Abstract

We report on near-quantum-limited intensity noise of Nd:YVO4 microchip lasers pumped with pump-noise-suppressed diode lasers. The low-frequency intensity noise of the microchip lasers is found to depend on mode correlation effects in the absorbed radiation from the diode laser pump source. A minimum intensity noise of 0.5 dB above the standard quantum-noise limit at a frequency of 250 kHz is obtained by pumping with a grating-feedback diode laser. An accurate description of the measured intensity-noise spectra by a quantum-mechanical Langevin rate-equation model is achieved by consideration of the nonlinear gain saturation that is due to the finite lifetime of the lower laser level.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Yamamoto, S. Machida, N. Imoto, M. Kitagawa, and G. Björk, “Generation of number-phase minimum-uncertainty states and number states,” J. Opt. Soc. Am. B 4, 1645 (1987).
    [CrossRef]
  2. C. C. Harb, T. C. Ralph, E. H. Huntington, D. E. McClelland, and H.-A. Bachor, “Intensity-noise dependence of Nd:YAG lasers on their diode-laser pump source,” J. Opt. Soc. Am. B 14, 2936 (1997).
    [CrossRef]
  3. T. C. Ralph, C. C. Harb, and H.-A. Bachor, “Intensity-noise of injection-locked lasers: quantum theory using a linearized input–output method,” Phys. Rev. A 54, 4359 (1996).
    [CrossRef] [PubMed]
  4. C. Becher and K.-J. Boller, “Intensity noise properties of Nd:YVO4 microchip lasers pumped with an amplitude squeezed diode laser,” Opt. Commun. 147, 366 (1998).
    [CrossRef]
  5. Y. Yamamoto, S. Machida, and O. Nilsson, “Amplitude squeezing in a pump-noise-suppressed laser oscillator,” Phys. Rev. A 34, 4025 (1986).
    [CrossRef] [PubMed]
  6. T. J. Kane, “Intensity noise in a diode-pumped single frequency Nd:YAG laser and its control by electronic feedback,” IEEE Photonics Technol. Lett. 2, 244 (1990).
    [CrossRef]
  7. C. C. Harb, M. B. Gray, H.-A. Bachor, R. Schilling, P. Rottengatter, I. Freitag, and H. Welling, “Suppression of the intensity noise in a diode-pumped-neodymium:YAG nonplanar ring laser,” IEEE J. Quantum Electron. 30, 2907 (1994).
    [CrossRef]
  8. A. D. Farinas, E. K. Gustavson, and R. L. Byer, “Frequency and intensity noise in an injection-locked, solid-state laser,” J. Opt. Soc. Am. B 12, 328 (1995).
    [CrossRef]
  9. C. C. Harb, T. C. Ralph, E. H. Huntington, I. Freitag, D. E. McClelland, and H.-A. Bachor, “Intensity-noise properties of injection-locked lasers,” Phys. Rev. A 54, 4370 (1996).
    [CrossRef] [PubMed]
  10. E. H. Huntington, B. C. Buchler, C. C. Harb, T. C. Ralph, D. E. McClelland, and H.-A. Bachor, “Feedback control of the intensity noise of injection locked lasers,” Opt. Commun. 145, 359 (1998).
    [CrossRef]
  11. S. Machida and Y. Yamamoto, “Observation of sub-poissonian photoelectron statistics in a negative feedback semiconductor laser,” Opt. Commun. 57, 290 (1986).
    [CrossRef]
  12. J. Bartschke, R. Knappe, C. Becher, B. Beier, M. Scheidt, K.-J. Boller, and R. Wallenstein, “Efficient visible Nd:YAB and monolithic Nd:YAG lasers pumped by the diffraction limited output of an injection-locked high power diode laser array,” in Advanced Solid State Lasers, Vol. 20 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1994), p. 340.
  13. F. Marin, A. Bramati, E. Giacobino, T.-C. Zhang, J.-Ph. Poizat, J.-F. Roch, and P. Grangier, “Squeezing and intermode correlations in laser diodes,” Phys. Rev. Lett. 75, 4606 (1995).
    [CrossRef] [PubMed]
  14. C. Becher, E. Gehrig, and K.-J. Boller, “Spectrally asymmetric mode correlation and intensity noise in pump-noise-suppressed laser diodes,” Phys. Rev. A 57, 3952 (1998).
    [CrossRef]
  15. H. P. Yuen and V. W. S. Chan, “Noise in homodyne and heterodyne detection,” Opt. Lett. 8, 177 (1983).
    [CrossRef] [PubMed]
  16. S. Machida and Y. Yamamoto, “Quantum-limited operation of balanced mixer homodyne and heterodyne receivers,” IEEE J. Quantum Electron. QE-22, 617 (1986).
    [CrossRef]
  17. L. Fornasiero, S. Kück, T. Jensen, G. Huber, and W. H. T. Chai, “Excited state absorption and stimulated emission of Nd3+ in crystals. II. YVO4, GdVO4, and Sr5(PO4)3F,” Appl. Phys. B. 67, 549 (1998).
    [CrossRef]
  18. Y. Guyot, H. Maana, J. Y. Rivoire, and R. Moncorgé, “Excited-state-absorption and upconversion studies of Nd3+-doped single crystals Y3Al5O12, YLiF4, and LaMgAl11O19,” Phys. Rev. B 51, 784 (1995).
    [CrossRef]
  19. D. J. Channin, “Effect of gain saturation on injection laser switching,” J. Appl. Phys. 50, 3858 (1979).
    [CrossRef]
  20. O. Nilsson, A. Karlsson, and E. Berglind, “Modulation and noise spectra of complicated laser structures,” in Coherence, Amplification and Quantum Effects in Semiconductor Lasers, Y. Yamamoto, ed. (Wiley, New York, 1991), pp. 77–95.
  21. R. Polloni and O. Svelto, “Static and dynamic behavior of a single-mode Nd-YAG laser,” IEEE J. Quantum Electron. 4, 481 (1968).
    [CrossRef]
  22. R. Böhm, V. M. Baev, and P. E. Toschek, “Measurements of operation parameters and nonlinearity of a Nd3+-doped fibre laser by relaxation oscillations,” Opt. Commun. 134, 537 (1997).
    [CrossRef]
  23. J. L. Vey and P. Gallion, “Amplitude squeezing with a Fabry–Perot semiconductor laser: existence of an optimum biasing condition,” Opt. Lett. 20, 2018 (1995).
    [CrossRef] [PubMed]
  24. H. G. Danielmeyer, “Effects of drift and diffusion of excited states on spatial hole burning and laser oscillation,” J. Appl. Phys. 42, 3125 (1971).
    [CrossRef]
  25. J. J. Zayhowski, “The effects of spatial hole burning and energy diffusion on the single-mode operation of standing-wave lasers,” IEEE J. Quantum Electron. 26, 2052 (1990).
    [CrossRef]
  26. S. Helmfried and K. Tatsuno, “Stable single-mode operation of intracavity-doubled diode-pumped Nd:YVO4 lasers: theoretical study,” J. Opt. Soc. Am. B 11, 436 (1994).
    [CrossRef]
  27. D. Sardar and R. C. Powell, “Energy transfer processes in YVO4:Nd3+,” J. Appl. Phys. 51, 2829 (1980).
    [CrossRef]
  28. J. Cruz, G. Giuliani, and H. M. van Driel, “Measurement of the subnanosecond, nonradiative relaxation time from excited states of Nd3+in a Nd:YAG crystal,” Opt. Lett. 15, 282 (1990).
    [CrossRef] [PubMed]
  29. C. Bibeau, S. A. Payne, and H. T. Powell, “Direct measurement of the terminal laser level lifetime in neodymium-doped crystals and glasses,” J. Opt. Soc. Am. B 12, 1981 (1995).
    [CrossRef]

