Abstract

Five nominally undoped BaTiO3 crystals, processed at oxygen partial pressures of 1, 10-5, 10-8, 10-11, and 10-14 atm at 900 °C, were fabricated and systematically investigated. The compensation point was found to be near the annealing level of 10-10-atm oxygen partial pressure. Annealing can vary dark conductivity, the effects of deep–shallow traps and hole–electron competition, and photorefractive properties such as two-beam coupling and response time.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Gunter and J.-P. Huignard, eds., Photorefractive Materials and Their Applications I and II, Vols. 61 and 62 of Topics in Applied Physics (Springer-Verlag, Berlin, 1988, 1989).
    [CrossRef]
  2. N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin and V. L. Vinetskii, “Holographic storage in electrooptic crystals. I. Steady state,” Ferroelectrics 22, 949 (1979).
    [CrossRef]
  3. G. C. Valley, “Simultaneous electron/hole transport in photorefractive materials,” J. Appl. Phys. 59, 3363 (1986).
    [CrossRef]
  4. F. P. Strohkendl, J. M. C. Jonathan, and R. W. Hellwarth, “Hole–electron competition in photorefractive gratings,” Opt. Lett. 11, 312 (1986).
    [CrossRef]
  5. M. B. Klein and G. C. Valley, “Beam coupling in BaTiO3 at 442 nm,” J. Appl. Phys. 57, 4901 (1985).
    [CrossRef]
  6. P. Tayebati and D. Mahgerefteh, “Theory of the photorefractive effect for Bi12SiO20 and BaTiO3 with shallow traps,” J. Opt. Soc. Am. B 8, 1053 (1991).
    [CrossRef]
  7. P. Tayebati, “Effect of shallow traps on electron–hole competition in semi-insulating photorefractive materials,” J. Opt. Soc. Am. B 9, 415 (1992).
    [CrossRef]
  8. R. N. Schwartz, and B. A. Wechsler, “Electron-paramagnetic-resonance study of transition-metal-doped BaTiO3: effect of material processing on Fermi-level position,” Phys. Rev. B 48, 7057 (1993).
    [CrossRef]
  9. H. Kross, R. Scharfschwerdt, O. F. Schirmer, and H. Hesse, “Light-induced charge transport in BaTiO3 via three charge states of rhodium,” Appl. Phys. B: Lasers Opt. 61, 1 (1995).
    [CrossRef]
  10. H. Kross, E. Possenriede, R. Scharfschwerdt, T. Varnhorst, O. F. Schirmer, H. Hesse, and C. Kuper, “Optically-induced charge transfer paths between defects in BaTiO3 containing rhodium,” Opt. Mater. 4, 153 (1995).
    [CrossRef]
  11. U. van Stevendaal, K. Buse, S. Kamper, H. Hesse, and E. Kratzig, “Light-induced charge transport processes in photorefractive barium titanate doped with rhodium and iron,” Appl. Phys. B: Lasers Opt. 63, 315 (1996).
    [CrossRef]
  12. K. Buse and E. Kratzig, “Three-valence charge-transport model for explanation of the photorefractive effect,” Appl. Phys. B: Lasers Opt. 61, 27 (1995).
    [CrossRef]
  13. K. Buse, S. Loheide, D. Sabbert, and E. Kratzig, “Photorefractive properties of tetragonal KTa0.52Nb0.48O3:Fe crystals and explanation by the three-valence charge-transport model,” J. Opt. Soc. Am. B 13, 2644 (1996).
    [CrossRef]
  14. K. Buse, “Light-induced charge transport process in photorefractive crystals. I. Model and experimental methods,” Appl. Phys. B: Lasers Opt. 64, 273 (1997).
    [CrossRef]
  15. S. Ducharme and J. Feinberg, “Altering the photorefractive properties of BaTiO3 by reduction and oxidation at 650 °C,” J. Opt. Soc. Am. B 3, 283 (1986).
    [CrossRef]
  16. P. G. Schunemann, T. M. Pollak, Y. Yang, Y.-Y. Teng, and C. Wong, “Effects of feed material and annealing atmosphere on the properties of photorefractive barium titanate crystals,” J. Opt. Soc. Am. B 5, 1702 (1988).
    [CrossRef]
  17. B. A. Wechsler and M. B. Klein, “Thermodynamic point defect model of barium titanate and application to the photorefractive properties,” J. Opt. Soc. Am. B 5, 1711 (1988).
    [CrossRef]
  18. A. Lahlafi, G. Godefroy, G. Ormancey, and P. Jullien, “Theoretically study of Fe doping and oxidation-reduction influence on the photorefractive effect in BaTiO3,” J. Opt. Soc. Am. B 10, 1276 (1993).
    [CrossRef]
  19. A. Mazur, U. van Stevendaal, K. Buse, M. Weber, O. F. Schirmer, H. Hesse, and E. Kratzig, “Light-induced charge transport processes in photorefractive barium titanate crystals doped with iron,” Appl. Phys. B: Lasers Opt. 65, 481 (1997).
    [CrossRef]
  20. T. Imai, S. Yagi, H. Yamazaki, and M. Ono, “Heat treatment with quenching of photorefractive Sr0.61Ba0.39Nb2O6:Ce single crystals,” presented at the Photorefractive Materials and Devices Topical Meeting, Chiba, Japan, June 1997.
  21. M. Kaczmarek, R. W. Eason, M. Maatz, M. H. Garrett, and L. Mnushkina, “Properties of lightly doped Rh:BaTiO3 crystals processed in different conditions,” presented at the Photorefractive Materials and Devices Topical Meeting, Chiba, Japan, June 1997.
  22. M. H. Garrett, J. Y. Chang, H. P. Jenssen, and C. Warde, “High beam-coupling gain and deep- and shallow-trap effects in cobalt-doped barium titanate, BaTiO3:Co,” J. Opt. Soc. Am. B 9, 1408 (1992).
    [CrossRef]
  23. D. Mahgerefteh and J. Feinberg, “Explanation of the apparent sublinear photoconductivity of photorefractive barium titanate,” Phys. Rev. Lett. 64, 2195 (1990).
    [CrossRef] [PubMed]
  24. D. Mahgerefteh, “The speed of the photorefractive effect, shallow traps, photogalvanic currents, and light-induced surface damage in barium titanate,” Ph.D. dissertation (University of Southern California, Los Angeles, Calif., 1990).
  25. J. Y. Chang, M. H. Garrett, P. Tayebati, H. P. Jenssen, and C. Warde, “Light-induced dark decay and sublinear intensity dependence of the response time in cobalt-doped barium titanate,” J. Opt. Soc. Am. B 12, 248 (1995).
    [CrossRef]
  26. J. Y. Chang, C. R. Chinjen, R. H. Tsou, C. Y. Huang, C. C. Sun, and M. W. Chang, “Photorefractive effect in hydrogen-reduced BaTiO3,” Opt. Commun. 138, 101 (1997).
    [CrossRef]

