Abstract

Infrared emission at 0.7, 0.8, 1.2, 1.5, 1.8, 2.3, 3.8, and 4.8 µm is measured in thulium- (Tm3+) and terbium- (Tb3+) doped gallium lanthanum sulfide (GLS) glass. Emission cross sections are calculated from the absorption and emission spectra by use of Judd–Ofelt analysis, the Füchtbauer–Ladenburg equation, and the theory of McCumber. Fluorescence and lifetime measurements confirm energy transfer from Tm3+ to Tb3+ ions and reveal a number of new cross-relaxation and upconversion processes between Tm3+ ions involving the  3F2,3 and  3H5 levels that can be observed only in low-phonon-energy materials. These processes indicate that the most efficient pump wavelength for the 1.2- and 3.8-µm transitions is 0.7 µm. The Tm3+ fluorescence at 3.8 µm coincides with an atmospheric transmission window, and the Tb3+ fluorescence at 4.8 µm overlaps the fundamental absorption of carbon monoxide, making the glass a potential fiber laser source for remote-sensing and gas-sensing applications.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Remote Sens. 31, 4–15 (1993).
    [CrossRef]
  2. D. C. Hanna, I. R. Perry, and J. R. Lincoln, “A 1-watt thulium-doped cw fibre laser operating at 2 μm,” Opt. Commun. 80, 52–56 (1990).
    [CrossRef]
  3. M. J. F. Digonnet, Rare-Earth Doped Fiber Lasers and Amplifiers (Marcel Dekker, New York, 1993), pp. 105–120.
  4. J. Y. Allain, M. Monerie, and H. Poignant, “Tunable cw lasing around 0.82, 1.48, 1.88 and 2.35 μm in thulium-doped fluorozirconate fibre,” Electron. Lett. 25, 1660–1662 (1989).
    [CrossRef]
  5. R. M. Percival, D. Szebesta, and S. T. Davey, “Thulium doped terbium sensitised cw fluoride fibre laser operating on the 1.47 μm transition,” Electron. Lett. 29, 1054–1056 (1993).
    [CrossRef]
  6. Y. Miyajima, T. Komukai, and T. Sugawa, “1-W cw Tm-doped fluoride fibre laser at 1.47 μm,” Electron. Lett. 29, 660–661 (1993).
    [CrossRef]
  7. J. N. Carter, R. G. Smart, D. C. Hanna, and A. C. Tropper, “Lasing and amplification in the 0.8 μm region in thulium doped fluorozirconate fibres,” Electron. Lett. 26, 1759–1761 (1990).
    [CrossRef]
  8. T. Komukai, T. Yamamoto, T. Sugawa, and Y. Miyajima, “Upconversion pumped thulium-doped fluoride fiber amplifier and laser operating at 1.47 μm,” IEEE J. Quantum Electron. 31, 1880–1889 (1995).
    [CrossRef]
  9. T. Sakamoto, M. Shimizu, M. Yamada, T. Kanamori, Y. Ohishi, Y. Terunuma, and S. Sudo, “35-dB gain Tm-doped ZBLYAN fiber amplifier operating at 1.65 μm,” IEEE Photonics Technol. Lett. 8, 349–351 (1996).
    [CrossRef]
  10. F. J. McAleavey and B. D. MacCraith, “Efficient diode pumped Tm3+-doped fluoride fibre laser for hydrocarbon gas sensing,” Electron. Lett. 31, 800–802 (1995).
    [CrossRef]
  11. Y. B. Shin, W. Y. Cho, and J. Heo, “Multiphonon and cross relaxation phenomena in Ge-As(or Ga)-S glasses doped with Tm3+,” J. Non-Cryst. Solids 208, 29–35 (1996).
    [CrossRef]
  12. Y. S. Kim, W. Y. Cho, Y. B. Shin, and J. Heo, “Emission characteristics of Ge–Ga–S glasses doped with Tm3+/Ho3+,” J. Non-Cryst. Solids 203, 176–181 (1996).
    [CrossRef]
  13. J. Heo, W. Y. Cho, and W. J. Chung, “Sensitizing effect of Tm3+ on 2.9 μm emission from Dy3+-doped Ge25Ga5S70 glass,” J. Non-Cryst. Solids 212, 151–156 (1997).
    [CrossRef]
  14. L. B. Shaw, D. Schaafsma, J. Moon, B. Harbison, J. Sanghera, and I. Aggarwal, “Evaluation of the IR transitions in rare-earth-doped chalcogenide glasses,” in Conference on Lasers and Electro-Optics, Vol. 11 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), p. 255.
  15. J. Heo, “Optical characteristics of rare-earth-doped sulphide glasses,” J. Mater. Sci. Lett. 14, 1014–1016 (1995).
    [CrossRef]
  16. T. Schweizer, D. W. Hewak, B. N. Samson, and D. N. Payne, “Spectroscopy of potential mid-infrared laser transitions in gallium lanthanum sulphide glass,” J. Lumin. 72–74, 419–421 (1997).
    [CrossRef]
  17. L. B. Shaw, B. B. Harbison, B. Cole, J. S. Sanghera, and I. D. Aggarwal, “Spectroscopy of the IR transitions in Pr3+-doped heavy metal selenide glasses,” Opt. Express 1, 87–96 (1997).
    [CrossRef] [PubMed]
  18. T. Schweizer, D. W. Hewak, B. N. Samson, and D. N. Payne, “Spectroscopic data of the 1.8-, 2.9-, and 4.3-μm transitions in dysprosium-doped gallium lanthanum sulfide glass,” Opt. Lett. 21, 1594–1596 (1996).
    [CrossRef] [PubMed]
  19. S. R. Bowman, L. B. Shaw, J. A. Moon, B. B. Harbison, and J. Ganem, “Spectroscopic studies of potential mid-ir laser materials,” in Advanced Solid-State Lasers, S. A. Payne and C. R. Pollock, eds., Vol. 1 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 277–279.
  20. K. Wei, D. P. Machewirth, J. Wenzel, E. Snitzer, and G. H. Sigel, Jr., “Spectroscopy of Dy3+ in Ge–Ga–S glass and its suitability for 1.3-μm fiber-optical amplifier applications,” Opt. Lett. 19, 904–906 (1994).
    [CrossRef] [PubMed]
  21. T. Schweizer, D. J. Brady, and D. W. Hewak, “Fabrication and spectroscopy of erbium-doped gallium lanthanum sulphide glass fibres for mid-infrared laser applications,” Opt. Express 1, 102–107 (1997).
    [CrossRef] [PubMed]
  22. J. Sanz, R. Cases, and R. Alcalá, “Optical properties of Tm3+ in fluorozirconate glass,” J. Non-Cryst. Solids 93, 377–386 (1987).
    [CrossRef]
  23. K. Hirao, S. Tanabe, S. Kishimoto, K. Tamai, and N. Soga, “UV and blue upconversion in Tm3+-doped fluoroaluminate glass by 0.655 μm excitation,” J. Non-Cryst. Solids 135, 90–93 (1991).
    [CrossRef]
  24. C. K. Jørgensen and B. R. Judd, “Hypersensitive pseudoquadrupole transitions in lanthanides,” Mol. Phys. 8, 281–290 (1964).
    [CrossRef]
  25. X. Zou and T. Izumitani, “Fluorescence mechanism and dynamics of Tm3+ singly doped and Yb3+, Tm3+ doubly doped glasses,” J. Non-Cryst. Solids 162, 58–67 (1993).
    [CrossRef]
  26. F. E. Auzel, “Materials and devices using double-pumped phosphors with energy transfer,” Proc. IEEE 61, 758–786 (1973).
    [CrossRef]
  27. C. K. Jørgensen and R. Reisfeld, “Judd–Ofelt parameters and chemical bonding,” J. Less-Common Met. 93, 107–112 (1983).
    [CrossRef]
  28. N. Duhamel-Henry, J. L. Adam, B. Jaquier, and C. Linarès, “Photoluminescence of new fluorophosphate glasses containing a high concentration of terbium (III) ions,” Opt. Mater. 5, 197–207 (1996).
    [CrossRef]
  29. B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962).
    [CrossRef]
  30. G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962).
    [CrossRef]
  31. M. J. Weber, “Probabilities for radiative and nonradiative decay of Er3+ in LaF3,” Phys. Rev. 157, 262–272 (1966).
    [CrossRef]
  32. B. F. Aull and H. P. Jensen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron. QE-18, 925–930 (1982).
    [CrossRef]
  33. W. J. Miniscalco and R. S. Quimby, “General procedure for the analysis of Er3+ cross sections,” Opt. Lett. 16, 258–260 (1991).
    [CrossRef] [PubMed]
  34. T. Schweizer, P. E.-A. Möbert, J. R. Hector, D. W. Hewak, W. S. Brocklesby, D. N. Payne, and G. Huber, “Optical measurement of narrow band rare-earth 4f levels with energies greater than the bandgap of the host,” Phys. Rev. Lett. 80, 1537–1540 (1998).
    [CrossRef]
  35. D. W. Hewak, R. C. Moore, T. Schweizer, J. Wang, B. Samson, W. S. Brocklesby, D. N. Payne, and E. J. Tarbox, “Gallium lanthanum sulphide optical fibre for active and passive applications,” Electron. Lett. 32, 384–385 (1996).
    [CrossRef]
  36. T. Schweizer, B. N. Samson, R. C. Moore, D. W. Hewak, and D. N. Payne, “Rare-earth doped chalcogenide glass fibre laser,” Electron. Lett. 33, 414–416 (1997).
    [CrossRef]