1998 (4)

C. Becher and K.-J. Boller, “Intensity noise properties of Nd:YVO4 microchip lasers pumped with an amplitude squeezed diode laser,” Opt. Commun. 147, 366 (1998).
[CrossRef]

E. H. Huntington, B. C. Buchler, C. C. Harb, T. C. Ralph, D. E. McClelland, and H.-A. Bachor, “Feedback control of the intensity noise of injection locked lasers,” Opt. Commun. 145, 359 (1998).
[CrossRef]

L. Fornasiero, S. Kück, T. Jensen, G. Huber, and W. H. T. Chai, “Excited state absorption and stimulated emission of Nd3+ in crystals. II. YVO4, GdVO4, and Sr5(PO4)3F,” Appl. Phys. B. 67, 549 (1998).
[CrossRef]

C. Becher, E. Gehrig, and K.-J. Boller, “Spectrally asymmetric mode correlation and intensity noise in pump-noise-suppressed laser diodes,” Phys. Rev. A 57, 3952 (1998).
[CrossRef]

1997 (2)

R. Böhm, V. M. Baev, and P. E. Toschek, “Measurements of operation parameters and nonlinearity of a Nd3+-doped fibre laser by relaxation oscillations,” Opt. Commun. 134, 537 (1997).
[CrossRef]

C. C. Harb, T. C. Ralph, E. H. Huntington, D. E. McClelland, and H.-A. Bachor, “Intensity-noise dependence of Nd:YAG lasers on their diode-laser pump source,” J. Opt. Soc. Am. B 14, 2936 (1997).
[CrossRef]

1996 (2)

C. C. Harb, T. C. Ralph, E. H. Huntington, I. Freitag, D. E. McClelland, and H.-A. Bachor, “Intensity-noise properties of injection-locked lasers,” Phys. Rev. A 54, 4370 (1996).
[CrossRef] [PubMed]

T. C. Ralph, C. C. Harb, and H.-A. Bachor, “Intensity-noise of injection-locked lasers: quantum theory using a linearized input–output method,” Phys. Rev. A 54, 4359 (1996).
[CrossRef] [PubMed]

1995 (5)

1994 (2)

S. Helmfried and K. Tatsuno, “Stable single-mode operation of intracavity-doubled diode-pumped Nd:YVO4 lasers: theoretical study,” J. Opt. Soc. Am. B 11, 436 (1994).
[CrossRef]

C. C. Harb, M. B. Gray, H.-A. Bachor, R. Schilling, P. Rottengatter, I. Freitag, and H. Welling, “Suppression of the intensity noise in a diode-pumped-neodymium:YAG nonplanar ring laser,” IEEE J. Quantum Electron. 30, 2907 (1994).
[CrossRef]

1990 (3)

