Abstract

We report what is believed to be the first measurement of rotational line broadening of high-temperature water vapor for transition frequencies that range from 1.0 to 2.5 THz (33 to 83 cm-1). Water-vapor rotational transitions were measured in a near-stoichiometric propane–air flame at 1490 K with THz time-domain spectroscopy. Linewidths were measured for 29 pure rotational transitions in both ground vibrational and ν2=1 vibrational levels with lower state energies ranging from 80 to 2390 cm-1. Measured widths show a dependence on rotational state energy that roughly follows a thermal distribution with variation between various J, Ka, Kc rotational quantum numbers.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. J. Perkey, Atmospheric Water Vapor, A. Deepak, T. D. Wilkerson, and L. H. Ruhnke, eds. (Academic, New York, 1980), pp. 513–526.
  2. H. A. Gebbie, Atmospheric Water Vapor, A. Deepak, T. D. Wilkerson, and L. H. Ruhnke, eds. (Academic, New York, 1980), pp. 133–201.
  3. O. L. Polyansky, N. F. Zobov, S. Viti, J. Tennyson, P. F. Bernath, and L. Wallace, “Water on the Sun: line assignments based on variational calculations,” Science 277, 346–348 (1997).
    [CrossRef] [PubMed]
  4. L. Wallace, P. Bernath, W. Livingston, K. Hinkle, J. Busler, B. Guo, and K. Zhang, “Water on the Sun,” Science 268, 1155–1158 (1995).
    [CrossRef] [PubMed]
  5. D. A. Neufeld and G. J. Melnick, “Excitation of millimeter and submillimeter water masers,” Astrophys. J. 368, 215–230 (1991).
    [CrossRef]
  6. R. A. Cheville and D. Grischkowsky, “Far-infrared terahertz time-domain spectroscopy of flames,” Opt. Lett. 20, 1646–1648 (1995).
    [CrossRef] [PubMed]
  7. R. A. Cheville and D. Grischkowsky, “Observation of pure rotational absorption spectra in the ν2 band of hot H2O in flames,” Opt. Lett. 23, 531–533 (1998).
    [CrossRef]
  8. T. Mathworks, Matlab Reference Guide (The Math Works Inc., Natick, Mass., 1995).
  9. H. Harde, R. A. Cheville, and D. Grischkowsky, “Terahertz studies of collision-broadened rotational lines,” J. Phys. Chem. A 101, 3646–3660 (1997).
    [CrossRef]
  10. H. M. Pickett, R. L. Poynter, E. A. Cohen, M. L. Delitsky, J. C. Pearson, and H. S. P. Muller, “Submillimeter, millimeter, and microwave spectral line catalog,” J. Quant. Spectrosc. Radiat. Transf. 60, 883–890 (1998).
    [CrossRef]
  11. C. H. Townes and A. L. Schawlow, Microwave Spectroscopy (Dover, New York, 1975).
  12. T. M. Goyette and F. C. De Lucia, “The pressure broadening of the 31.3–22.0 transition of water between 80 and 600 K,” J. Mol. Spectrosc. 143, 346–348 (1990).
    [CrossRef]
  13. J. M. Hartmann, J. Taine, J. Bonamy, B. Labini, and D. Robert, “Collisional broadening of rotation-vibration lines for asymmetric top molecules. II. H2O diode laser measurements in the 400–900 K range, calculations in the 300–2000 K range,” J. Chem. Phys. 86, 144–156 (1987).
    [CrossRef]
  14. J.-Y. Mandin, V. Dana, C. Camy-Peyret, and J.-M. Flaud, “Collisional widths of pure rotational transitions of H2O from Fourier-transform flame spectra,” J. Mol. Spectrosc. 152, 179–184 (1992).
    [CrossRef]
  15. V. Dana, J.-Y. Mandin, C. Camy-Peyret, J.-M. Flaud, J.-P. Chevillard, R. L. Hawkins, and J.-L. Delfau, “Measurements of the collisional linewidth in the ν2 band of H2O from Fourier-transformed flame spectra,” Appl. Opt. 31, 1928–1936 (1992).
    [CrossRef] [PubMed]
  16. V. Dana, J.-Y. Manding, C. Camy-Peyret, J.-M. Flaud, and L. S. Rothman, “Rotational and vibrational dependences of collisional linewidth in the nν2−(n−1)ν2 hot bands of H2O from Fourier-transform flame spectra,” Appl. Opt. 31, 1179–1184 (1992).
    [CrossRef] [PubMed]
  17. P. W. Rosenkranz, “Pressure broadening of rotational bands. II. Water vapor from 300 to 1100 cm−1,” J. Chem. Phys. 87, 163–170 (1987).
    [CrossRef]
  18. R. R. Gamache and L. S. Rothman, “Temperature dependence of N2-broadened halfwidth of water vapor: the pure rotational and ν2 bands,” J. Mol. Spectrosc. 128, 360–369 (1988).
    [CrossRef]
  19. R. R. Gamache and R. W. Davies, “Theoretical calculations of N2-broadened halfwidths of H2O using quantum Fourier transform theory,” Appl. Opt. 22, 4013–4019 (1983).
    [CrossRef]
  20. C. Delaye, J.-M. Hartmann, and J. Taine, “Calculated tabulations of H2O line broadening by H2O, N2, O2, and CO2 at high temperature,” Appl. Opt. 28, 5080–5087 (1989).
    [CrossRef] [PubMed]
  21. S. D. Gasster, C. H. Townes, D. Goorvitch, and F. P. J. Valero, “Foreign-gas collision broadening of the far-infrared spectrum of water vapor,” J. Opt. Soc. Am. B 5, 593–601 (1988).
    [CrossRef]

