Abstract

Two-wave mixing at 514.5 nm is investigated in an x-cut LiNbO3:Fe waveguide twice implanted with helium ions. The energy transfer is studied in four configurations characterized by the orientation of the optical axis and the polarization of the input waves. It is shown that, in one arrangement, the kinetics of the wave mixing consists of two parts: a transient peak attributed to the photovoltaic effect followed by a slower decay toward the stationary state for which the classic diffusion mechanism is predominant. The appearance of the photovoltaic effect is unexpected in comparison with the results found for the bulk.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Sohler and H. Suche, “Second-harmonic generation in Ti-diffused LiNbO3 optical waveguides with 25% conversion efficiency,” Appl. Phys. Lett. 33, 518–520 (1978).
    [CrossRef]
  2. J. Amin, V. Pruneri, J. Webjörn, P. St. J. Russell, D. C. Hanna, and J. S. Wilkinson, “Blue light generation in a periodically poled Ti:LiNbO3 channel waveguide,” Opt. Commun. 135, 41–44 (1997).
    [CrossRef]
  3. T. Pliska, F. Mayer, D. Fluck, P. Günter, and D. Rytz, “Nonlinear optical investigation of the optical homogeneity of KNbO3 bulk crystals and ion-implanted waveguides,” J. Opt. Soc. Am. B 12, 1878–1887 (1995).
    [CrossRef]
  4. K. E. Youden, S. W. James, R. W. Eason, P. J. Chandler, L. Zhang, and P. D. Townsend, “Photorefractive planar waveguides in BaTiO3 fabricated by ion-beam implantation,” Opt. Lett. 17, 1509–1511 (1992).
    [CrossRef]
  5. O. V. Kandidova, V. V. Lemanov, and B. V. Sukharev, “Hologram storage in planar lithium niobate waveguides,” Sov. Tech. Phys. Lett. 9, 335–336 (1982).
  6. O. V. Kandidova, V. V. Lemanov, and B. V. Sukharev, “Self-diffraction of light in lithium niobate waveguides,” Sov. Phys. Tech. Phys. 29, 1019–1022 (1984).
  7. D. Kip, F. Rickermann, and E. Krätzig, “Photorefractive recording by a special mechanism in planar LiNbO3 waveguides,” Opt. Lett. 20, 1139–1141 (1995).
    [CrossRef] [PubMed]
  8. D. Kip, B. Kemper, I. Nee, R. Pankrath, and P. Moretti, “Photorefractive properties of ion-implanted waveguides in strontium barium niobate crystals,” Appl. Phys. B 65, 511–516 (1997).
    [CrossRef]
  9. S. M. Kostritskii, D. Kip, and E. Krätzig, “Improvement of photorefractive properties of proton-exchanged LiTaO3 waveguides,” Appl. Phys. B 65, 517–522 (1997).
    [CrossRef]
  10. A. Dazzi, P. Mathey, and P. Jullien, “Energy leaks through the optical barrier created by H+ implantation in BaTiO3 and LiNbO3 waveguides,” Opt. Commun. 149, 135–142 (1998).
    [CrossRef]
  11. P. Mathey, P. Jullien, and J. L. Bolzinger, “Refractive-index profile reconstructions in planar waveguides by the WKB inverse method and reflectivity calculations,” J. Opt. Soc. Am. B 12, 1663–1670 (1995).
    [CrossRef]
  12. D. Marcuse, “Modes of a symmetric slab optical waveguide in birefringent media. II. Slab with coplanar optical axis,” IEEE J. Quantum Electron. QE-15, 92–101 (1979).
    [CrossRef]
  13. M. Lu and M. M. Fejer, “Anisotropic dielectric waveguides,” J. Opt. Soc. Am. B 10, 246–261 (1993).
    [CrossRef]
  14. A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
    [CrossRef]
  15. Q. W. Song, C. Zhang, and P. J. Talbot, “Self-defocusing, self-focusing, and speckle in LiNbO3 and LiNbO3:Fe crystals,” Appl. Opt. 32, 7266–7271 (1993).
    [CrossRef] [PubMed]
  16. A. M. Glass, D. von der Linde, and T. J. Negran, “High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3,” Appl. Phys. Lett. 25, 233–235 (1974).
    [CrossRef]
  17. S. G. Odoulov, “Spatially oscillating photovoltaic current in iron-doped lithium niobate crystals,” JETP Lett. 35, 10–13 (1982).
  18. B. I. Sturman, “The photogalvanic effect—a mechanism of non linear wave interaction in electrooptic crystals,” Sov. J. Quantum Electron. 10, 276–278 (1980).
    [CrossRef]
  19. S. G. Odoulov and B. I. Sturman, “Four-wave polarization interaction in photorefractive crystals,” Sov. Phys. JETP 65, 1134–1144 (1987).
  20. P. Günter and J.-P. Huignard, Photorefractive Materials and Their Applications (Springer-Verlag, Heidelberg, 1988, 1989), Vols. I and II.
  21. E. Krätzig and R. Sommerfeld, “Influence of dopants on photorefractive properties of LiNbO3 crystals,” in Nonlinear Optical Materials III, P. Günter, ed., Proc. SPIE 1273, 58–60 (1990).
  22. F. Jermann and J. Otten, “Light-induced charge transport in LiNbO3:Fe at high light intensities,” J. Opt. Soc. Am. B 10, 2085–2092 (1993).
    [CrossRef]
  23. O. V. Kandidova, V. V. Lemanov, and B. V. Sukharev, “Hologram writing in lithium niobate planar lightguides,” Sov. Phys. Tech. Phys. 9, 335–336 (1983).
  24. K. Shvarts, A. Ozols, P. Augustov, and M. Reinfelde, “Photorefraction and self enhancement of holograms in LiNbO3 and LiTaO3 crystals,” Ferroelectrics 75, 231–249 (1987).
    [CrossRef]
  25. N. Kukhtarev, V. Markov, and S. Odoulov, “Transient energy transfer during hologram formation in LiNbO3 in external electric field,” Opt. Commun. 23, 338–343 (1977).
    [CrossRef]
  26. M. Carrascosa, J. M. Cabrera, and F. Agullo-Lopez, “Role of the photovoltaic drift on the initial writing and erasure rates of holographic gratings: some implications,” Opt. Commun. 69, 83–86 (1988).
    [CrossRef]