1997 (3)

K. Buse, “Light-induced charge transport process in photorefractive crystals. I. Model and experimental methods,” Appl. Phys. B: Lasers Opt. 64, 273 (1997).
[CrossRef]

A. Mazur, U. van Stevendaal, K. Buse, M. Weber, O. F. Schirmer, H. Hesse, and E. Kratzig, “Light-induced charge transport processes in photorefractive barium titanate crystals doped with iron,” Appl. Phys. B: Lasers Opt. 65, 481 (1997).
[CrossRef]

J. Y. Chang, C. R. Chinjen, R. H. Tsou, C. Y. Huang, C. C. Sun, and M. W. Chang, “Photorefractive effect in hydrogen-reduced BaTiO3,” Opt. Commun. 138, 101 (1997).
[CrossRef]

1996 (2)

U. van Stevendaal, K. Buse, S. Kamper, H. Hesse, and E. Kratzig, “Light-induced charge transport processes in photorefractive barium titanate doped with rhodium and iron,” Appl. Phys. B: Lasers Opt. 63, 315 (1996).
[CrossRef]

K. Buse, S. Loheide, D. Sabbert, and E. Kratzig, “Photorefractive properties of tetragonal KTa0.52Nb0.48O3:Fe crystals and explanation by the three-valence charge-transport model,” J. Opt. Soc. Am. B 13, 2644 (1996).
[CrossRef]

1995 (4)

K. Buse and E. Kratzig, “Three-valence charge-transport model for explanation of the photorefractive effect,” Appl. Phys. B: Lasers Opt. 61, 27 (1995).
[CrossRef]

H. Kross, R. Scharfschwerdt, O. F. Schirmer, and H. Hesse, “Light-induced charge transport in BaTiO3 via three charge states of rhodium,” Appl. Phys. B: Lasers Opt. 61, 1 (1995).
[CrossRef]