1998 (1)

T. Schweizer, P. E.-A. Möbert, J. R. Hector, D. W. Hewak, W. S. Brocklesby, D. N. Payne, and G. Huber, “Optical measurement of narrow band rare-earth 4f levels with energies greater than the bandgap of the host,” Phys. Rev. Lett. 80, 1537–1540 (1998).
[CrossRef]

1997 (5)

T. Schweizer, B. N. Samson, R. C. Moore, D. W. Hewak, and D. N. Payne, “Rare-earth doped chalcogenide glass fibre laser,” Electron. Lett. 33, 414–416 (1997).
[CrossRef]

T. Schweizer, D. J. Brady, and D. W. Hewak, “Fabrication and spectroscopy of erbium-doped gallium lanthanum sulphide glass fibres for mid-infrared laser applications,” Opt. Express 1, 102–107 (1997).
[CrossRef] [PubMed]

L. B. Shaw, B. B. Harbison, B. Cole, J. S. Sanghera, and I. D. Aggarwal, “Spectroscopy of the IR transitions in Pr3+-doped heavy metal selenide glasses,” Opt. Express 1, 87–96 (1997).
[CrossRef] [PubMed]

J. Heo, W. Y. Cho, and W. J. Chung, “Sensitizing effect of Tm3+ on 2.9 μm emission from Dy3+-doped Ge25Ga5S70 glass,” J. Non-Cryst. Solids 212, 151–156 (1997).
[CrossRef]

T. Schweizer, D. W. Hewak, B. N. Samson, and D. N. Payne, “Spectroscopy of potential mid-infrared laser transitions in gallium lanthanum sulphide glass,” J. Lumin. 72–74, 419–421 (1997).
[CrossRef]

1996 (6)

T. Sakamoto, M. Shimizu, M. Yamada, T. Kanamori, Y. Ohishi, Y. Terunuma, and S. Sudo, “35-dB gain Tm-doped ZBLYAN fiber amplifier operating at 1.65 μm,” IEEE Photonics Technol. Lett. 8, 349–351 (1996).
[CrossRef]

Y. B. Shin, W. Y. Cho, and J. Heo, “Multiphonon and cross relaxation phenomena in Ge-As(or Ga)-S glasses doped with Tm3+,” J. Non-Cryst. Solids 208, 29–35 (1996).
[CrossRef]

Y. S. Kim, W. Y. Cho, Y. B. Shin, and J. Heo, “Emission characteristics of Ge–Ga–S glasses doped with Tm3+/Ho3+,” J. Non-Cryst. Solids 203, 176–181 (1996).
[CrossRef]

T. Schweizer, D. W. Hewak, B. N. Samson, and D. N. Payne, “Spectroscopic data of the 1.8-, 2.9-, and 4.3-μm transitions in dysprosium-doped gallium lanthanum sulfide glass,” Opt. Lett. 21, 1594–1596 (1996).
[CrossRef] [PubMed]

D. W. Hewak, R. C. Moore, T. Schweizer, J. Wang, B. Samson, W. S. Brocklesby, D. N. Payne, and E. J. Tarbox, “Gallium lanthanum sulphide optical fibre for active and passive applications,” Electron. Lett. 32, 384–385 (1996).
[CrossRef]

N. Duhamel-Henry, J. L. Adam, B. Jaquier, and C. Linarès, “Photoluminescence of new fluorophosphate glasses containing a high concentration of terbium (III) ions,” Opt. Mater. 5, 197–207 (1996).
[CrossRef]

1995 (3)

T. Komukai, T. Yamamoto, T. Sugawa, and Y. Miyajima, “Upconversion pumped thulium-doped fluoride fiber amplifier and laser operating at 1.47 μm,” IEEE J. Quantum Electron. 31, 1880–1889 (1995).
[CrossRef]