1998 (1)

A. Dazzi, P. Mathey, and P. Jullien, “Energy leaks through the optical barrier created by H+ implantation in BaTiO3 and LiNbO3 waveguides,” Opt. Commun. 149, 135–142 (1998).
[CrossRef]

1997 (3)

D. Kip, B. Kemper, I. Nee, R. Pankrath, and P. Moretti, “Photorefractive properties of ion-implanted waveguides in strontium barium niobate crystals,” Appl. Phys. B 65, 511–516 (1997).
[CrossRef]

S. M. Kostritskii, D. Kip, and E. Krätzig, “Improvement of photorefractive properties of proton-exchanged LiTaO3 waveguides,” Appl. Phys. B 65, 517–522 (1997).
[CrossRef]

J. Amin, V. Pruneri, J. Webjörn, P. St. J. Russell, D. C. Hanna, and J. S. Wilkinson, “Blue light generation in a periodically poled Ti:LiNbO3 channel waveguide,” Opt. Commun. 135, 41–44 (1997).
[CrossRef]

1995 (3)

1993 (3)

1992 (1)

1990 (1)

E. Krätzig and R. Sommerfeld, “Influence of dopants on photorefractive properties of LiNbO3 crystals,” in Nonlinear Optical Materials III, P. Günter, ed., Proc. SPIE 1273, 58–60 (1990).

1988 (1)

M. Carrascosa, J. M. Cabrera, and F. Agullo-Lopez, “Role of the photovoltaic drift on the initial writing and erasure rates of holographic gratings: some implications,” Opt. Commun. 69, 83–86 (1988).
[CrossRef]

1987 (2)

K. Shvarts, A. Ozols, P. Augustov, and M. Reinfelde, “Photorefraction and self enhancement of holograms in LiNbO3 and LiTaO3 crystals,” Ferroelectrics 75, 231–249 (1987).
[CrossRef]

S. G. Odoulov and B. I. Sturman, “Four-wave polarization interaction in photorefractive crystals,” Sov. Phys. JETP 65, 1134–1144 (1987).

1984 (1)

O. V. Kandidova, V. V. Lemanov, and B. V. Sukharev, “Self-diffraction of light in lithium niobate waveguides,” Sov. Phys. Tech. Phys. 29, 1019–1022 (1984).