T. J. Kane, “Intensity noise in a diode-pumped single frequency Nd:YAG laser and its control by electronic feedback,” IEEE Photonics Technol. Lett. 2, 244 (1990).
[CrossRef]

J. Cruz, G. Giuliani, and H. M. van Driel, “Measurement of the subnanosecond, nonradiative relaxation time from excited states of Nd3+in a Nd:YAG crystal,” Opt. Lett. 15, 282 (1990).
[CrossRef] [PubMed]

J. J. Zayhowski, “The effects of spatial hole burning and energy diffusion on the single-mode operation of standing-wave lasers,” IEEE J. Quantum Electron. 26, 2052 (1990).
[CrossRef]

1987 (1)

1986 (3)

Y. Yamamoto, S. Machida, and O. Nilsson, “Amplitude squeezing in a pump-noise-suppressed laser oscillator,” Phys. Rev. A 34, 4025 (1986).
[CrossRef] [PubMed]

S. Machida and Y. Yamamoto, “Observation of sub-poissonian photoelectron statistics in a negative feedback semiconductor laser,” Opt. Commun. 57, 290 (1986).
[CrossRef]

S. Machida and Y. Yamamoto, “Quantum-limited operation of balanced mixer homodyne and heterodyne receivers,” IEEE J. Quantum Electron. QE-22, 617 (1986).
[CrossRef]

1983 (1)

1980 (1)

D. Sardar and R. C. Powell, “Energy transfer processes in YVO4:Nd3+,” J. Appl. Phys. 51, 2829 (1980).
[CrossRef]

1979 (1)

D. J. Channin, “Effect of gain saturation on injection laser switching,” J. Appl. Phys. 50, 3858 (1979).
[CrossRef]

1971 (1)

H. G. Danielmeyer, “Effects of drift and diffusion of excited states on spatial hole burning and laser oscillation,” J. Appl. Phys. 42, 3125 (1971).
[CrossRef]

1968 (1)

R. Polloni and O. Svelto, “Static and dynamic behavior of a single-mode Nd-YAG laser,” IEEE J. Quantum Electron. 4, 481 (1968).
[CrossRef]

Bachor, H.-A.

E. H. Huntington, B. C. Buchler, C. C. Harb, T. C. Ralph, D. E. McClelland, and H.-A. Bachor, “Feedback control of the intensity noise of injection locked lasers,” Opt. Commun. 145, 359 (1998).
[CrossRef]

C. C. Harb, T. C. Ralph, E. H. Huntington, D. E. McClelland, and H.-A. Bachor, “Intensity-noise dependence of Nd:YAG lasers on their diode-laser pump source,” J. Opt. Soc. Am. B 14, 2936 (1997).
[CrossRef]

C. C. Harb, T. C. Ralph, E. H. Huntington, I. Freitag, D. E. McClelland, and H.-A. Bachor, “Intensity-noise properties of injection-locked lasers,” Phys. Rev. A 54, 4370 (1996).
[CrossRef] [PubMed]

T. C. Ralph, C. C. Harb, and H.-A. Bachor, “Intensity-noise of injection-locked lasers: quantum theory using a linearized input–output method,” Phys. Rev. A 54, 4359 (1996).
[CrossRef] [PubMed]

C. C. Harb, M. B. Gray, H.-A. Bachor, R. Schilling, P. Rottengatter, I. Freitag, and H. Welling, “Suppression of the intensity noise in a diode-pumped-neodymium:YAG nonplanar ring laser,” IEEE J. Quantum Electron. 30, 2907 (1994).
[CrossRef]

Baev, V. M.

R. Böhm, V. M. Baev, and P. E. Toschek, “Measurements of operation parameters and nonlinearity of a Nd3+-doped fibre laser by relaxation oscillations,” Opt. Commun. 134, 537 (1997).
[CrossRef]

Becher, C.

C. Becher, E. Gehrig, and K.-J. Boller, “Spectrally asymmetric mode correlation and intensity noise in pump-noise-suppressed laser diodes,” Phys. Rev. A 57, 3952 (1998).
[CrossRef]

C. Becher and K.-J. Boller, “Intensity noise properties of Nd:YVO4 microchip lasers pumped with an amplitude squeezed diode laser,” Opt. Commun. 147, 366 (1998).
[CrossRef]

Bibeau, C.

Björk, G.

Böhm, R.

R. Böhm, V. M. Baev, and P. E. Toschek, “Measurements of operation parameters and nonlinearity of a Nd3+-doped fibre laser by relaxation oscillations,” Opt. Commun. 134, 537 (1997).
[CrossRef]

Boller, K.-J.

C. Becher, E. Gehrig, and K.-J. Boller, “Spectrally asymmetric mode correlation and intensity noise in pump-noise-suppressed laser diodes,” Phys. Rev. A 57, 3952 (1998).
[CrossRef]

C. Becher and K.-J. Boller, “Intensity noise properties of Nd:YVO4 microchip lasers pumped with an amplitude squeezed diode laser,” Opt. Commun. 147, 366 (1998).
[CrossRef]

Bramati, A.

F. Marin, A. Bramati, E. Giacobino, T.-C. Zhang, J.-Ph. Poizat, J.-F. Roch, and P. Grangier, “Squeezing and intermode correlations in laser diodes,” Phys. Rev. Lett. 75, 4606 (1995).
[CrossRef] [PubMed]

Buchler, B. C.