F. J. McAleavey and B. D. MacCraith, “Efficient diode pumped Tm3+-doped fluoride fibre laser for hydrocarbon gas sensing,” Electron. Lett. 31, 800–802 (1995).
[CrossRef]

J. Heo, “Optical characteristics of rare-earth-doped sulphide glasses,” J. Mater. Sci. Lett. 14, 1014–1016 (1995).
[CrossRef]

1994 (1)

1993 (4)

X. Zou and T. Izumitani, “Fluorescence mechanism and dynamics of Tm3+ singly doped and Yb3+, Tm3+ doubly doped glasses,” J. Non-Cryst. Solids 162, 58–67 (1993).
[CrossRef]

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Remote Sens. 31, 4–15 (1993).
[CrossRef]

R. M. Percival, D. Szebesta, and S. T. Davey, “Thulium doped terbium sensitised cw fluoride fibre laser operating on the 1.47 μm transition,” Electron. Lett. 29, 1054–1056 (1993).
[CrossRef]

Y. Miyajima, T. Komukai, and T. Sugawa, “1-W cw Tm-doped fluoride fibre laser at 1.47 μm,” Electron. Lett. 29, 660–661 (1993).
[CrossRef]

1991 (2)

K. Hirao, S. Tanabe, S. Kishimoto, K. Tamai, and N. Soga, “UV and blue upconversion in Tm3+-doped fluoroaluminate glass by 0.655 μm excitation,” J. Non-Cryst. Solids 135, 90–93 (1991).
[CrossRef]

W. J. Miniscalco and R. S. Quimby, “General procedure for the analysis of Er3+ cross sections,” Opt. Lett. 16, 258–260 (1991).
[CrossRef] [PubMed]

1990 (2)

J. N. Carter, R. G. Smart, D. C. Hanna, and A. C. Tropper, “Lasing and amplification in the 0.8 μm region in thulium doped fluorozirconate fibres,” Electron. Lett. 26, 1759–1761 (1990).
[CrossRef]

D. C. Hanna, I. R. Perry, and J. R. Lincoln, “A 1-watt thulium-doped cw fibre laser operating at 2 μm,” Opt. Commun. 80, 52–56 (1990).
[CrossRef]

1989 (1)

J. Y. Allain, M. Monerie, and H. Poignant, “Tunable cw lasing around 0.82, 1.48, 1.88 and 2.35 μm in thulium-doped fluorozirconate fibre,” Electron. Lett. 25, 1660–1662 (1989).
[CrossRef]

1987 (1)

J. Sanz, R. Cases, and R. Alcalá, “Optical properties of Tm3+ in fluorozirconate glass,” J. Non-Cryst. Solids 93, 377–386 (1987).
[CrossRef]

1983 (1)

C. K. Jørgensen and R. Reisfeld, “Judd–Ofelt parameters and chemical bonding,” J. Less-Common Met. 93, 107–112 (1983).
[CrossRef]

1982 (1)

B. F. Aull and H. P. Jensen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron. QE-18, 925–930 (1982).
[CrossRef]

1973 (1)

F. E. Auzel, “Materials and devices using double-pumped phosphors with energy transfer,” Proc. IEEE 61, 758–786 (1973).
[CrossRef]

1966 (1)

M. J. Weber, “Probabilities for radiative and nonradiative decay of Er3+ in LaF3,” Phys. Rev. 157, 262–272 (1966).
[CrossRef]

1964 (1)

C. K. Jørgensen and B. R. Judd, “Hypersensitive pseudoquadrupole transitions in lanthanides,” Mol. Phys. 8, 281–290 (1964).
[CrossRef]

1962 (2)

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962).
[CrossRef]

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962).
[CrossRef]

Adam, J. L.

N. Duhamel-Henry, J. L. Adam, B. Jaquier, and C. Linarès, “Photoluminescence of new fluorophosphate glasses containing a high concentration of terbium (III) ions,” Opt. Mater. 5, 197–207 (1996).
[CrossRef]

Aggarwal, I. D.

Alcalá, R.

J. Sanz, R. Cases, and R. Alcalá, “Optical properties of Tm3+ in fluorozirconate glass,” J. Non-Cryst. Solids 93, 377–386 (1987).
[CrossRef]

Allain, J. Y.

J. Y. Allain, M. Monerie, and H. Poignant, “Tunable cw lasing around 0.82, 1.48, 1.88 and 2.35 μm in thulium-doped fluorozirconate fibre,” Electron. Lett. 25, 1660–1662 (1989).
[CrossRef]

Aull, B. F.

B. F. Aull and H. P. Jensen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron. QE-18, 925–930 (1982).
[CrossRef]

Auzel, F. E.

F. E. Auzel, “Materials and devices using double-pumped phosphors with energy transfer,” Proc. IEEE 61, 758–786 (1973).
[CrossRef]

Brady, D. J.

Brocklesby, W. S.

T. Schweizer, P. E.-A. Möbert, J. R. Hector, D. W. Hewak, W. S. Brocklesby, D. N. Payne, and G. Huber, “Optical measurement of narrow band rare-earth 4f levels with energies greater than the bandgap of the host,” Phys. Rev. Lett. 80, 1537–1540 (1998).
[CrossRef]

D. W. Hewak, R. C. Moore, T. Schweizer, J. Wang, B. Samson, W. S. Brocklesby, D. N. Payne, and E. J. Tarbox, “Gallium lanthanum sulphide optical fibre for active and passive applications,” Electron. Lett. 32, 384–385 (1996).
[CrossRef]

Bruns, D. L.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Remote Sens. 31, 4–15 (1993).
[CrossRef]

Carter, J. N.

J. N. Carter, R. G. Smart, D. C. Hanna, and A. C. Tropper, “Lasing and amplification in the 0.8 μm region in thulium doped fluorozirconate fibres,” Electron. Lett. 26, 1759–1761 (1990).
[CrossRef]

Cases, R.

J. Sanz, R. Cases, and R. Alcalá, “Optical properties of Tm3+ in fluorozirconate glass,” J. Non-Cryst. Solids 93, 377–386 (1987).
[CrossRef]

Cho, W. Y.

J. Heo, W. Y. Cho, and W. J. Chung, “Sensitizing effect of Tm3+ on 2.9 μm emission from Dy3+-doped Ge25Ga5S70 glass,” J. Non-Cryst. Solids 212, 151–156 (1997).
[CrossRef]

Y. B. Shin, W. Y. Cho, and J. Heo, “Multiphonon and cross relaxation phenomena in Ge-As(or Ga)-S glasses doped with Tm3+,” J. Non-Cryst. Solids 208, 29–35 (1996).
[CrossRef]

Y. S. Kim, W. Y. Cho, Y. B. Shin, and J. Heo, “Emission characteristics of Ge–Ga–S glasses doped with Tm3+/Ho3+,” J. Non-Cryst. Solids 203, 176–181 (1996).
[CrossRef]

Chung, W. J.