H. Kross, E. Possenriede, R. Scharfschwerdt, T. Varnhorst, O. F. Schirmer, H. Hesse, and C. Kuper, “Optically-induced charge transfer paths between defects in BaTiO3 containing rhodium,” Opt. Mater. 4, 153 (1995).
[CrossRef]

J. Y. Chang, M. H. Garrett, P. Tayebati, H. P. Jenssen, and C. Warde, “Light-induced dark decay and sublinear intensity dependence of the response time in cobalt-doped barium titanate,” J. Opt. Soc. Am. B 12, 248 (1995).
[CrossRef]

1993 (2)

R. N. Schwartz, and B. A. Wechsler, “Electron-paramagnetic-resonance study of transition-metal-doped BaTiO3: effect of material processing on Fermi-level position,” Phys. Rev. B 48, 7057 (1993).
[CrossRef]

A. Lahlafi, G. Godefroy, G. Ormancey, and P. Jullien, “Theoretically study of Fe doping and oxidation-reduction influence on the photorefractive effect in BaTiO3,” J. Opt. Soc. Am. B 10, 1276 (1993).
[CrossRef]

1992 (2)

P. Tayebati, “Effect of shallow traps on electron–hole competition in semi-insulating photorefractive materials,” J. Opt. Soc. Am. B 9, 415 (1992).
[CrossRef]

M. H. Garrett, J. Y. Chang, H. P. Jenssen, and C. Warde, “High beam-coupling gain and deep- and shallow-trap effects in cobalt-doped barium titanate, BaTiO3:Co,” J. Opt. Soc. Am. B 9, 1408 (1992).
[CrossRef]

1991 (1)

1990 (1)

D. Mahgerefteh and J. Feinberg, “Explanation of the apparent sublinear photoconductivity of photorefractive barium titanate,” Phys. Rev. Lett. 64, 2195 (1990).
[CrossRef] [PubMed]

1988 (2)

1986 (3)

1985 (1)

M. B. Klein and G. C. Valley, “Beam coupling in BaTiO3 at 442 nm,” J. Appl. Phys. 57, 4901 (1985).
[CrossRef]

1979 (1)

N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin and V. L. Vinetskii, “Holographic storage in electrooptic crystals. I. Steady state,” Ferroelectrics 22, 949 (1979).
[CrossRef]

Buse, K.

K. Buse, “Light-induced charge transport process in photorefractive crystals. I. Model and experimental methods,” Appl. Phys. B: Lasers Opt. 64, 273 (1997).
[CrossRef]

A. Mazur, U. van Stevendaal, K. Buse, M. Weber, O. F. Schirmer, H. Hesse, and E. Kratzig, “Light-induced charge transport processes in photorefractive barium titanate crystals doped with iron,” Appl. Phys. B: Lasers Opt. 65, 481 (1997).
[CrossRef]

U. van Stevendaal, K. Buse, S. Kamper, H. Hesse, and E. Kratzig, “Light-induced charge transport processes in photorefractive barium titanate doped with rhodium and iron,” Appl. Phys. B: Lasers Opt. 63, 315 (1996).
[CrossRef]

K. Buse, S. Loheide, D. Sabbert, and E. Kratzig, “Photorefractive properties of tetragonal KTa0.52Nb0.48O3:Fe crystals and explanation by the three-valence charge-transport model,” J. Opt. Soc. Am. B 13, 2644 (1996).
[CrossRef]

K. Buse and E. Kratzig, “Three-valence charge-transport model for explanation of the photorefractive effect,” Appl. Phys. B: Lasers Opt. 61, 27 (1995).
[CrossRef]

Chang, J. Y.

J. Y. Chang, C. R. Chinjen, R. H. Tsou, C. Y. Huang, C. C. Sun, and M. W. Chang, “Photorefractive effect in hydrogen-reduced BaTiO3,” Opt. Commun. 138, 101 (1997).
[CrossRef]

J. Y. Chang, M. H. Garrett, P. Tayebati, H. P. Jenssen, and C. Warde, “Light-induced dark decay and sublinear intensity dependence of the response time in cobalt-doped barium titanate,” J. Opt. Soc. Am. B 12, 248 (1995).
[CrossRef]

M. H. Garrett, J. Y. Chang, H. P. Jenssen, and C. Warde, “High beam-coupling gain and deep- and shallow-trap effects in cobalt-doped barium titanate, BaTiO3:Co,” J. Opt. Soc. Am. B 9, 1408 (1992).
[CrossRef]

Chang, M. W.