E. H. Huntington, B. C. Buchler, C. C. Harb, T. C. Ralph, D. E. McClelland, and H.-A. Bachor, “Feedback control of the intensity noise of injection locked lasers,” Opt. Commun. 145, 359 (1998).
[CrossRef]

Byer, R. L.

Chai, W. H. T.

L. Fornasiero, S. Kück, T. Jensen, G. Huber, and W. H. T. Chai, “Excited state absorption and stimulated emission of Nd3+ in crystals. II. YVO4, GdVO4, and Sr5(PO4)3F,” Appl. Phys. B. 67, 549 (1998).
[CrossRef]

Chan, V. W. S.

Channin, D. J.

D. J. Channin, “Effect of gain saturation on injection laser switching,” J. Appl. Phys. 50, 3858 (1979).
[CrossRef]

Cruz, J.

Danielmeyer, H. G.

H. G. Danielmeyer, “Effects of drift and diffusion of excited states on spatial hole burning and laser oscillation,” J. Appl. Phys. 42, 3125 (1971).
[CrossRef]

Farinas, A. D.

Fornasiero, L.

L. Fornasiero, S. Kück, T. Jensen, G. Huber, and W. H. T. Chai, “Excited state absorption and stimulated emission of Nd3+ in crystals. II. YVO4, GdVO4, and Sr5(PO4)3F,” Appl. Phys. B. 67, 549 (1998).
[CrossRef]

Freitag, I.

C. C. Harb, T. C. Ralph, E. H. Huntington, I. Freitag, D. E. McClelland, and H.-A. Bachor, “Intensity-noise properties of injection-locked lasers,” Phys. Rev. A 54, 4370 (1996).
[CrossRef] [PubMed]

C. C. Harb, M. B. Gray, H.-A. Bachor, R. Schilling, P. Rottengatter, I. Freitag, and H. Welling, “Suppression of the intensity noise in a diode-pumped-neodymium:YAG nonplanar ring laser,” IEEE J. Quantum Electron. 30, 2907 (1994).
[CrossRef]

Gallion, P.

Gehrig, E.

C. Becher, E. Gehrig, and K.-J. Boller, “Spectrally asymmetric mode correlation and intensity noise in pump-noise-suppressed laser diodes,” Phys. Rev. A 57, 3952 (1998).
[CrossRef]

Giacobino, E.

F. Marin, A. Bramati, E. Giacobino, T.-C. Zhang, J.-Ph. Poizat, J.-F. Roch, and P. Grangier, “Squeezing and intermode correlations in laser diodes,” Phys. Rev. Lett. 75, 4606 (1995).
[CrossRef] [PubMed]

Giuliani, G.

Grangier, P.

F. Marin, A. Bramati, E. Giacobino, T.-C. Zhang, J.-Ph. Poizat, J.-F. Roch, and P. Grangier, “Squeezing and intermode correlations in laser diodes,” Phys. Rev. Lett. 75, 4606 (1995).
[CrossRef] [PubMed]

Gray, M. B.

C. C. Harb, M. B. Gray, H.-A. Bachor, R. Schilling, P. Rottengatter, I. Freitag, and H. Welling, “Suppression of the intensity noise in a diode-pumped-neodymium:YAG nonplanar ring laser,” IEEE J. Quantum Electron. 30, 2907 (1994).
[CrossRef]

Gustavson, E. K.

Guyot, Y.

Y. Guyot, H. Maana, J. Y. Rivoire, and R. Moncorgé, “Excited-state-absorption and upconversion studies of Nd3+-doped single crystals Y3Al5O12, YLiF4, and LaMgAl11O19,” Phys. Rev. B 51, 784 (1995).
[CrossRef]

Harb, C. C.

E. H. Huntington, B. C. Buchler, C. C. Harb, T. C. Ralph, D. E. McClelland, and H.-A. Bachor, “Feedback control of the intensity noise of injection locked lasers,” Opt. Commun. 145, 359 (1998).
[CrossRef]

C. C. Harb, T. C. Ralph, E. H. Huntington, D. E. McClelland, and H.-A. Bachor, “Intensity-noise dependence of Nd:YAG lasers on their diode-laser pump source,” J. Opt. Soc. Am. B 14, 2936 (1997).
[CrossRef]

T. C. Ralph, C. C. Harb, and H.-A. Bachor, “Intensity-noise of injection-locked lasers: quantum theory using a linearized input–output method,” Phys. Rev. A 54, 4359 (1996).
[CrossRef] [PubMed]

C. C. Harb, T. C. Ralph, E. H. Huntington, I. Freitag, D. E. McClelland, and H.-A. Bachor, “Intensity-noise properties of injection-locked lasers,” Phys. Rev. A 54, 4370 (1996).
[CrossRef] [PubMed]

C. C. Harb, M. B. Gray, H.-A. Bachor, R. Schilling, P. Rottengatter, I. Freitag, and H. Welling, “Suppression of the intensity noise in a diode-pumped-neodymium:YAG nonplanar ring laser,” IEEE J. Quantum Electron. 30, 2907 (1994).
[CrossRef]

Helmfried, S.

Huber, G.

L. Fornasiero, S. Kück, T. Jensen, G. Huber, and W. H. T. Chai, “Excited state absorption and stimulated emission of Nd3+ in crystals. II. YVO4, GdVO4, and Sr5(PO4)3F,” Appl. Phys. B. 67, 549 (1998).
[CrossRef]

Huntington, E. H.