J. Heo, W. Y. Cho, and W. J. Chung, “Sensitizing effect of Tm3+ on 2.9 μm emission from Dy3+-doped Ge25Ga5S70 glass,” J. Non-Cryst. Solids 212, 151–156 (1997).
[CrossRef]

Cole, B.

Davey, S. T.

R. M. Percival, D. Szebesta, and S. T. Davey, “Thulium doped terbium sensitised cw fluoride fibre laser operating on the 1.47 μm transition,” Electron. Lett. 29, 1054–1056 (1993).
[CrossRef]

Duhamel-Henry, N.

N. Duhamel-Henry, J. L. Adam, B. Jaquier, and C. Linarès, “Photoluminescence of new fluorophosphate glasses containing a high concentration of terbium (III) ions,” Opt. Mater. 5, 197–207 (1996).
[CrossRef]

Hale, C. P.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Remote Sens. 31, 4–15 (1993).
[CrossRef]

Hanna, D. C.

D. C. Hanna, I. R. Perry, and J. R. Lincoln, “A 1-watt thulium-doped cw fibre laser operating at 2 μm,” Opt. Commun. 80, 52–56 (1990).
[CrossRef]

J. N. Carter, R. G. Smart, D. C. Hanna, and A. C. Tropper, “Lasing and amplification in the 0.8 μm region in thulium doped fluorozirconate fibres,” Electron. Lett. 26, 1759–1761 (1990).
[CrossRef]

Hannon, S. M.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Remote Sens. 31, 4–15 (1993).
[CrossRef]

Harbison, B. B.

Hector, J. R.

T. Schweizer, P. E.-A. Möbert, J. R. Hector, D. W. Hewak, W. S. Brocklesby, D. N. Payne, and G. Huber, “Optical measurement of narrow band rare-earth 4f levels with energies greater than the bandgap of the host,” Phys. Rev. Lett. 80, 1537–1540 (1998).
[CrossRef]

Henderson, S. W.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Remote Sens. 31, 4–15 (1993).
[CrossRef]

Heo, J.

J. Heo, W. Y. Cho, and W. J. Chung, “Sensitizing effect of Tm3+ on 2.9 μm emission from Dy3+-doped Ge25Ga5S70 glass,” J. Non-Cryst. Solids 212, 151–156 (1997).
[CrossRef]

Y. S. Kim, W. Y. Cho, Y. B. Shin, and J. Heo, “Emission characteristics of Ge–Ga–S glasses doped with Tm3+/Ho3+,” J. Non-Cryst. Solids 203, 176–181 (1996).
[CrossRef]

Y. B. Shin, W. Y. Cho, and J. Heo, “Multiphonon and cross relaxation phenomena in Ge-As(or Ga)-S glasses doped with Tm3+,” J. Non-Cryst. Solids 208, 29–35 (1996).
[CrossRef]

J. Heo, “Optical characteristics of rare-earth-doped sulphide glasses,” J. Mater. Sci. Lett. 14, 1014–1016 (1995).
[CrossRef]

Hewak, D. W.

T. Schweizer, P. E.-A. Möbert, J. R. Hector, D. W. Hewak, W. S. Brocklesby, D. N. Payne, and G. Huber, “Optical measurement of narrow band rare-earth 4f levels with energies greater than the bandgap of the host,” Phys. Rev. Lett. 80, 1537–1540 (1998).
[CrossRef]

T. Schweizer, B. N. Samson, R. C. Moore, D. W. Hewak, and D. N. Payne, “Rare-earth doped chalcogenide glass fibre laser,” Electron. Lett. 33, 414–416 (1997).
[CrossRef]

T. Schweizer, D. W. Hewak, B. N. Samson, and D. N. Payne, “Spectroscopy of potential mid-infrared laser transitions in gallium lanthanum sulphide glass,” J. Lumin. 72–74, 419–421 (1997).
[CrossRef]

T. Schweizer, D. J. Brady, and D. W. Hewak, “Fabrication and spectroscopy of erbium-doped gallium lanthanum sulphide glass fibres for mid-infrared laser applications,” Opt. Express 1, 102–107 (1997).
[CrossRef] [PubMed]

T. Schweizer, D. W. Hewak, B. N. Samson, and D. N. Payne, “Spectroscopic data of the 1.8-, 2.9-, and 4.3-μm transitions in dysprosium-doped gallium lanthanum sulfide glass,” Opt. Lett. 21, 1594–1596 (1996).
[CrossRef] [PubMed]

D. W. Hewak, R. C. Moore, T. Schweizer, J. Wang, B. Samson, W. S. Brocklesby, D. N. Payne, and E. J. Tarbox, “Gallium lanthanum sulphide optical fibre for active and passive applications,” Electron. Lett. 32, 384–385 (1996).
[CrossRef]

Hirao, K.

K. Hirao, S. Tanabe, S. Kishimoto, K. Tamai, and N. Soga, “UV and blue upconversion in Tm3+-doped fluoroaluminate glass by 0.655 μm excitation,” J. Non-Cryst. Solids 135, 90–93 (1991).
[CrossRef]

Huber, G.

T. Schweizer, P. E.-A. Möbert, J. R. Hector, D. W. Hewak, W. S. Brocklesby, D. N. Payne, and G. Huber, “Optical measurement of narrow band rare-earth 4f levels with energies greater than the bandgap of the host,” Phys. Rev. Lett. 80, 1537–1540 (1998).
[CrossRef]

Izumitani, T.

X. Zou and T. Izumitani, “Fluorescence mechanism and dynamics of Tm3+ singly doped and Yb3+, Tm3+ doubly doped glasses,” J. Non-Cryst. Solids 162, 58–67 (1993).
[CrossRef]

Jaquier, B.

N. Duhamel-Henry, J. L. Adam, B. Jaquier, and C. Linarès, “Photoluminescence of new fluorophosphate glasses containing a high concentration of terbium (III) ions,” Opt. Mater. 5, 197–207 (1996).
[CrossRef]

Jensen, H. P.

B. F. Aull and H. P. Jensen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron. QE-18, 925–930 (1982).
[CrossRef]

Jørgensen, C. K.

C. K. Jørgensen and R. Reisfeld, “Judd–Ofelt parameters and chemical bonding,” J. Less-Common Met. 93, 107–112 (1983).
[CrossRef]

C. K. Jørgensen and B. R. Judd, “Hypersensitive pseudoquadrupole transitions in lanthanides,” Mol. Phys. 8, 281–290 (1964).
[CrossRef]

Judd, B. R.