J. Y. Chang, C. R. Chinjen, R. H. Tsou, C. Y. Huang, C. C. Sun, and M. W. Chang, “Photorefractive effect in hydrogen-reduced BaTiO3,” Opt. Commun. 138, 101 (1997).
[CrossRef]

Chinjen, C. R.

J. Y. Chang, C. R. Chinjen, R. H. Tsou, C. Y. Huang, C. C. Sun, and M. W. Chang, “Photorefractive effect in hydrogen-reduced BaTiO3,” Opt. Commun. 138, 101 (1997).
[CrossRef]

Ducharme, S.

Feinberg, J.

D. Mahgerefteh and J. Feinberg, “Explanation of the apparent sublinear photoconductivity of photorefractive barium titanate,” Phys. Rev. Lett. 64, 2195 (1990).
[CrossRef] [PubMed]

S. Ducharme and J. Feinberg, “Altering the photorefractive properties of BaTiO3 by reduction and oxidation at 650 °C,” J. Opt. Soc. Am. B 3, 283 (1986).
[CrossRef]

Garrett, M. H.

J. Y. Chang, M. H. Garrett, P. Tayebati, H. P. Jenssen, and C. Warde, “Light-induced dark decay and sublinear intensity dependence of the response time in cobalt-doped barium titanate,” J. Opt. Soc. Am. B 12, 248 (1995).
[CrossRef]

M. H. Garrett, J. Y. Chang, H. P. Jenssen, and C. Warde, “High beam-coupling gain and deep- and shallow-trap effects in cobalt-doped barium titanate, BaTiO3:Co,” J. Opt. Soc. Am. B 9, 1408 (1992).
[CrossRef]

Godefroy, G.

Hellwarth, R. W.

Hesse, H.

A. Mazur, U. van Stevendaal, K. Buse, M. Weber, O. F. Schirmer, H. Hesse, and E. Kratzig, “Light-induced charge transport processes in photorefractive barium titanate crystals doped with iron,” Appl. Phys. B: Lasers Opt. 65, 481 (1997).
[CrossRef]

U. van Stevendaal, K. Buse, S. Kamper, H. Hesse, and E. Kratzig, “Light-induced charge transport processes in photorefractive barium titanate doped with rhodium and iron,” Appl. Phys. B: Lasers Opt. 63, 315 (1996).
[CrossRef]

H. Kross, E. Possenriede, R. Scharfschwerdt, T. Varnhorst, O. F. Schirmer, H. Hesse, and C. Kuper, “Optically-induced charge transfer paths between defects in BaTiO3 containing rhodium,” Opt. Mater. 4, 153 (1995).
[CrossRef]

H. Kross, R. Scharfschwerdt, O. F. Schirmer, and H. Hesse, “Light-induced charge transport in BaTiO3 via three charge states of rhodium,” Appl. Phys. B: Lasers Opt. 61, 1 (1995).
[CrossRef]

Huang, C. Y.

J. Y. Chang, C. R. Chinjen, R. H. Tsou, C. Y. Huang, C. C. Sun, and M. W. Chang, “Photorefractive effect in hydrogen-reduced BaTiO3,” Opt. Commun. 138, 101 (1997).
[CrossRef]

Jenssen, H. P.

J. Y. Chang, M. H. Garrett, P. Tayebati, H. P. Jenssen, and C. Warde, “Light-induced dark decay and sublinear intensity dependence of the response time in cobalt-doped barium titanate,” J. Opt. Soc. Am. B 12, 248 (1995).
[CrossRef]

M. H. Garrett, J. Y. Chang, H. P. Jenssen, and C. Warde, “High beam-coupling gain and deep- and shallow-trap effects in cobalt-doped barium titanate, BaTiO3:Co,” J. Opt. Soc. Am. B 9, 1408 (1992).
[CrossRef]

Jonathan, J. M. C.

Jullien, P.

Kamper, S.

U. van Stevendaal, K. Buse, S. Kamper, H. Hesse, and E. Kratzig, “Light-induced charge transport processes in photorefractive barium titanate doped with rhodium and iron,” Appl. Phys. B: Lasers Opt. 63, 315 (1996).
[CrossRef]

Klein, M. B.