E. H. Huntington, B. C. Buchler, C. C. Harb, T. C. Ralph, D. E. McClelland, and H.-A. Bachor, “Feedback control of the intensity noise of injection locked lasers,” Opt. Commun. 145, 359 (1998).
[CrossRef]

C. C. Harb, T. C. Ralph, E. H. Huntington, D. E. McClelland, and H.-A. Bachor, “Intensity-noise dependence of Nd:YAG lasers on their diode-laser pump source,” J. Opt. Soc. Am. B 14, 2936 (1997).
[CrossRef]

C. C. Harb, T. C. Ralph, E. H. Huntington, I. Freitag, D. E. McClelland, and H.-A. Bachor, “Intensity-noise properties of injection-locked lasers,” Phys. Rev. A 54, 4370 (1996).
[CrossRef] [PubMed]

Imoto, N.

Jensen, T.

L. Fornasiero, S. Kück, T. Jensen, G. Huber, and W. H. T. Chai, “Excited state absorption and stimulated emission of Nd3+ in crystals. II. YVO4, GdVO4, and Sr5(PO4)3F,” Appl. Phys. B. 67, 549 (1998).
[CrossRef]

Kane, T. J.

T. J. Kane, “Intensity noise in a diode-pumped single frequency Nd:YAG laser and its control by electronic feedback,” IEEE Photonics Technol. Lett. 2, 244 (1990).
[CrossRef]

Kitagawa, M.

Kück, S.

L. Fornasiero, S. Kück, T. Jensen, G. Huber, and W. H. T. Chai, “Excited state absorption and stimulated emission of Nd3+ in crystals. II. YVO4, GdVO4, and Sr5(PO4)3F,” Appl. Phys. B. 67, 549 (1998).
[CrossRef]

Maana, H.

Y. Guyot, H. Maana, J. Y. Rivoire, and R. Moncorgé, “Excited-state-absorption and upconversion studies of Nd3+-doped single crystals Y3Al5O12, YLiF4, and LaMgAl11O19,” Phys. Rev. B 51, 784 (1995).
[CrossRef]

Machida, S.

Y. Yamamoto, S. Machida, N. Imoto, M. Kitagawa, and G. Björk, “Generation of number-phase minimum-uncertainty states and number states,” J. Opt. Soc. Am. B 4, 1645 (1987).
[CrossRef]

S. Machida and Y. Yamamoto, “Observation of sub-poissonian photoelectron statistics in a negative feedback semiconductor laser,” Opt. Commun. 57, 290 (1986).
[CrossRef]

Y. Yamamoto, S. Machida, and O. Nilsson, “Amplitude squeezing in a pump-noise-suppressed laser oscillator,” Phys. Rev. A 34, 4025 (1986).
[CrossRef] [PubMed]

S. Machida and Y. Yamamoto, “Quantum-limited operation of balanced mixer homodyne and heterodyne receivers,” IEEE J. Quantum Electron. QE-22, 617 (1986).
[CrossRef]

Marin, F.

F. Marin, A. Bramati, E. Giacobino, T.-C. Zhang, J.-Ph. Poizat, J.-F. Roch, and P. Grangier, “Squeezing and intermode correlations in laser diodes,” Phys. Rev. Lett. 75, 4606 (1995).
[CrossRef] [PubMed]

McClelland, D. E.

E. H. Huntington, B. C. Buchler, C. C. Harb, T. C. Ralph, D. E. McClelland, and H.-A. Bachor, “Feedback control of the intensity noise of injection locked lasers,” Opt. Commun. 145, 359 (1998).
[CrossRef]

C. C. Harb, T. C. Ralph, E. H. Huntington, D. E. McClelland, and H.-A. Bachor, “Intensity-noise dependence of Nd:YAG lasers on their diode-laser pump source,” J. Opt. Soc. Am. B 14, 2936 (1997).
[CrossRef]

C. C. Harb, T. C. Ralph, E. H. Huntington, I. Freitag, D. E. McClelland, and H.-A. Bachor, “Intensity-noise properties of injection-locked lasers,” Phys. Rev. A 54, 4370 (1996).
[CrossRef] [PubMed]

Moncorgé, R.

Y. Guyot, H. Maana, J. Y. Rivoire, and R. Moncorgé, “Excited-state-absorption and upconversion studies of Nd3+-doped single crystals Y3Al5O12, YLiF4, and LaMgAl11O19,” Phys. Rev. B 51, 784 (1995).
[CrossRef]

Nilsson, O.

Y. Yamamoto, S. Machida, and O. Nilsson, “Amplitude squeezing in a pump-noise-suppressed laser oscillator,” Phys. Rev. A 34, 4025 (1986).
[CrossRef] [PubMed]

Payne, S. A.

Poizat, J.-Ph.

F. Marin, A. Bramati, E. Giacobino, T.-C. Zhang, J.-Ph. Poizat, J.-F. Roch, and P. Grangier, “Squeezing and intermode correlations in laser diodes,” Phys. Rev. Lett. 75, 4606 (1995).
[CrossRef] [PubMed]

Polloni, R.