C. K. Jørgensen and B. R. Judd, “Hypersensitive pseudoquadrupole transitions in lanthanides,” Mol. Phys. 8, 281–290 (1964).
[CrossRef]

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962).
[CrossRef]

Kanamori, T.

T. Sakamoto, M. Shimizu, M. Yamada, T. Kanamori, Y. Ohishi, Y. Terunuma, and S. Sudo, “35-dB gain Tm-doped ZBLYAN fiber amplifier operating at 1.65 μm,” IEEE Photonics Technol. Lett. 8, 349–351 (1996).
[CrossRef]

Kim, Y. S.

Y. S. Kim, W. Y. Cho, Y. B. Shin, and J. Heo, “Emission characteristics of Ge–Ga–S glasses doped with Tm3+/Ho3+,” J. Non-Cryst. Solids 203, 176–181 (1996).
[CrossRef]

Kishimoto, S.

K. Hirao, S. Tanabe, S. Kishimoto, K. Tamai, and N. Soga, “UV and blue upconversion in Tm3+-doped fluoroaluminate glass by 0.655 μm excitation,” J. Non-Cryst. Solids 135, 90–93 (1991).
[CrossRef]

Komukai, T.

T. Komukai, T. Yamamoto, T. Sugawa, and Y. Miyajima, “Upconversion pumped thulium-doped fluoride fiber amplifier and laser operating at 1.47 μm,” IEEE J. Quantum Electron. 31, 1880–1889 (1995).
[CrossRef]

Y. Miyajima, T. Komukai, and T. Sugawa, “1-W cw Tm-doped fluoride fibre laser at 1.47 μm,” Electron. Lett. 29, 660–661 (1993).
[CrossRef]

Linarès, C.

N. Duhamel-Henry, J. L. Adam, B. Jaquier, and C. Linarès, “Photoluminescence of new fluorophosphate glasses containing a high concentration of terbium (III) ions,” Opt. Mater. 5, 197–207 (1996).
[CrossRef]

Lincoln, J. R.

D. C. Hanna, I. R. Perry, and J. R. Lincoln, “A 1-watt thulium-doped cw fibre laser operating at 2 μm,” Opt. Commun. 80, 52–56 (1990).
[CrossRef]

MacCraith, B. D.

F. J. McAleavey and B. D. MacCraith, “Efficient diode pumped Tm3+-doped fluoride fibre laser for hydrocarbon gas sensing,” Electron. Lett. 31, 800–802 (1995).
[CrossRef]

Machewirth, D. P.

Magee, J. R.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Remote Sens. 31, 4–15 (1993).
[CrossRef]

McAleavey, F. J.

F. J. McAleavey and B. D. MacCraith, “Efficient diode pumped Tm3+-doped fluoride fibre laser for hydrocarbon gas sensing,” Electron. Lett. 31, 800–802 (1995).
[CrossRef]

Miniscalco, W. J.

Miyajima, Y.

T. Komukai, T. Yamamoto, T. Sugawa, and Y. Miyajima, “Upconversion pumped thulium-doped fluoride fiber amplifier and laser operating at 1.47 μm,” IEEE J. Quantum Electron. 31, 1880–1889 (1995).
[CrossRef]

Y. Miyajima, T. Komukai, and T. Sugawa, “1-W cw Tm-doped fluoride fibre laser at 1.47 μm,” Electron. Lett. 29, 660–661 (1993).
[CrossRef]

Möbert, P. E.-A.

T. Schweizer, P. E.-A. Möbert, J. R. Hector, D. W. Hewak, W. S. Brocklesby, D. N. Payne, and G. Huber, “Optical measurement of narrow band rare-earth 4f levels with energies greater than the bandgap of the host,” Phys. Rev. Lett. 80, 1537–1540 (1998).
[CrossRef]

Monerie, M.

J. Y. Allain, M. Monerie, and H. Poignant, “Tunable cw lasing around 0.82, 1.48, 1.88 and 2.35 μm in thulium-doped fluorozirconate fibre,” Electron. Lett. 25, 1660–1662 (1989).
[CrossRef]

Moore, R. C.

T. Schweizer, B. N. Samson, R. C. Moore, D. W. Hewak, and D. N. Payne, “Rare-earth doped chalcogenide glass fibre laser,” Electron. Lett. 33, 414–416 (1997).
[CrossRef]

D. W. Hewak, R. C. Moore, T. Schweizer, J. Wang, B. Samson, W. S. Brocklesby, D. N. Payne, and E. J. Tarbox, “Gallium lanthanum sulphide optical fibre for active and passive applications,” Electron. Lett. 32, 384–385 (1996).
[CrossRef]

Ofelt, G. S.

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962).
[CrossRef]

Ohishi, Y.

T. Sakamoto, M. Shimizu, M. Yamada, T. Kanamori, Y. Ohishi, Y. Terunuma, and S. Sudo, “35-dB gain Tm-doped ZBLYAN fiber amplifier operating at 1.65 μm,” IEEE Photonics Technol. Lett. 8, 349–351 (1996).
[CrossRef]

Payne, D. N.

T. Schweizer, P. E.-A. Möbert, J. R. Hector, D. W. Hewak, W. S. Brocklesby, D. N. Payne, and G. Huber, “Optical measurement of narrow band rare-earth 4f levels with energies greater than the bandgap of the host,” Phys. Rev. Lett. 80, 1537–1540 (1998).
[CrossRef]

T. Schweizer, B. N. Samson, R. C. Moore, D. W. Hewak, and D. N. Payne, “Rare-earth doped chalcogenide glass fibre laser,” Electron. Lett. 33, 414–416 (1997).
[CrossRef]

T. Schweizer, D. W. Hewak, B. N. Samson, and D. N. Payne, “Spectroscopy of potential mid-infrared laser transitions in gallium lanthanum sulphide glass,” J. Lumin. 72–74, 419–421 (1997).
[CrossRef]

T. Schweizer, D. W. Hewak, B. N. Samson, and D. N. Payne, “Spectroscopic data of the 1.8-, 2.9-, and 4.3-μm transitions in dysprosium-doped gallium lanthanum sulfide glass,” Opt. Lett. 21, 1594–1596 (1996).
[CrossRef] [PubMed]

D. W. Hewak, R. C. Moore, T. Schweizer, J. Wang, B. Samson, W. S. Brocklesby, D. N. Payne, and E. J. Tarbox, “Gallium lanthanum sulphide optical fibre for active and passive applications,” Electron. Lett. 32, 384–385 (1996).
[CrossRef]

Percival, R. M.

R. M. Percival, D. Szebesta, and S. T. Davey, “Thulium doped terbium sensitised cw fluoride fibre laser operating on the 1.47 μm transition,” Electron. Lett. 29, 1054–1056 (1993).
[CrossRef]

Perry, I. R.