Kratzig, E.

A. Mazur, U. van Stevendaal, K. Buse, M. Weber, O. F. Schirmer, H. Hesse, and E. Kratzig, “Light-induced charge transport processes in photorefractive barium titanate crystals doped with iron,” Appl. Phys. B: Lasers Opt. 65, 481 (1997).
[CrossRef]

U. van Stevendaal, K. Buse, S. Kamper, H. Hesse, and E. Kratzig, “Light-induced charge transport processes in photorefractive barium titanate doped with rhodium and iron,” Appl. Phys. B: Lasers Opt. 63, 315 (1996).
[CrossRef]

K. Buse, S. Loheide, D. Sabbert, and E. Kratzig, “Photorefractive properties of tetragonal KTa0.52Nb0.48O3:Fe crystals and explanation by the three-valence charge-transport model,” J. Opt. Soc. Am. B 13, 2644 (1996).
[CrossRef]

K. Buse and E. Kratzig, “Three-valence charge-transport model for explanation of the photorefractive effect,” Appl. Phys. B: Lasers Opt. 61, 27 (1995).
[CrossRef]

Kross, H.

H. Kross, E. Possenriede, R. Scharfschwerdt, T. Varnhorst, O. F. Schirmer, H. Hesse, and C. Kuper, “Optically-induced charge transfer paths between defects in BaTiO3 containing rhodium,” Opt. Mater. 4, 153 (1995).
[CrossRef]

H. Kross, R. Scharfschwerdt, O. F. Schirmer, and H. Hesse, “Light-induced charge transport in BaTiO3 via three charge states of rhodium,” Appl. Phys. B: Lasers Opt. 61, 1 (1995).
[CrossRef]

Kukhtarev, N. V.

N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin and V. L. Vinetskii, “Holographic storage in electrooptic crystals. I. Steady state,” Ferroelectrics 22, 949 (1979).
[CrossRef]

Kuper, C.

H. Kross, E. Possenriede, R. Scharfschwerdt, T. Varnhorst, O. F. Schirmer, H. Hesse, and C. Kuper, “Optically-induced charge transfer paths between defects in BaTiO3 containing rhodium,” Opt. Mater. 4, 153 (1995).
[CrossRef]

Lahlafi, A.

Loheide, S.

Mahgerefteh, D.

P. Tayebati and D. Mahgerefteh, “Theory of the photorefractive effect for Bi12SiO20 and BaTiO3 with shallow traps,” J. Opt. Soc. Am. B 8, 1053 (1991).
[CrossRef]

D. Mahgerefteh and J. Feinberg, “Explanation of the apparent sublinear photoconductivity of photorefractive barium titanate,” Phys. Rev. Lett. 64, 2195 (1990).
[CrossRef] [PubMed]

Markov, V. B.

N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin and V. L. Vinetskii, “Holographic storage in electrooptic crystals. I. Steady state,” Ferroelectrics 22, 949 (1979).
[CrossRef]

Mazur, A.

A. Mazur, U. van Stevendaal, K. Buse, M. Weber, O. F. Schirmer, H. Hesse, and E. Kratzig, “Light-induced charge transport processes in photorefractive barium titanate crystals doped with iron,” Appl. Phys. B: Lasers Opt. 65, 481 (1997).
[CrossRef]

Odoulov, S. G.

N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin and V. L. Vinetskii, “Holographic storage in electrooptic crystals. I. Steady state,” Ferroelectrics 22, 949 (1979).
[CrossRef]

Ormancey, G.

Pollak, T. M.

Possenriede, E.

H. Kross, E. Possenriede, R. Scharfschwerdt, T. Varnhorst, O. F. Schirmer, H. Hesse, and C. Kuper, “Optically-induced charge transfer paths between defects in BaTiO3 containing rhodium,” Opt. Mater. 4, 153 (1995).
[CrossRef]

Sabbert, D.

Scharfschwerdt, R.

H. Kross, E. Possenriede, R. Scharfschwerdt, T. Varnhorst, O. F. Schirmer, H. Hesse, and C. Kuper, “Optically-induced charge transfer paths between defects in BaTiO3 containing rhodium,” Opt. Mater. 4, 153 (1995).
[CrossRef]

H. Kross, R. Scharfschwerdt, O. F. Schirmer, and H. Hesse, “Light-induced charge transport in BaTiO3 via three charge states of rhodium,” Appl. Phys. B: Lasers Opt. 61, 1 (1995).
[CrossRef]

Schirmer, O. F.