1998

H. M. Pickett, R. L. Poynter, E. A. Cohen, M. L. Delitsky, J. C. Pearson, and H. S. P. Muller, “Submillimeter, millimeter, and microwave spectral line catalog,” J. Quant. Spectrosc. Radiat. Transf. 60, 883–890 (1998).
[CrossRef]

R. A. Cheville and D. Grischkowsky, “Observation of pure rotational absorption spectra in the ν2 band of hot H2O in flames,” Opt. Lett. 23, 531–533 (1998).
[CrossRef]

1997

H. Harde, R. A. Cheville, and D. Grischkowsky, “Terahertz studies of collision-broadened rotational lines,” J. Phys. Chem. A 101, 3646–3660 (1997).
[CrossRef]

O. L. Polyansky, N. F. Zobov, S. Viti, J. Tennyson, P. F. Bernath, and L. Wallace, “Water on the Sun: line assignments based on variational calculations,” Science 277, 346–348 (1997).
[CrossRef] [PubMed]

1995

L. Wallace, P. Bernath, W. Livingston, K. Hinkle, J. Busler, B. Guo, and K. Zhang, “Water on the Sun,” Science 268, 1155–1158 (1995).
[CrossRef] [PubMed]

R. A. Cheville and D. Grischkowsky, “Far-infrared terahertz time-domain spectroscopy of flames,” Opt. Lett. 20, 1646–1648 (1995).
[CrossRef] [PubMed]

1992

1991

D. A. Neufeld and G. J. Melnick, “Excitation of millimeter and submillimeter water masers,” Astrophys. J. 368, 215–230 (1991).
[CrossRef]

1990

T. M. Goyette and F. C. De Lucia, “The pressure broadening of the 31.3–22.0 transition of water between 80 and 600 K,” J. Mol. Spectrosc. 143, 346–348 (1990).
[CrossRef]

1989

1988

R. R. Gamache and L. S. Rothman, “Temperature dependence of N2-broadened halfwidth of water vapor: the pure rotational and ν2 bands,” J. Mol. Spectrosc. 128, 360–369 (1988).
[CrossRef]

S. D. Gasster, C. H. Townes, D. Goorvitch, and F. P. J. Valero, “Foreign-gas collision broadening of the far-infrared spectrum of water vapor,” J. Opt. Soc. Am. B 5, 593–601 (1988).
[CrossRef]