D. C. Hanna, I. R. Perry, and J. R. Lincoln, “A 1-watt thulium-doped cw fibre laser operating at 2 μm,” Opt. Commun. 80, 52–56 (1990).
[CrossRef]

Poignant, H.

J. Y. Allain, M. Monerie, and H. Poignant, “Tunable cw lasing around 0.82, 1.48, 1.88 and 2.35 μm in thulium-doped fluorozirconate fibre,” Electron. Lett. 25, 1660–1662 (1989).
[CrossRef]

Quimby, R. S.

Reisfeld, R.

C. K. Jørgensen and R. Reisfeld, “Judd–Ofelt parameters and chemical bonding,” J. Less-Common Met. 93, 107–112 (1983).
[CrossRef]

Sakamoto, T.

T. Sakamoto, M. Shimizu, M. Yamada, T. Kanamori, Y. Ohishi, Y. Terunuma, and S. Sudo, “35-dB gain Tm-doped ZBLYAN fiber amplifier operating at 1.65 μm,” IEEE Photonics Technol. Lett. 8, 349–351 (1996).
[CrossRef]

Samson, B.

D. W. Hewak, R. C. Moore, T. Schweizer, J. Wang, B. Samson, W. S. Brocklesby, D. N. Payne, and E. J. Tarbox, “Gallium lanthanum sulphide optical fibre for active and passive applications,” Electron. Lett. 32, 384–385 (1996).
[CrossRef]

Samson, B. N.

T. Schweizer, B. N. Samson, R. C. Moore, D. W. Hewak, and D. N. Payne, “Rare-earth doped chalcogenide glass fibre laser,” Electron. Lett. 33, 414–416 (1997).
[CrossRef]

T. Schweizer, D. W. Hewak, B. N. Samson, and D. N. Payne, “Spectroscopy of potential mid-infrared laser transitions in gallium lanthanum sulphide glass,” J. Lumin. 72–74, 419–421 (1997).
[CrossRef]

T. Schweizer, D. W. Hewak, B. N. Samson, and D. N. Payne, “Spectroscopic data of the 1.8-, 2.9-, and 4.3-μm transitions in dysprosium-doped gallium lanthanum sulfide glass,” Opt. Lett. 21, 1594–1596 (1996).
[CrossRef] [PubMed]

Sanghera, J. S.

Sanz, J.

J. Sanz, R. Cases, and R. Alcalá, “Optical properties of Tm3+ in fluorozirconate glass,” J. Non-Cryst. Solids 93, 377–386 (1987).
[CrossRef]

Schweizer, T.

T. Schweizer, P. E.-A. Möbert, J. R. Hector, D. W. Hewak, W. S. Brocklesby, D. N. Payne, and G. Huber, “Optical measurement of narrow band rare-earth 4f levels with energies greater than the bandgap of the host,” Phys. Rev. Lett. 80, 1537–1540 (1998).
[CrossRef]

T. Schweizer, B. N. Samson, R. C. Moore, D. W. Hewak, and D. N. Payne, “Rare-earth doped chalcogenide glass fibre laser,” Electron. Lett. 33, 414–416 (1997).
[CrossRef]

T. Schweizer, D. J. Brady, and D. W. Hewak, “Fabrication and spectroscopy of erbium-doped gallium lanthanum sulphide glass fibres for mid-infrared laser applications,” Opt. Express 1, 102–107 (1997).
[CrossRef] [PubMed]

T. Schweizer, D. W. Hewak, B. N. Samson, and D. N. Payne, “Spectroscopy of potential mid-infrared laser transitions in gallium lanthanum sulphide glass,” J. Lumin. 72–74, 419–421 (1997).
[CrossRef]

T. Schweizer, D. W. Hewak, B. N. Samson, and D. N. Payne, “Spectroscopic data of the 1.8-, 2.9-, and 4.3-μm transitions in dysprosium-doped gallium lanthanum sulfide glass,” Opt. Lett. 21, 1594–1596 (1996).
[CrossRef] [PubMed]

D. W. Hewak, R. C. Moore, T. Schweizer, J. Wang, B. Samson, W. S. Brocklesby, D. N. Payne, and E. J. Tarbox, “Gallium lanthanum sulphide optical fibre for active and passive applications,” Electron. Lett. 32, 384–385 (1996).
[CrossRef]

Shaw, L. B.

Shimizu, M.

T. Sakamoto, M. Shimizu, M. Yamada, T. Kanamori, Y. Ohishi, Y. Terunuma, and S. Sudo, “35-dB gain Tm-doped ZBLYAN fiber amplifier operating at 1.65 μm,” IEEE Photonics Technol. Lett. 8, 349–351 (1996).
[CrossRef]

Shin, Y. B.

Y. B. Shin, W. Y. Cho, and J. Heo, “Multiphonon and cross relaxation phenomena in Ge-As(or Ga)-S glasses doped with Tm3+,” J. Non-Cryst. Solids 208, 29–35 (1996).
[CrossRef]

Y. S. Kim, W. Y. Cho, Y. B. Shin, and J. Heo, “Emission characteristics of Ge–Ga–S glasses doped with Tm3+/Ho3+,” J. Non-Cryst. Solids 203, 176–181 (1996).
[CrossRef]

Sigel Jr., G. H.

Smart, R. G.

J. N. Carter, R. G. Smart, D. C. Hanna, and A. C. Tropper, “Lasing and amplification in the 0.8 μm region in thulium doped fluorozirconate fibres,” Electron. Lett. 26, 1759–1761 (1990).
[CrossRef]

Snitzer, E.

Soga, N.

K. Hirao, S. Tanabe, S. Kishimoto, K. Tamai, and N. Soga, “UV and blue upconversion in Tm3+-doped fluoroaluminate glass by 0.655 μm excitation,” J. Non-Cryst. Solids 135, 90–93 (1991).
[CrossRef]

Sudo, S.

T. Sakamoto, M. Shimizu, M. Yamada, T. Kanamori, Y. Ohishi, Y. Terunuma, and S. Sudo, “35-dB gain Tm-doped ZBLYAN fiber amplifier operating at 1.65 μm,” IEEE Photonics Technol. Lett. 8, 349–351 (1996).
[CrossRef]

Sugawa, T.

T. Komukai, T. Yamamoto, T. Sugawa, and Y. Miyajima, “Upconversion pumped thulium-doped fluoride fiber amplifier and laser operating at 1.47 μm,” IEEE J. Quantum Electron. 31, 1880–1889 (1995).
[CrossRef]

Y. Miyajima, T. Komukai, and T. Sugawa, “1-W cw Tm-doped fluoride fibre laser at 1.47 μm,” Electron. Lett. 29, 660–661 (1993).
[CrossRef]

Suni, P. J. M.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Remote Sens. 31, 4–15 (1993).
[CrossRef]

Szebesta, D.