A. Mazur, U. van Stevendaal, K. Buse, M. Weber, O. F. Schirmer, H. Hesse, and E. Kratzig, “Light-induced charge transport processes in photorefractive barium titanate crystals doped with iron,” Appl. Phys. B: Lasers Opt. 65, 481 (1997).
[CrossRef]

H. Kross, R. Scharfschwerdt, O. F. Schirmer, and H. Hesse, “Light-induced charge transport in BaTiO3 via three charge states of rhodium,” Appl. Phys. B: Lasers Opt. 61, 1 (1995).
[CrossRef]

H. Kross, E. Possenriede, R. Scharfschwerdt, T. Varnhorst, O. F. Schirmer, H. Hesse, and C. Kuper, “Optically-induced charge transfer paths between defects in BaTiO3 containing rhodium,” Opt. Mater. 4, 153 (1995).
[CrossRef]

Schunemann, P. G.

Schwartz, R. N.

R. N. Schwartz, and B. A. Wechsler, “Electron-paramagnetic-resonance study of transition-metal-doped BaTiO3: effect of material processing on Fermi-level position,” Phys. Rev. B 48, 7057 (1993).
[CrossRef]

Soskin, M. S.

N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin and V. L. Vinetskii, “Holographic storage in electrooptic crystals. I. Steady state,” Ferroelectrics 22, 949 (1979).
[CrossRef]

Strohkendl, F. P.

Sun, C. C.

J. Y. Chang, C. R. Chinjen, R. H. Tsou, C. Y. Huang, C. C. Sun, and M. W. Chang, “Photorefractive effect in hydrogen-reduced BaTiO3,” Opt. Commun. 138, 101 (1997).
[CrossRef]

Tayebati, P.

Teng, Y.-Y.

Tsou, R. H.

J. Y. Chang, C. R. Chinjen, R. H. Tsou, C. Y. Huang, C. C. Sun, and M. W. Chang, “Photorefractive effect in hydrogen-reduced BaTiO3,” Opt. Commun. 138, 101 (1997).
[CrossRef]

Valley, G. C.

G. C. Valley, “Simultaneous electron/hole transport in photorefractive materials,” J. Appl. Phys. 59, 3363 (1986).
[CrossRef]

M. B. Klein and G. C. Valley, “Beam coupling in BaTiO3 at 442 nm,” J. Appl. Phys. 57, 4901 (1985).
[CrossRef]

van Stevendaal, U.

A. Mazur, U. van Stevendaal, K. Buse, M. Weber, O. F. Schirmer, H. Hesse, and E. Kratzig, “Light-induced charge transport processes in photorefractive barium titanate crystals doped with iron,” Appl. Phys. B: Lasers Opt. 65, 481 (1997).
[CrossRef]

U. van Stevendaal, K. Buse, S. Kamper, H. Hesse, and E. Kratzig, “Light-induced charge transport processes in photorefractive barium titanate doped with rhodium and iron,” Appl. Phys. B: Lasers Opt. 63, 315 (1996).
[CrossRef]

Varnhorst, T.

H. Kross, E. Possenriede, R. Scharfschwerdt, T. Varnhorst, O. F. Schirmer, H. Hesse, and C. Kuper, “Optically-induced charge transfer paths between defects in BaTiO3 containing rhodium,” Opt. Mater. 4, 153 (1995).
[CrossRef]

Vinetskii, V. L.

N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin and V. L. Vinetskii, “Holographic storage in electrooptic crystals. I. Steady state,” Ferroelectrics 22, 949 (1979).
[CrossRef]

Warde, C.

J. Y. Chang, M. H. Garrett, P. Tayebati, H. P. Jenssen, and C. Warde, “Light-induced dark decay and sublinear intensity dependence of the response time in cobalt-doped barium titanate,” J. Opt. Soc. Am. B 12, 248 (1995).
[CrossRef]

M. H. Garrett, J. Y. Chang, H. P. Jenssen, and C. Warde, “High beam-coupling gain and deep- and shallow-trap effects in cobalt-doped barium titanate, BaTiO3:Co,” J. Opt. Soc. Am. B 9, 1408 (1992).
[CrossRef]

Weber, M.