R. Polloni and O. Svelto, “Static and dynamic behavior of a single-mode Nd-YAG laser,” IEEE J. Quantum Electron. 4, 481 (1968).
[CrossRef]

Powell, H. T.

Powell, R. C.

D. Sardar and R. C. Powell, “Energy transfer processes in YVO4:Nd3+,” J. Appl. Phys. 51, 2829 (1980).
[CrossRef]

Ralph, T. C.

E. H. Huntington, B. C. Buchler, C. C. Harb, T. C. Ralph, D. E. McClelland, and H.-A. Bachor, “Feedback control of the intensity noise of injection locked lasers,” Opt. Commun. 145, 359 (1998).
[CrossRef]

C. C. Harb, T. C. Ralph, E. H. Huntington, D. E. McClelland, and H.-A. Bachor, “Intensity-noise dependence of Nd:YAG lasers on their diode-laser pump source,” J. Opt. Soc. Am. B 14, 2936 (1997).
[CrossRef]

T. C. Ralph, C. C. Harb, and H.-A. Bachor, “Intensity-noise of injection-locked lasers: quantum theory using a linearized input–output method,” Phys. Rev. A 54, 4359 (1996).
[CrossRef] [PubMed]

C. C. Harb, T. C. Ralph, E. H. Huntington, I. Freitag, D. E. McClelland, and H.-A. Bachor, “Intensity-noise properties of injection-locked lasers,” Phys. Rev. A 54, 4370 (1996).
[CrossRef] [PubMed]

Rivoire, J. Y.

Y. Guyot, H. Maana, J. Y. Rivoire, and R. Moncorgé, “Excited-state-absorption and upconversion studies of Nd3+-doped single crystals Y3Al5O12, YLiF4, and LaMgAl11O19,” Phys. Rev. B 51, 784 (1995).
[CrossRef]

Roch, J.-F.

F. Marin, A. Bramati, E. Giacobino, T.-C. Zhang, J.-Ph. Poizat, J.-F. Roch, and P. Grangier, “Squeezing and intermode correlations in laser diodes,” Phys. Rev. Lett. 75, 4606 (1995).
[CrossRef] [PubMed]

Rottengatter, P.

C. C. Harb, M. B. Gray, H.-A. Bachor, R. Schilling, P. Rottengatter, I. Freitag, and H. Welling, “Suppression of the intensity noise in a diode-pumped-neodymium:YAG nonplanar ring laser,” IEEE J. Quantum Electron. 30, 2907 (1994).
[CrossRef]

Sardar, D.

D. Sardar and R. C. Powell, “Energy transfer processes in YVO4:Nd3+,” J. Appl. Phys. 51, 2829 (1980).
[CrossRef]

Schilling, R.

C. C. Harb, M. B. Gray, H.-A. Bachor, R. Schilling, P. Rottengatter, I. Freitag, and H. Welling, “Suppression of the intensity noise in a diode-pumped-neodymium:YAG nonplanar ring laser,” IEEE J. Quantum Electron. 30, 2907 (1994).
[CrossRef]

Svelto, O.

R. Polloni and O. Svelto, “Static and dynamic behavior of a single-mode Nd-YAG laser,” IEEE J. Quantum Electron. 4, 481 (1968).
[CrossRef]

Tatsuno, K.

Toschek, P. E.

R. Böhm, V. M. Baev, and P. E. Toschek, “Measurements of operation parameters and nonlinearity of a Nd3+-doped fibre laser by relaxation oscillations,” Opt. Commun. 134, 537 (1997).
[CrossRef]

van Driel, H. M.

Vey, J. L.

Welling, H.

C. C. Harb, M. B. Gray, H.-A. Bachor, R. Schilling, P. Rottengatter, I. Freitag, and H. Welling, “Suppression of the intensity noise in a diode-pumped-neodymium:YAG nonplanar ring laser,” IEEE J. Quantum Electron. 30, 2907 (1994).
[CrossRef]

Yamamoto, Y.

Y. Yamamoto, S. Machida, N. Imoto, M. Kitagawa, and G. Björk, “Generation of number-phase minimum-uncertainty states and number states,” J. Opt. Soc. Am. B 4, 1645 (1987).
[CrossRef]

S. Machida and Y. Yamamoto, “Observation of sub-poissonian photoelectron statistics in a negative feedback semiconductor laser,” Opt. Commun. 57, 290 (1986).
[CrossRef]

S. Machida and Y. Yamamoto, “Quantum-limited operation of balanced mixer homodyne and heterodyne receivers,” IEEE J. Quantum Electron. QE-22, 617 (1986).
[CrossRef]

Y. Yamamoto, S. Machida, and O. Nilsson, “Amplitude squeezing in a pump-noise-suppressed laser oscillator,” Phys. Rev. A 34, 4025 (1986).
[CrossRef] [PubMed]

Yuen, H. P.

Zayhowski, J. J.

J. J. Zayhowski, “The effects of spatial hole burning and energy diffusion on the single-mode operation of standing-wave lasers,” IEEE J. Quantum Electron. 26, 2052 (1990).
[CrossRef]

Zhang, T.-C.