R. M. Percival, D. Szebesta, and S. T. Davey, “Thulium doped terbium sensitised cw fluoride fibre laser operating on the 1.47 μm transition,” Electron. Lett. 29, 1054–1056 (1993).
[CrossRef]

Tamai, K.

K. Hirao, S. Tanabe, S. Kishimoto, K. Tamai, and N. Soga, “UV and blue upconversion in Tm3+-doped fluoroaluminate glass by 0.655 μm excitation,” J. Non-Cryst. Solids 135, 90–93 (1991).
[CrossRef]

Tanabe, S.

K. Hirao, S. Tanabe, S. Kishimoto, K. Tamai, and N. Soga, “UV and blue upconversion in Tm3+-doped fluoroaluminate glass by 0.655 μm excitation,” J. Non-Cryst. Solids 135, 90–93 (1991).
[CrossRef]

Tarbox, E. J.

D. W. Hewak, R. C. Moore, T. Schweizer, J. Wang, B. Samson, W. S. Brocklesby, D. N. Payne, and E. J. Tarbox, “Gallium lanthanum sulphide optical fibre for active and passive applications,” Electron. Lett. 32, 384–385 (1996).
[CrossRef]

Terunuma, Y.

T. Sakamoto, M. Shimizu, M. Yamada, T. Kanamori, Y. Ohishi, Y. Terunuma, and S. Sudo, “35-dB gain Tm-doped ZBLYAN fiber amplifier operating at 1.65 μm,” IEEE Photonics Technol. Lett. 8, 349–351 (1996).
[CrossRef]

Tropper, A. C.

J. N. Carter, R. G. Smart, D. C. Hanna, and A. C. Tropper, “Lasing and amplification in the 0.8 μm region in thulium doped fluorozirconate fibres,” Electron. Lett. 26, 1759–1761 (1990).
[CrossRef]

Wang, J.

D. W. Hewak, R. C. Moore, T. Schweizer, J. Wang, B. Samson, W. S. Brocklesby, D. N. Payne, and E. J. Tarbox, “Gallium lanthanum sulphide optical fibre for active and passive applications,” Electron. Lett. 32, 384–385 (1996).
[CrossRef]

Weber, M. J.

M. J. Weber, “Probabilities for radiative and nonradiative decay of Er3+ in LaF3,” Phys. Rev. 157, 262–272 (1966).
[CrossRef]

Wei, K.

Wenzel, J.

Yamada, M.

T. Sakamoto, M. Shimizu, M. Yamada, T. Kanamori, Y. Ohishi, Y. Terunuma, and S. Sudo, “35-dB gain Tm-doped ZBLYAN fiber amplifier operating at 1.65 μm,” IEEE Photonics Technol. Lett. 8, 349–351 (1996).
[CrossRef]

Yamamoto, T.

T. Komukai, T. Yamamoto, T. Sugawa, and Y. Miyajima, “Upconversion pumped thulium-doped fluoride fiber amplifier and laser operating at 1.47 μm,” IEEE J. Quantum Electron. 31, 1880–1889 (1995).
[CrossRef]

Yuen, E. H.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Remote Sens. 31, 4–15 (1993).
[CrossRef]

Zou, X.

X. Zou and T. Izumitani, “Fluorescence mechanism and dynamics of Tm3+ singly doped and Yb3+, Tm3+ doubly doped glasses,” J. Non-Cryst. Solids 162, 58–67 (1993).
[CrossRef]

Electron. Lett. (7)

J. Y. Allain, M. Monerie, and H. Poignant, “Tunable cw lasing around 0.82, 1.48, 1.88 and 2.35 μm in thulium-doped fluorozirconate fibre,” Electron. Lett. 25, 1660–1662 (1989).
[CrossRef]

R. M. Percival, D. Szebesta, and S. T. Davey, “Thulium doped terbium sensitised cw fluoride fibre laser operating on the 1.47 μm transition,” Electron. Lett. 29, 1054–1056 (1993).
[CrossRef]

Y. Miyajima, T. Komukai, and T. Sugawa, “1-W cw Tm-doped fluoride fibre laser at 1.47 μm,” Electron. Lett. 29, 660–661 (1993).
[CrossRef]

J. N. Carter, R. G. Smart, D. C. Hanna, and A. C. Tropper, “Lasing and amplification in the 0.8 μm region in thulium doped fluorozirconate fibres,” Electron. Lett. 26, 1759–1761 (1990).
[CrossRef]

F. J. McAleavey and B. D. MacCraith, “Efficient diode pumped Tm3+-doped fluoride fibre laser for hydrocarbon gas sensing,” Electron. Lett. 31, 800–802 (1995).
[CrossRef]

D. W. Hewak, R. C. Moore, T. Schweizer, J. Wang, B. Samson, W. S. Brocklesby, D. N. Payne, and E. J. Tarbox, “Gallium lanthanum sulphide optical fibre for active and passive applications,” Electron. Lett. 32, 384–385 (1996).
[CrossRef]

T. Schweizer, B. N. Samson, R. C. Moore, D. W. Hewak, and D. N. Payne, “Rare-earth doped chalcogenide glass fibre laser,” Electron. Lett. 33, 414–416 (1997).
[CrossRef]

IEEE J. Quantum Electron. (2)

B. F. Aull and H. P. Jensen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron. QE-18, 925–930 (1982).
[CrossRef]

T. Komukai, T. Yamamoto, T. Sugawa, and Y. Miyajima, “Upconversion pumped thulium-doped fluoride fiber amplifier and laser operating at 1.47 μm,” IEEE J. Quantum Electron. 31, 1880–1889 (1995).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

T. Sakamoto, M. Shimizu, M. Yamada, T. Kanamori, Y. Ohishi, Y. Terunuma, and S. Sudo, “35-dB gain Tm-doped ZBLYAN fiber amplifier operating at 1.65 μm,” IEEE Photonics Technol. Lett. 8, 349–351 (1996).
[CrossRef]

IEEE Trans. Geosci. Remote Sens. (1)

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Remote Sens. 31, 4–15 (1993).
[CrossRef]

J. Chem. Phys. (1)

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962).
[CrossRef]

J. Less-Common Met. (1)

C. K. Jørgensen and R. Reisfeld, “Judd–Ofelt parameters and chemical bonding,” J. Less-Common Met. 93, 107–112 (1983).
[CrossRef]