A. Mazur, U. van Stevendaal, K. Buse, M. Weber, O. F. Schirmer, H. Hesse, and E. Kratzig, “Light-induced charge transport processes in photorefractive barium titanate crystals doped with iron,” Appl. Phys. B: Lasers Opt. 65, 481 (1997).
[CrossRef]

Wechsler, B. A.

R. N. Schwartz, and B. A. Wechsler, “Electron-paramagnetic-resonance study of transition-metal-doped BaTiO3: effect of material processing on Fermi-level position,” Phys. Rev. B 48, 7057 (1993).
[CrossRef]

B. A. Wechsler and M. B. Klein, “Thermodynamic point defect model of barium titanate and application to the photorefractive properties,” J. Opt. Soc. Am. B 5, 1711 (1988).
[CrossRef]

Wong, C.

Yang, Y.

Appl. Phys. B: Lasers Opt. (5)

H. Kross, R. Scharfschwerdt, O. F. Schirmer, and H. Hesse, “Light-induced charge transport in BaTiO3 via three charge states of rhodium,” Appl. Phys. B: Lasers Opt. 61, 1 (1995).
[CrossRef]

K. Buse, “Light-induced charge transport process in photorefractive crystals. I. Model and experimental methods,” Appl. Phys. B: Lasers Opt. 64, 273 (1997).
[CrossRef]

U. van Stevendaal, K. Buse, S. Kamper, H. Hesse, and E. Kratzig, “Light-induced charge transport processes in photorefractive barium titanate doped with rhodium and iron,” Appl. Phys. B: Lasers Opt. 63, 315 (1996).
[CrossRef]

K. Buse and E. Kratzig, “Three-valence charge-transport model for explanation of the photorefractive effect,” Appl. Phys. B: Lasers Opt. 61, 27 (1995).
[CrossRef]

A. Mazur, U. van Stevendaal, K. Buse, M. Weber, O. F. Schirmer, H. Hesse, and E. Kratzig, “Light-induced charge transport processes in photorefractive barium titanate crystals doped with iron,” Appl. Phys. B: Lasers Opt. 65, 481 (1997).
[CrossRef]

Ferroelectrics (1)

N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin and V. L. Vinetskii, “Holographic storage in electrooptic crystals. I. Steady state,” Ferroelectrics 22, 949 (1979).
[CrossRef]

J. Appl. Phys. (2)

G. C. Valley, “Simultaneous electron/hole transport in photorefractive materials,” J. Appl. Phys. 59, 3363 (1986).
[CrossRef]

M. B. Klein and G. C. Valley, “Beam coupling in BaTiO3 at 442 nm,” J. Appl. Phys. 57, 4901 (1985).
[CrossRef]

J. Opt. Soc. Am. B (9)

P. Tayebati and D. Mahgerefteh, “Theory of the photorefractive effect for Bi12SiO20 and BaTiO3 with shallow traps,” J. Opt. Soc. Am. B 8, 1053 (1991).
[CrossRef]

P. Tayebati, “Effect of shallow traps on electron–hole competition in semi-insulating photorefractive materials,” J. Opt. Soc. Am. B 9, 415 (1992).
[CrossRef]

K. Buse, S. Loheide, D. Sabbert, and E. Kratzig, “Photorefractive properties of tetragonal KTa0.52Nb0.48O3:Fe crystals and explanation by the three-valence charge-transport model,” J. Opt. Soc. Am. B 13, 2644 (1996).
[CrossRef]

S. Ducharme and J. Feinberg, “Altering the photorefractive properties of BaTiO3 by reduction and oxidation at 650 °C,” J. Opt. Soc. Am. B 3, 283 (1986).
[CrossRef]

P. G. Schunemann, T. M. Pollak, Y. Yang, Y.-Y. Teng, and C. Wong, “Effects of feed material and annealing atmosphere on the properties of photorefractive barium titanate crystals,” J. Opt. Soc. Am. B 5, 1702 (1988).
[CrossRef]

B. A. Wechsler and M. B. Klein, “Thermodynamic point defect model of barium titanate and application to the photorefractive properties,” J. Opt. Soc. Am. B 5, 1711 (1988).
[CrossRef]

A. Lahlafi, G. Godefroy, G. Ormancey, and P. Jullien, “Theoretically study of Fe doping and oxidation-reduction influence on the photorefractive effect in BaTiO3,” J. Opt. Soc. Am. B 10, 1276 (1993).
[CrossRef]