1987

P. W. Rosenkranz, “Pressure broadening of rotational bands. II. Water vapor from 300 to 1100 cm−1,” J. Chem. Phys. 87, 163–170 (1987).
[CrossRef]

J. M. Hartmann, J. Taine, J. Bonamy, B. Labini, and D. Robert, “Collisional broadening of rotation-vibration lines for asymmetric top molecules. II. H2O diode laser measurements in the 400–900 K range, calculations in the 300–2000 K range,” J. Chem. Phys. 86, 144–156 (1987).
[CrossRef]

1983

Bernath, P.

L. Wallace, P. Bernath, W. Livingston, K. Hinkle, J. Busler, B. Guo, and K. Zhang, “Water on the Sun,” Science 268, 1155–1158 (1995).
[CrossRef] [PubMed]

Bernath, P. F.

O. L. Polyansky, N. F. Zobov, S. Viti, J. Tennyson, P. F. Bernath, and L. Wallace, “Water on the Sun: line assignments based on variational calculations,” Science 277, 346–348 (1997).
[CrossRef] [PubMed]

Bonamy, J.

J. M. Hartmann, J. Taine, J. Bonamy, B. Labini, and D. Robert, “Collisional broadening of rotation-vibration lines for asymmetric top molecules. II. H2O diode laser measurements in the 400–900 K range, calculations in the 300–2000 K range,” J. Chem. Phys. 86, 144–156 (1987).
[CrossRef]

Busler, J.

L. Wallace, P. Bernath, W. Livingston, K. Hinkle, J. Busler, B. Guo, and K. Zhang, “Water on the Sun,” Science 268, 1155–1158 (1995).
[CrossRef] [PubMed]

Camy-Peyret, C.

Chevillard, J.-P.

Cheville, R. A.

Cohen, E. A.

H. M. Pickett, R. L. Poynter, E. A. Cohen, M. L. Delitsky, J. C. Pearson, and H. S. P. Muller, “Submillimeter, millimeter, and microwave spectral line catalog,” J. Quant. Spectrosc. Radiat. Transf. 60, 883–890 (1998).
[CrossRef]

Dana, V.

Davies, R. W.

De Lucia, F. C.

T. M. Goyette and F. C. De Lucia, “The pressure broadening of the 31.3–22.0 transition of water between 80 and 600 K,” J. Mol. Spectrosc. 143, 346–348 (1990).
[CrossRef]

Delaye, C.

Delfau, J.-L.

Delitsky, M. L.

H. M. Pickett, R. L. Poynter, E. A. Cohen, M. L. Delitsky, J. C. Pearson, and H. S. P. Muller, “Submillimeter, millimeter, and microwave spectral line catalog,” J. Quant. Spectrosc. Radiat. Transf. 60, 883–890 (1998).
[CrossRef]

Flaud, J.-M.

Gamache, R. R.

R. R. Gamache and L. S. Rothman, “Temperature dependence of N2-broadened halfwidth of water vapor: the pure rotational and ν2 bands,” J. Mol. Spectrosc. 128, 360–369 (1988).
[CrossRef]

R. R. Gamache and R. W. Davies, “Theoretical calculations of N2-broadened halfwidths of H2O using quantum Fourier transform theory,” Appl. Opt. 22, 4013–4019 (1983).
[CrossRef]

Gasster, S. D.

Goorvitch, D.

Goyette, T. M.

T. M. Goyette and F. C. De Lucia, “The pressure broadening of the 31.3–22.0 transition of water between 80 and 600 K,” J. Mol. Spectrosc. 143, 346–348 (1990).
[CrossRef]

Grischkowsky, D.

Guo, B.

L. Wallace, P. Bernath, W. Livingston, K. Hinkle, J. Busler, B. Guo, and K. Zhang, “Water on the Sun,” Science 268, 1155–1158 (1995).
[CrossRef] [PubMed]

Harde, H.