1983 (1)

O. V. Kandidova, V. V. Lemanov, and B. V. Sukharev, “Hologram writing in lithium niobate planar lightguides,” Sov. Phys. Tech. Phys. 9, 335–336 (1983).

1982 (2)

S. G. Odoulov, “Spatially oscillating photovoltaic current in iron-doped lithium niobate crystals,” JETP Lett. 35, 10–13 (1982).

O. V. Kandidova, V. V. Lemanov, and B. V. Sukharev, “Hologram storage in planar lithium niobate waveguides,” Sov. Tech. Phys. Lett. 9, 335–336 (1982).

1980 (1)

B. I. Sturman, “The photogalvanic effect—a mechanism of non linear wave interaction in electrooptic crystals,” Sov. J. Quantum Electron. 10, 276–278 (1980).
[CrossRef]

1979 (1)

D. Marcuse, “Modes of a symmetric slab optical waveguide in birefringent media. II. Slab with coplanar optical axis,” IEEE J. Quantum Electron. QE-15, 92–101 (1979).
[CrossRef]

1978 (1)

W. Sohler and H. Suche, “Second-harmonic generation in Ti-diffused LiNbO3 optical waveguides with 25% conversion efficiency,” Appl. Phys. Lett. 33, 518–520 (1978).
[CrossRef]

1977 (1)

N. Kukhtarev, V. Markov, and S. Odoulov, “Transient energy transfer during hologram formation in LiNbO3 in external electric field,” Opt. Commun. 23, 338–343 (1977).
[CrossRef]

1974 (1)

A. M. Glass, D. von der Linde, and T. J. Negran, “High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3,” Appl. Phys. Lett. 25, 233–235 (1974).
[CrossRef]

1966 (1)

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[CrossRef]

Agullo-Lopez, F.

M. Carrascosa, J. M. Cabrera, and F. Agullo-Lopez, “Role of the photovoltaic drift on the initial writing and erasure rates of holographic gratings: some implications,” Opt. Commun. 69, 83–86 (1988).
[CrossRef]

Amin, J.

J. Amin, V. Pruneri, J. Webjörn, P. St. J. Russell, D. C. Hanna, and J. S. Wilkinson, “Blue light generation in a periodically poled Ti:LiNbO3 channel waveguide,” Opt. Commun. 135, 41–44 (1997).
[CrossRef]

Ashkin, A.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[CrossRef]

Augustov, P.

K. Shvarts, A. Ozols, P. Augustov, and M. Reinfelde, “Photorefraction and self enhancement of holograms in LiNbO3 and LiTaO3 crystals,” Ferroelectrics 75, 231–249 (1987).
[CrossRef]

Ballman, A. A.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[CrossRef]

Bolzinger, J. L.

Boyd, G. D.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[CrossRef]

Cabrera, J. M.

M. Carrascosa, J. M. Cabrera, and F. Agullo-Lopez, “Role of the photovoltaic drift on the initial writing and erasure rates of holographic gratings: some implications,” Opt. Commun. 69, 83–86 (1988).
[CrossRef]

Carrascosa, M.

M. Carrascosa, J. M. Cabrera, and F. Agullo-Lopez, “Role of the photovoltaic drift on the initial writing and erasure rates of holographic gratings: some implications,” Opt. Commun. 69, 83–86 (1988).
[CrossRef]

Chandler, P. J.

Dazzi, A.

A. Dazzi, P. Mathey, and P. Jullien, “Energy leaks through the optical barrier created by H+ implantation in BaTiO3 and LiNbO3 waveguides,” Opt. Commun. 149, 135–142 (1998).
[CrossRef]

Dziedzic, J. M.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[CrossRef]

Eason, R. W.

Fejer, M. M.

M. Lu and M. M. Fejer, “Anisotropic dielectric waveguides,” J. Opt. Soc. Am. B 10, 246–261 (1993).
[CrossRef]

Fluck, D.

Glass, A. M.

A. M. Glass, D. von der Linde, and T. J. Negran, “High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3,” Appl. Phys. Lett. 25, 233–235 (1974).
[CrossRef]

Günter, P.

Hanna, D. C.

J. Amin, V. Pruneri, J. Webjörn, P. St. J. Russell, D. C. Hanna, and J. S. Wilkinson, “Blue light generation in a periodically poled Ti:LiNbO3 channel waveguide,” Opt. Commun. 135, 41–44 (1997).
[CrossRef]

James, S. W.