M. H. Garrett, J. Y. Chang, H. P. Jenssen, and C. Warde, “High beam-coupling gain and deep- and shallow-trap effects in cobalt-doped barium titanate, BaTiO3:Co,” J. Opt. Soc. Am. B 9, 1408 (1992).
[CrossRef]

J. Y. Chang, M. H. Garrett, P. Tayebati, H. P. Jenssen, and C. Warde, “Light-induced dark decay and sublinear intensity dependence of the response time in cobalt-doped barium titanate,” J. Opt. Soc. Am. B 12, 248 (1995).
[CrossRef]

Opt. Commun. (1)

J. Y. Chang, C. R. Chinjen, R. H. Tsou, C. Y. Huang, C. C. Sun, and M. W. Chang, “Photorefractive effect in hydrogen-reduced BaTiO3,” Opt. Commun. 138, 101 (1997).
[CrossRef]

Opt. Lett. (1)

Opt. Mater. (1)

H. Kross, E. Possenriede, R. Scharfschwerdt, T. Varnhorst, O. F. Schirmer, H. Hesse, and C. Kuper, “Optically-induced charge transfer paths between defects in BaTiO3 containing rhodium,” Opt. Mater. 4, 153 (1995).
[CrossRef]

Phys. Rev. B (1)

R. N. Schwartz, and B. A. Wechsler, “Electron-paramagnetic-resonance study of transition-metal-doped BaTiO3: effect of material processing on Fermi-level position,” Phys. Rev. B 48, 7057 (1993).
[CrossRef]

Phys. Rev. Lett. (1)

D. Mahgerefteh and J. Feinberg, “Explanation of the apparent sublinear photoconductivity of photorefractive barium titanate,” Phys. Rev. Lett. 64, 2195 (1990).
[CrossRef] [PubMed]

Other (4)

D. Mahgerefteh, “The speed of the photorefractive effect, shallow traps, photogalvanic currents, and light-induced surface damage in barium titanate,” Ph.D. dissertation (University of Southern California, Los Angeles, Calif., 1990).

P. Gunter and J.-P. Huignard, eds., Photorefractive Materials and Their Applications I and II, Vols. 61 and 62 of Topics in Applied Physics (Springer-Verlag, Berlin, 1988, 1989).
[CrossRef]

T. Imai, S. Yagi, H. Yamazaki, and M. Ono, “Heat treatment with quenching of photorefractive Sr0.61Ba0.39Nb2O6:Ce single crystals,” presented at the Photorefractive Materials and Devices Topical Meeting, Chiba, Japan, June 1997.

M. Kaczmarek, R. W. Eason, M. Maatz, M. H. Garrett, and L. Mnushkina, “Properties of lightly doped Rh:BaTiO3 crystals processed in different conditions,” presented at the Photorefractive Materials and Devices Topical Meeting, Chiba, Japan, June 1997.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Optical absorption for crystals processed at (S1) 1-, (S2) 10-5-, (S3) 10-8-, (S4) 10-11-, and (S5) 10-14-atm oxygen partial pressure.

Fig. 2
Fig. 2

Experimental setup for two-beam coupling, photoinduced erasure decay, and dark-decay measurements. PMT, photomultiplier tube.

Fig. 3
Fig. 3

Electro-optic gain dependence on intensity for crystals processed at (S1) 1-, (S2) 10-5-, (S3) 10-8-, (S4) 10-11-, and (S5) 10-14-atm oxygen partial pressure.

Fig. 4
Fig. 4

Electro-optic gain dependence on grating wave vector for crystals processed at (S1) 1-, (S2) 10-5-, (S3) 10-8-, (S4) 10-11-, and (S5) 10-14-atm oxygen partial pressure.

Fig. 5
Fig. 5

Photoinduced erasure decay response time dependence on erasing beam intensity for crystals processed at (S1) 1-, (S2) 10-5-, (S3) 10-8-, (S4) 10-11-, and (S5) 10-14-atm oxygen partial pressure.

Fig. 6
Fig. 6

Normalized diffraction intensity of dark-decay dependence on time for crystals processed at (S1) 1-, (S2) 10-5-, (S3) 10-8-, (S4) 10-11-, and (S5) 10-14-atm oxygen partial pressure. The starting point of each measurement is not at t=0.

Tables (1)

Tables Icon

Table 1 Summary of Experimental Results

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

C=100 ID(t=0)-ID(t1/β)ID(t=0),

Metrics