F. Marin, A. Bramati, E. Giacobino, T.-C. Zhang, J.-Ph. Poizat, J.-F. Roch, and P. Grangier, “Squeezing and intermode correlations in laser diodes,” Phys. Rev. Lett. 75, 4606 (1995).
[CrossRef] [PubMed]

Appl. Phys. B. (1)

L. Fornasiero, S. Kück, T. Jensen, G. Huber, and W. H. T. Chai, “Excited state absorption and stimulated emission of Nd3+ in crystals. II. YVO4, GdVO4, and Sr5(PO4)3F,” Appl. Phys. B. 67, 549 (1998).
[CrossRef]

IEEE J. Quantum Electron. (4)

C. C. Harb, M. B. Gray, H.-A. Bachor, R. Schilling, P. Rottengatter, I. Freitag, and H. Welling, “Suppression of the intensity noise in a diode-pumped-neodymium:YAG nonplanar ring laser,” IEEE J. Quantum Electron. 30, 2907 (1994).
[CrossRef]

R. Polloni and O. Svelto, “Static and dynamic behavior of a single-mode Nd-YAG laser,” IEEE J. Quantum Electron. 4, 481 (1968).
[CrossRef]

S. Machida and Y. Yamamoto, “Quantum-limited operation of balanced mixer homodyne and heterodyne receivers,” IEEE J. Quantum Electron. QE-22, 617 (1986).
[CrossRef]

J. J. Zayhowski, “The effects of spatial hole burning and energy diffusion on the single-mode operation of standing-wave lasers,” IEEE J. Quantum Electron. 26, 2052 (1990).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

T. J. Kane, “Intensity noise in a diode-pumped single frequency Nd:YAG laser and its control by electronic feedback,” IEEE Photonics Technol. Lett. 2, 244 (1990).
[CrossRef]

J. Appl. Phys. (3)

D. J. Channin, “Effect of gain saturation on injection laser switching,” J. Appl. Phys. 50, 3858 (1979).
[CrossRef]

D. Sardar and R. C. Powell, “Energy transfer processes in YVO4:Nd3+,” J. Appl. Phys. 51, 2829 (1980).
[CrossRef]

H. G. Danielmeyer, “Effects of drift and diffusion of excited states on spatial hole burning and laser oscillation,” J. Appl. Phys. 42, 3125 (1971).
[CrossRef]

J. Opt. Soc. Am. B (5)

Opt. Commun. (4)

C. Becher and K.-J. Boller, “Intensity noise properties of Nd:YVO4 microchip lasers pumped with an amplitude squeezed diode laser,” Opt. Commun. 147, 366 (1998).
[CrossRef]

E. H. Huntington, B. C. Buchler, C. C. Harb, T. C. Ralph, D. E. McClelland, and H.-A. Bachor, “Feedback control of the intensity noise of injection locked lasers,” Opt. Commun. 145, 359 (1998).
[CrossRef]

S. Machida and Y. Yamamoto, “Observation of sub-poissonian photoelectron statistics in a negative feedback semiconductor laser,” Opt. Commun. 57, 290 (1986).
[CrossRef]

R. Böhm, V. M. Baev, and P. E. Toschek, “Measurements of operation parameters and nonlinearity of a Nd3+-doped fibre laser by relaxation oscillations,” Opt. Commun. 134, 537 (1997).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. A (4)

C. Becher, E. Gehrig, and K.-J. Boller, “Spectrally asymmetric mode correlation and intensity noise in pump-noise-suppressed laser diodes,” Phys. Rev. A 57, 3952 (1998).
[CrossRef]

C. C. Harb, T. C. Ralph, E. H. Huntington, I. Freitag, D. E. McClelland, and H.-A. Bachor, “Intensity-noise properties of injection-locked lasers,” Phys. Rev. A 54, 4370 (1996).
[CrossRef] [PubMed]

Y. Yamamoto, S. Machida, and O. Nilsson, “Amplitude squeezing in a pump-noise-suppressed laser oscillator,” Phys. Rev. A 34, 4025 (1986).
[CrossRef] [PubMed]

T. C. Ralph, C. C. Harb, and H.-A. Bachor, “Intensity-noise of injection-locked lasers: quantum theory using a linearized input–output method,” Phys. Rev. A 54, 4359 (1996).
[CrossRef] [PubMed]

Phys. Rev. B (1)

Y. Guyot, H. Maana, J. Y. Rivoire, and R. Moncorgé, “Excited-state-absorption and upconversion studies of Nd3+-doped single crystals Y3Al5O12, YLiF4, and LaMgAl11O19,” Phys. Rev. B 51, 784 (1995).
[CrossRef]

Phys. Rev. Lett. (1)

F. Marin, A. Bramati, E. Giacobino, T.-C. Zhang, J.-Ph. Poizat, J.-F. Roch, and P. Grangier, “Squeezing and intermode correlations in laser diodes,” Phys. Rev. Lett. 75, 4606 (1995).
[CrossRef] [PubMed]

Other (2)

O. Nilsson, A. Karlsson, and E. Berglind, “Modulation and noise spectra of complicated laser structures,” in Coherence, Amplification and Quantum Effects in Semiconductor Lasers, Y. Yamamoto, ed. (Wiley, New York, 1991), pp. 77–95.