Jermann, F.

Jullien, P.

A. Dazzi, P. Mathey, and P. Jullien, “Energy leaks through the optical barrier created by H+ implantation in BaTiO3 and LiNbO3 waveguides,” Opt. Commun. 149, 135–142 (1998).
[CrossRef]

P. Mathey, P. Jullien, and J. L. Bolzinger, “Refractive-index profile reconstructions in planar waveguides by the WKB inverse method and reflectivity calculations,” J. Opt. Soc. Am. B 12, 1663–1670 (1995).
[CrossRef]

Kandidova, O. V.

O. V. Kandidova, V. V. Lemanov, and B. V. Sukharev, “Self-diffraction of light in lithium niobate waveguides,” Sov. Phys. Tech. Phys. 29, 1019–1022 (1984).

O. V. Kandidova, V. V. Lemanov, and B. V. Sukharev, “Hologram writing in lithium niobate planar lightguides,” Sov. Phys. Tech. Phys. 9, 335–336 (1983).

O. V. Kandidova, V. V. Lemanov, and B. V. Sukharev, “Hologram storage in planar lithium niobate waveguides,” Sov. Tech. Phys. Lett. 9, 335–336 (1982).

Kemper, B.

D. Kip, B. Kemper, I. Nee, R. Pankrath, and P. Moretti, “Photorefractive properties of ion-implanted waveguides in strontium barium niobate crystals,” Appl. Phys. B 65, 511–516 (1997).
[CrossRef]

Kip, D.

D. Kip, B. Kemper, I. Nee, R. Pankrath, and P. Moretti, “Photorefractive properties of ion-implanted waveguides in strontium barium niobate crystals,” Appl. Phys. B 65, 511–516 (1997).
[CrossRef]

S. M. Kostritskii, D. Kip, and E. Krätzig, “Improvement of photorefractive properties of proton-exchanged LiTaO3 waveguides,” Appl. Phys. B 65, 517–522 (1997).
[CrossRef]

D. Kip, F. Rickermann, and E. Krätzig, “Photorefractive recording by a special mechanism in planar LiNbO3 waveguides,” Opt. Lett. 20, 1139–1141 (1995).
[CrossRef] [PubMed]

Kostritskii, S. M.

S. M. Kostritskii, D. Kip, and E. Krätzig, “Improvement of photorefractive properties of proton-exchanged LiTaO3 waveguides,” Appl. Phys. B 65, 517–522 (1997).
[CrossRef]

Krätzig, E.

S. M. Kostritskii, D. Kip, and E. Krätzig, “Improvement of photorefractive properties of proton-exchanged LiTaO3 waveguides,” Appl. Phys. B 65, 517–522 (1997).
[CrossRef]

D. Kip, F. Rickermann, and E. Krätzig, “Photorefractive recording by a special mechanism in planar LiNbO3 waveguides,” Opt. Lett. 20, 1139–1141 (1995).
[CrossRef] [PubMed]

E. Krätzig and R. Sommerfeld, “Influence of dopants on photorefractive properties of LiNbO3 crystals,” in Nonlinear Optical Materials III, P. Günter, ed., Proc. SPIE 1273, 58–60 (1990).

Kukhtarev, N.

N. Kukhtarev, V. Markov, and S. Odoulov, “Transient energy transfer during hologram formation in LiNbO3 in external electric field,” Opt. Commun. 23, 338–343 (1977).
[CrossRef]

Lemanov, V. V.

O. V. Kandidova, V. V. Lemanov, and B. V. Sukharev, “Self-diffraction of light in lithium niobate waveguides,” Sov. Phys. Tech. Phys. 29, 1019–1022 (1984).

O. V. Kandidova, V. V. Lemanov, and B. V. Sukharev, “Hologram writing in lithium niobate planar lightguides,” Sov. Phys. Tech. Phys. 9, 335–336 (1983).

O. V. Kandidova, V. V. Lemanov, and B. V. Sukharev, “Hologram storage in planar lithium niobate waveguides,” Sov. Tech. Phys. Lett. 9, 335–336 (1982).

Levinstein, J. J.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[CrossRef]

Lu, M.

M. Lu and M. M. Fejer, “Anisotropic dielectric waveguides,” J. Opt. Soc. Am. B 10, 246–261 (1993).
[CrossRef]

Marcuse, D.