H. Harde, R. A. Cheville, and D. Grischkowsky, “Terahertz studies of collision-broadened rotational lines,” J. Phys. Chem. A 101, 3646–3660 (1997).
[CrossRef]

Hartmann, J. M.

J. M. Hartmann, J. Taine, J. Bonamy, B. Labini, and D. Robert, “Collisional broadening of rotation-vibration lines for asymmetric top molecules. II. H2O diode laser measurements in the 400–900 K range, calculations in the 300–2000 K range,” J. Chem. Phys. 86, 144–156 (1987).
[CrossRef]

Hartmann, J.-M.

Hawkins, R. L.

Hinkle, K.

L. Wallace, P. Bernath, W. Livingston, K. Hinkle, J. Busler, B. Guo, and K. Zhang, “Water on the Sun,” Science 268, 1155–1158 (1995).
[CrossRef] [PubMed]

Labini, B.

J. M. Hartmann, J. Taine, J. Bonamy, B. Labini, and D. Robert, “Collisional broadening of rotation-vibration lines for asymmetric top molecules. II. H2O diode laser measurements in the 400–900 K range, calculations in the 300–2000 K range,” J. Chem. Phys. 86, 144–156 (1987).
[CrossRef]

Livingston, W.

L. Wallace, P. Bernath, W. Livingston, K. Hinkle, J. Busler, B. Guo, and K. Zhang, “Water on the Sun,” Science 268, 1155–1158 (1995).
[CrossRef] [PubMed]

Mandin, J.-Y.

V. Dana, J.-Y. Mandin, C. Camy-Peyret, J.-M. Flaud, J.-P. Chevillard, R. L. Hawkins, and J.-L. Delfau, “Measurements of the collisional linewidth in the ν2 band of H2O from Fourier-transformed flame spectra,” Appl. Opt. 31, 1928–1936 (1992).
[CrossRef] [PubMed]

J.-Y. Mandin, V. Dana, C. Camy-Peyret, and J.-M. Flaud, “Collisional widths of pure rotational transitions of H2O from Fourier-transform flame spectra,” J. Mol. Spectrosc. 152, 179–184 (1992).
[CrossRef]

Manding, J.-Y.

Melnick, G. J.

D. A. Neufeld and G. J. Melnick, “Excitation of millimeter and submillimeter water masers,” Astrophys. J. 368, 215–230 (1991).
[CrossRef]

Muller, H. S. P.

H. M. Pickett, R. L. Poynter, E. A. Cohen, M. L. Delitsky, J. C. Pearson, and H. S. P. Muller, “Submillimeter, millimeter, and microwave spectral line catalog,” J. Quant. Spectrosc. Radiat. Transf. 60, 883–890 (1998).
[CrossRef]

Neufeld, D. A.

D. A. Neufeld and G. J. Melnick, “Excitation of millimeter and submillimeter water masers,” Astrophys. J. 368, 215–230 (1991).
[CrossRef]

Pearson, J. C.

H. M. Pickett, R. L. Poynter, E. A. Cohen, M. L. Delitsky, J. C. Pearson, and H. S. P. Muller, “Submillimeter, millimeter, and microwave spectral line catalog,” J. Quant. Spectrosc. Radiat. Transf. 60, 883–890 (1998).
[CrossRef]

Pickett, . M.

H. M. Pickett, R. L. Poynter, E. A. Cohen, M. L. Delitsky, J. C. Pearson, and H. S. P. Muller, “Submillimeter, millimeter, and microwave spectral line catalog,” J. Quant. Spectrosc. Radiat. Transf. 60, 883–890 (1998).
[CrossRef]

Polyansky, O. L.

O. L. Polyansky, N. F. Zobov, S. Viti, J. Tennyson, P. F. Bernath, and L. Wallace, “Water on the Sun: line assignments based on variational calculations,” Science 277, 346–348 (1997).
[CrossRef] [PubMed]

Poynter, R. L.