J. Bartschke, R. Knappe, C. Becher, B. Beier, M. Scheidt, K.-J. Boller, and R. Wallenstein, “Efficient visible Nd:YAB and monolithic Nd:YAG lasers pumped by the diffraction limited output of an injection-locked high power diode laser array,” in Advanced Solid State Lasers, Vol. 20 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1994), p. 340.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental setup for measurement of the intensity noise of a Nd:YVO4 microchip laser pumped by a diode laser in several configurations: CL’s, collimating lenses; ISO’s, optical isolators; HWP’s, half-wave plates; M1’s, HR mirrors at 810 nm and 45°; PBS’s, polarizing beam splitters; PD1’s large-area silicon P–I–N photodiodes; A’s, rf amplifiers, S/C’s, rf hybrid splitter–combiners; SA, rf spectrum analyzer; CLT, cylindrical lens telescope; FL, focusing lens; MC, microchip laser crystal; OC, output coupling mirror; M2, HR mirror at 1064 nm and 45°; PD2’s, large-area InGaAs P–I–N photodiodes.

Fig. 2
Fig. 2

Intensity-noise spectra of the total spectral output of the pump diode lasers in the different setups measured with balanced homodyne detection. All noise values are normalized to the respective values of the SQL.

Fig. 3
Fig. 3

Intensity-noise spectrum of the Nd:YVO4 microchip laser pumped with the FR diode laser, normalized to the SQL. Trace (i) experimental data; trace (ii), spectrum calculated from the linear theory [Eq. (1)]; trace (iii), theoretical spectrum with nonlinear gain saturation [Eq. (1) and approximation (4)] and the effective pump noise considered. Parameters: Lopt=534 µm, T=0.3%, τsp=60 µs, αp=0.06%, r=328, η=0.08. For trace (ii) the pump noise spectrum ρ(Ω) is taken from the FR diode laser noise spectrum of Fig. 2, and for trace (iii) ρ(Ω) is used as fit parameter, yielding the best agreement with the experimental data of trace (i) for ρ(Ω)=23.2 dB.

Fig. 4
Fig. 4

Intensity-noise spectrum of the Nd:YVO4 microchip laser pumped with the IL diode laser, normalized to the SQL. Trace (i), experimental data; trace (ii), spectrum calculated from the linear theory [Eq. (1)]; trace (iii), the theoretical spectrum with nonlinear gain saturation [Eq. (1) and approximation (4)] and the effective pump noise considered. Parameters: Lopt=515 µm, T=0.63%, τsp=60 µs, αp=0.06%, r=183, η=0.8. For trace (ii) the pump noise spectrum ρ(Ω) is taken from the IL diode laser noise spectrum of Fig. 2, and for trace (iii) ρ(Ω) is used as fit parameter, yielding the best agreement with the experimental data of trace (i) for ρ(Ω)=11.1 dB.

Fig. 5
Fig. 5

Intensity-noise spectrum of the Nd:YVO4 microchip laser pumped with the GF diode laser, normalized to the SQL. Trace (i), experimental data; trace (ii), spectrum calculated from the linear theory [Eq. (1)]; trace (iii), the theoretical spectrum with nonlinear gain saturation [Eq. (1) and approximation (4)] and the effective pump noise considered. Parameters: Lopt=524 µm, T=0.3%, τsp=60 µs, αp=0.06%, r=295, η=0.8. For trace (ii) the pump noise spectrum ρ(Ω) is taken from the GF diode laser noise spectrum of Fig. 2, and for trace (iii) ρ(Ω) is used as fit parameter, yielding the best agreement with the experimental data of trace (i) for ρ(Ω)=2.5 dB.

Fig. 6
Fig. 6

Intensity-noise spectrum of the Nd:YVO4 microchip laser pumped with the GF diode laser, normalized to the SQL. Trace (i), experimental data; trace (ii), spectrum calculated from the linear theory [Eq. (1)]; trace (iii), the theoretical spectrum with nonlinear gain saturation [Eq. (1) and approximation (4)] and the effective pump noise considered. Parameters: Lopt=524 µm, T=0.07%, τsp=60 µs, αp=0.08%, r=485, η=0.8. For trace (ii) the pump noise spectrum ρ(Ω) is taken from the GF diode laser noise spectrum of Fig. 2, and for trace (iii) ρ(Ω) is used as fit parameter, yielding the best agreement with the experimental data of trace (i) for ρ(Ω)=2.5 dB.

Fig. 7
Fig. 7

Influence of nonlinear gain suppression on the intensity noise of the Nd:YVO4 microchip laser. The spectra are calculated from Eqs. (2) and (3) for different pump rates and with the following parameters: Lopt=524 µm, T=0.3%, τsp=60 µs, αp=0.06%, η=0.8, ρ=0. Solid curves, intensity noise with (=3×10-10); dashed curves, intensity noise without (=0) nonlinear gain suppression.

Tables (1)

Tables Icon

Table 1 Nonlinear Gain-Suppression and Damping Factors for the Four Microchip and Pump Laser Configurations

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

PΔr˜(Ω)=(2/τoutτc){Ω2+[1-½(r-1)(r-2)+½ρ(Ω)r(r-1)]/τsp2}(Ω2-Ω02)2+(2δ0Ω)2η+1,
dn(t)dt=gl(t)[1-n(t)]n(t)+gl(t)-n(t)τc+G(t)+g(t)+f(t),
dNc(t)dt=P-Nc(t)τsp-gl(t)[1-n(t)]n(t)-gl(t)+Γp(t)+Γsp(t)+Γ(t).
δll=r2τsp+(r-1)2τspτllτcδ01+τllτc,

Metrics