Md. M. Mazumder, K. Schaschek, R. K. Chang, and J. B. Gillespie, Chem. Phys. Lett. 239, 361 (1995).
[CrossRef]

Environ. Sci. Technol.

R. N. Berglund and B. Y. H. Liu, Environ. Sci. Technol. 7, 147 (1973).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Lett.

Opt. Lett. B

M. Golombok and D. B. Pye, Opt. Lett. B 15, 872 (1990).
[CrossRef]

Part. Charact.

J. H. Eickmans, S.-X. Qian, and R. K. Chang, Part. Charact. 4, 85 (1987).
[CrossRef]

Rev. Sci. Instrum.

H.-B. Lin, J. D. Eversole, and A. J. Campillo, Rev. Sci. Instrum. 61, 1018 (1990).
[CrossRef]

Other

M. H. Fields, Ph.D. dissertation (Yale University, New Haven, Conn., 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup for identification of minority species in microparticles.

Fig. 2
Fig. 2

Pump-only stimulated Raman spectra (panels A–C) from ∼25-µm-radius microdroplets consisting of different concentrations of toluene in ethanol for wave numbers 0–5000 cm-1. In panel D the assignment of the SRS bands is displayed. Because of droplet-size instabilities, the 1Et[νs(CH)] signals at 2925 cm-1 in panels A and B have different line widths. See text for notation.

Fig. 3
Fig. 3

Schematic of the possible pumping and depletion combinations leading to SRS in ethanol/toluene-mixture droplets.

Fig. 4
Fig. 4

Pump-plus-seed (solid curve) and pump-only (dashed curve) SRS spectra of binary-mixture droplets consisting of different concentrations of toluene in ethanol as indicated (panels A–C) for wave numbers 3650–4150 cm-1. The external probe field is injected 2–3 ns before the pump field at 1004 cm-1. The enhanced internally pumped SRS modes are labeled by a star. In panel D the assignment of the SRS bands is displayed.

Fig. 5
Fig. 5

Pump-plus-seed (solid curve) and pump-only (dashed curve) SRS spectra of multicomponent-mixture droplets consisting of 12% chloroform, 85% ethanol, and 3% toluene in the spectral range 3500–4100 cm-1. The external probe field is injected 2–3 ns before the pump field and is tuned through wave numbers 200–1200 cm-1 relative to the pump laser. The peaks labeled by a star correspond to the enhanced signal of toluene (panel A), to ethanol (panel B), and to chloroform (panel C). In panel D the assignment of the SRS bands is displayed.

Metrics