H. M. Pickett, R. L. Poynter, E. A. Cohen, M. L. Delitsky, J. C. Pearson, and H. S. P. Muller, “Submillimeter, millimeter, and microwave spectral line catalog,” J. Quant. Spectrosc. Radiat. Transf. 60, 883–890 (1998).
[CrossRef]

Robert, D.

J. M. Hartmann, J. Taine, J. Bonamy, B. Labini, and D. Robert, “Collisional broadening of rotation-vibration lines for asymmetric top molecules. II. H2O diode laser measurements in the 400–900 K range, calculations in the 300–2000 K range,” J. Chem. Phys. 86, 144–156 (1987).
[CrossRef]

Rosenkranz, P. W.

P. W. Rosenkranz, “Pressure broadening of rotational bands. II. Water vapor from 300 to 1100 cm−1,” J. Chem. Phys. 87, 163–170 (1987).
[CrossRef]

Rothman, L. S.

Taine, J.

C. Delaye, J.-M. Hartmann, and J. Taine, “Calculated tabulations of H2O line broadening by H2O, N2, O2, and CO2 at high temperature,” Appl. Opt. 28, 5080–5087 (1989).
[CrossRef] [PubMed]

J. M. Hartmann, J. Taine, J. Bonamy, B. Labini, and D. Robert, “Collisional broadening of rotation-vibration lines for asymmetric top molecules. II. H2O diode laser measurements in the 400–900 K range, calculations in the 300–2000 K range,” J. Chem. Phys. 86, 144–156 (1987).
[CrossRef]

Tennyson, J.

O. L. Polyansky, N. F. Zobov, S. Viti, J. Tennyson, P. F. Bernath, and L. Wallace, “Water on the Sun: line assignments based on variational calculations,” Science 277, 346–348 (1997).
[CrossRef] [PubMed]

Townes, C. H.

Valero, F. P. J.

Viti, S.

O. L. Polyansky, N. F. Zobov, S. Viti, J. Tennyson, P. F. Bernath, and L. Wallace, “Water on the Sun: line assignments based on variational calculations,” Science 277, 346–348 (1997).
[CrossRef] [PubMed]

Wallace, L.

O. L. Polyansky, N. F. Zobov, S. Viti, J. Tennyson, P. F. Bernath, and L. Wallace, “Water on the Sun: line assignments based on variational calculations,” Science 277, 346–348 (1997).
[CrossRef] [PubMed]

L. Wallace, P. Bernath, W. Livingston, K. Hinkle, J. Busler, B. Guo, and K. Zhang, “Water on the Sun,” Science 268, 1155–1158 (1995).
[CrossRef] [PubMed]

Zhang, K.

L. Wallace, P. Bernath, W. Livingston, K. Hinkle, J. Busler, B. Guo, and K. Zhang, “Water on the Sun,” Science 268, 1155–1158 (1995).
[CrossRef] [PubMed]

Zobov, N. F.

O. L. Polyansky, N. F. Zobov, S. Viti, J. Tennyson, P. F. Bernath, and L. Wallace, “Water on the Sun: line assignments based on variational calculations,” Science 277, 346–348 (1997).
[CrossRef] [PubMed]

Appl. Opt.

Astrophys. J.

D. A. Neufeld and G. J. Melnick, “Excitation of millimeter and submillimeter water masers,” Astrophys. J. 368, 215–230 (1991).
[CrossRef]

J. Chem. Phys.

P. W. Rosenkranz, “Pressure broadening of rotational bands. II. Water vapor from 300 to 1100 cm−1,” J. Chem. Phys. 87, 163–170 (1987).
[CrossRef]

J. M. Hartmann, J. Taine, J. Bonamy, B. Labini, and D. Robert, “Collisional broadening of rotation-vibration lines for asymmetric top molecules. II. H2O diode laser measurements in the 400–900 K range, calculations in the 300–2000 K range,” J. Chem. Phys. 86, 144–156 (1987).
[CrossRef]

J. Mol. Spectrosc.

J.-Y. Mandin, V. Dana, C. Camy-Peyret, and J.-M. Flaud, “Collisional widths of pure rotational transitions of H2O from Fourier-transform flame spectra,” J. Mol. Spectrosc. 152, 179–184 (1992).
[CrossRef]