J. Lumin. (1)

T. Schweizer, D. W. Hewak, B. N. Samson, and D. N. Payne, “Spectroscopy of potential mid-infrared laser transitions in gallium lanthanum sulphide glass,” J. Lumin. 72–74, 419–421 (1997).
[CrossRef]

J. Mater. Sci. Lett. (1)

J. Heo, “Optical characteristics of rare-earth-doped sulphide glasses,” J. Mater. Sci. Lett. 14, 1014–1016 (1995).
[CrossRef]

J. Non-Cryst. Solids (6)

Y. B. Shin, W. Y. Cho, and J. Heo, “Multiphonon and cross relaxation phenomena in Ge-As(or Ga)-S glasses doped with Tm3+,” J. Non-Cryst. Solids 208, 29–35 (1996).
[CrossRef]

Y. S. Kim, W. Y. Cho, Y. B. Shin, and J. Heo, “Emission characteristics of Ge–Ga–S glasses doped with Tm3+/Ho3+,” J. Non-Cryst. Solids 203, 176–181 (1996).
[CrossRef]

J. Heo, W. Y. Cho, and W. J. Chung, “Sensitizing effect of Tm3+ on 2.9 μm emission from Dy3+-doped Ge25Ga5S70 glass,” J. Non-Cryst. Solids 212, 151–156 (1997).
[CrossRef]

J. Sanz, R. Cases, and R. Alcalá, “Optical properties of Tm3+ in fluorozirconate glass,” J. Non-Cryst. Solids 93, 377–386 (1987).
[CrossRef]

K. Hirao, S. Tanabe, S. Kishimoto, K. Tamai, and N. Soga, “UV and blue upconversion in Tm3+-doped fluoroaluminate glass by 0.655 μm excitation,” J. Non-Cryst. Solids 135, 90–93 (1991).
[CrossRef]

X. Zou and T. Izumitani, “Fluorescence mechanism and dynamics of Tm3+ singly doped and Yb3+, Tm3+ doubly doped glasses,” J. Non-Cryst. Solids 162, 58–67 (1993).
[CrossRef]

Mol. Phys. (1)

C. K. Jørgensen and B. R. Judd, “Hypersensitive pseudoquadrupole transitions in lanthanides,” Mol. Phys. 8, 281–290 (1964).
[CrossRef]

Opt. Commun. (1)

D. C. Hanna, I. R. Perry, and J. R. Lincoln, “A 1-watt thulium-doped cw fibre laser operating at 2 μm,” Opt. Commun. 80, 52–56 (1990).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Opt. Mater. (1)

N. Duhamel-Henry, J. L. Adam, B. Jaquier, and C. Linarès, “Photoluminescence of new fluorophosphate glasses containing a high concentration of terbium (III) ions,” Opt. Mater. 5, 197–207 (1996).
[CrossRef]

Phys. Rev. (2)

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962).
[CrossRef]

M. J. Weber, “Probabilities for radiative and nonradiative decay of Er3+ in LaF3,” Phys. Rev. 157, 262–272 (1966).
[CrossRef]

Phys. Rev. Lett. (1)

T. Schweizer, P. E.-A. Möbert, J. R. Hector, D. W. Hewak, W. S. Brocklesby, D. N. Payne, and G. Huber, “Optical measurement of narrow band rare-earth 4f levels with energies greater than the bandgap of the host,” Phys. Rev. Lett. 80, 1537–1540 (1998).
[CrossRef]

Proc. IEEE (1)

F. E. Auzel, “Materials and devices using double-pumped phosphors with energy transfer,” Proc. IEEE 61, 758–786 (1973).
[CrossRef]

Other (3)

M. J. F. Digonnet, Rare-Earth Doped Fiber Lasers and Amplifiers (Marcel Dekker, New York, 1993), pp. 105–120.

S. R. Bowman, L. B. Shaw, J. A. Moon, B. B. Harbison, and J. Ganem, “Spectroscopic studies of potential mid-ir laser materials,” in Advanced Solid-State Lasers, S. A. Payne and C. R. Pollock, eds., Vol. 1 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 277–279.

L. B. Shaw, D. Schaafsma, J. Moon, B. Harbison, J. Sanghera, and I. Aggarwal, “Evaluation of the IR transitions in rare-earth-doped chalcogenide glasses,” in Conference on Lasers and Electro-Optics, Vol. 11 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), p. 255.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Room-temperature absorption spectra of (a) Tm(1.5%):GLS glass and (b) Tb(1.5%):GLS glass.

Fig. 2
Fig. 2

Energy-level diagrams of Tm3+ and Tb3+, showing the fluorescent transitions and the Tm3+Tb3+ energy transfer.

Fig. 3
Fig. 3

Absorption cross sections (dashed curves) and McCumber emission cross sections (dotted curves) together with the scaled measured fluorescence spectra (solid curves) of (a) the 0.7-µm, (b) the 0.8-µm, (c) the 1.22-µm, and (d) the 1.83-µm ground-state transitions of Tm3+-doped GLS glass.

Fig. 4
Fig. 4

Fluorescence spectra of (a) Tm(0.2%):GLS, (b) Tm(1.5%):GLS, and (c) Tm(1.5%), Tb(0.2%):GLS for 0.8-µm pumping. (The 2.3-µm band has been multiplied by 10.)

Fig. 5
Fig. 5

Uncorrected fluorescence spectra of (a) Tm(1.5%):GLS glass pumped at 0.7 µm, (b) Tm(1.5%), Tb(0.2%):GLS glass pumped at 0.7 µm, (c) Tm(1.5%), Tb(0.2%):GLS glass pumped at 2 µm.

Fig. 6
Fig. 6

Energy transfer by means of cross relaxation from excited Tm3+ ions (a) in the  3H4 level and (b) in the  3F2,3 levels.

Fig. 7
Fig. 7

Variation of the fluorescence intensities from the  3H5 and the  3H4 levels for 0.7- and 0.8-µm excitation for (a) Tm(0.2%):GLS and (b) Tm(1.5%):GLS glass.

Tables (3)

Tables Icon

Table 1 Judd–Ofelt Parameters, Radiative Emission Probabilities, and Emission Cross Sections for the  3H43H6 Transition (0.8 µm) and Measured Lifetimes of the  3H4 Level for Different Tm3+-Doped Glasses

Tables Icon

Table 2 Judd–Ofelt Parameters and Radiative Properties of Tm3+- and Tb3+-Doped GLS Glass

Tables Icon

Table 3 Lifetimes of the  3F2,3  3H4,  3H5, and  3F4 Levels in Tm3+- and Tm3+Tb3+-Codoped GLS Glasses

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

σem,FL(λ)=Aλ5I(λ)8πn2cλI(λ)dλ,
σem,MC(λ)=σabs(λ) ZlZuexpEZL-104/λkT,

Metrics