T. M. Goyette and F. C. De Lucia, “The pressure broadening of the 31.3–22.0 transition of water between 80 and 600 K,” J. Mol. Spectrosc. 143, 346–348 (1990).
[CrossRef]

R. R. Gamache and L. S. Rothman, “Temperature dependence of N2-broadened halfwidth of water vapor: the pure rotational and ν2 bands,” J. Mol. Spectrosc. 128, 360–369 (1988).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Chem. A

H. Harde, R. A. Cheville, and D. Grischkowsky, “Terahertz studies of collision-broadened rotational lines,” J. Phys. Chem. A 101, 3646–3660 (1997).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transf.

H. M. Pickett, R. L. Poynter, E. A. Cohen, M. L. Delitsky, J. C. Pearson, and H. S. P. Muller, “Submillimeter, millimeter, and microwave spectral line catalog,” J. Quant. Spectrosc. Radiat. Transf. 60, 883–890 (1998).
[CrossRef]

Opt. Lett.

Science

O. L. Polyansky, N. F. Zobov, S. Viti, J. Tennyson, P. F. Bernath, and L. Wallace, “Water on the Sun: line assignments based on variational calculations,” Science 277, 346–348 (1997).
[CrossRef] [PubMed]

L. Wallace, P. Bernath, W. Livingston, K. Hinkle, J. Busler, B. Guo, and K. Zhang, “Water on the Sun,” Science 268, 1155–1158 (1995).
[CrossRef] [PubMed]

Other

C. H. Townes and A. L. Schawlow, Microwave Spectroscopy (Dover, New York, 1975).

T. Mathworks, Matlab Reference Guide (The Math Works Inc., Natick, Mass., 1995).

D. J. Perkey, Atmospheric Water Vapor, A. Deepak, T. D. Wilkerson, and L. H. Ruhnke, eds. (Academic, New York, 1980), pp. 513–526.

H. A. Gebbie, Atmospheric Water Vapor, A. Deepak, T. D. Wilkerson, and L. H. Ruhnke, eds. (Academic, New York, 1980), pp. 133–201.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) THz experimental system. (b) THz pulse transmitted through flame. The inset compares reference and sample scans on an expanded scale. (c) Amplitude spectrum of reference and pulse transmitted through flame. The reference THz pulse is shown in the inset on an expanded time scale.

Fig. 2
Fig. 2

Measured power absorption coefficient of active flame region. Lines marked with arrows are those for which linewidth was determined. Lines in the ν2=1 vibrational state are marked with ν2 and longer arrows. Numerical fits from Eq. (3) (solid curve) and the measured data (dots) for one individual line and two pairs of lines, marked with an asterisk, appear in upper panels.

Fig. 3
Fig. 3

Measured (open circles) and calculated (solid triangles) linewidths as a function of rotational and vibrational state energy. The error bars show estimated accuracy of the deconvolved linewidth data. Lines in the ν2 vibrational state lie above 1594 cm-1. For reference the approximate Boltzmann distribution calculated for the flame temperature of 1490 K is shown as a solid curve.

Fig. 4
Fig. 4

Ratio of absorption peaks measured in flame to those calculated at room temperature. Fitting the line slope determines sample temperature.6

Tables (1)

Tables Icon

Table 1 Tabulation of Measured, Deconvolved FWHM Linewidths (Δνmeas), Transition Frequencies (ν0), and Widths Predicted from Theory (Δνtheory)a

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

W(ω)=sin(ωTW)+i[1-cos(ωTW)]ωTW,
α(ω)=-ln|Efl(ω)|2|Eref(ω)|2L,
α(ω)2=A Δν(ν-ν0)2+(Δν/2)2 * sin(ωTw)ωTw.
1τ=[%CO2]τCO2+[%H2O]τH2O+[%N2]τN2+[%O2]τO2.
Δν(T)=Δν(T0)[T0/T]n

Metrics