D. Marcuse, “Modes of a symmetric slab optical waveguide in birefringent media. II. Slab with coplanar optical axis,” IEEE J. Quantum Electron. QE-15, 92–101 (1979).
[CrossRef]

Markov, V.

N. Kukhtarev, V. Markov, and S. Odoulov, “Transient energy transfer during hologram formation in LiNbO3 in external electric field,” Opt. Commun. 23, 338–343 (1977).
[CrossRef]

Mathey, P.

A. Dazzi, P. Mathey, and P. Jullien, “Energy leaks through the optical barrier created by H+ implantation in BaTiO3 and LiNbO3 waveguides,” Opt. Commun. 149, 135–142 (1998).
[CrossRef]

P. Mathey, P. Jullien, and J. L. Bolzinger, “Refractive-index profile reconstructions in planar waveguides by the WKB inverse method and reflectivity calculations,” J. Opt. Soc. Am. B 12, 1663–1670 (1995).
[CrossRef]

Mayer, F.

Moretti, P.

D. Kip, B. Kemper, I. Nee, R. Pankrath, and P. Moretti, “Photorefractive properties of ion-implanted waveguides in strontium barium niobate crystals,” Appl. Phys. B 65, 511–516 (1997).
[CrossRef]

Nassau, K.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[CrossRef]

Nee, I.

D. Kip, B. Kemper, I. Nee, R. Pankrath, and P. Moretti, “Photorefractive properties of ion-implanted waveguides in strontium barium niobate crystals,” Appl. Phys. B 65, 511–516 (1997).
[CrossRef]

Negran, T. J.

A. M. Glass, D. von der Linde, and T. J. Negran, “High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3,” Appl. Phys. Lett. 25, 233–235 (1974).
[CrossRef]

Odoulov, S.

N. Kukhtarev, V. Markov, and S. Odoulov, “Transient energy transfer during hologram formation in LiNbO3 in external electric field,” Opt. Commun. 23, 338–343 (1977).
[CrossRef]

Odoulov, S. G.

S. G. Odoulov and B. I. Sturman, “Four-wave polarization interaction in photorefractive crystals,” Sov. Phys. JETP 65, 1134–1144 (1987).

S. G. Odoulov, “Spatially oscillating photovoltaic current in iron-doped lithium niobate crystals,” JETP Lett. 35, 10–13 (1982).

Otten, J.

Ozols, A.

K. Shvarts, A. Ozols, P. Augustov, and M. Reinfelde, “Photorefraction and self enhancement of holograms in LiNbO3 and LiTaO3 crystals,” Ferroelectrics 75, 231–249 (1987).
[CrossRef]

Pankrath, R.

D. Kip, B. Kemper, I. Nee, R. Pankrath, and P. Moretti, “Photorefractive properties of ion-implanted waveguides in strontium barium niobate crystals,” Appl. Phys. B 65, 511–516 (1997).
[CrossRef]

Pliska, T.

Pruneri, V.

J. Amin, V. Pruneri, J. Webjörn, P. St. J. Russell, D. C. Hanna, and J. S. Wilkinson, “Blue light generation in a periodically poled Ti:LiNbO3 channel waveguide,” Opt. Commun. 135, 41–44 (1997).
[CrossRef]

Reinfelde, M.

K. Shvarts, A. Ozols, P. Augustov, and M. Reinfelde, “Photorefraction and self enhancement of holograms in LiNbO3 and LiTaO3 crystals,” Ferroelectrics 75, 231–249 (1987).
[CrossRef]

Rickermann, F.

Rytz, D.

Shvarts, K.

K. Shvarts, A. Ozols, P. Augustov, and M. Reinfelde, “Photorefraction and self enhancement of holograms in LiNbO3 and LiTaO3 crystals,” Ferroelectrics 75, 231–249 (1987).
[CrossRef]

Smith, R. G.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[CrossRef]

Sohler, W.

W. Sohler and H. Suche, “Second-harmonic generation in Ti-diffused LiNbO3 optical waveguides with 25% conversion efficiency,” Appl. Phys. Lett. 33, 518–520 (1978).
[CrossRef]

Sommerfeld, R.

E. Krätzig and R. Sommerfeld, “Influence of dopants on photorefractive properties of LiNbO3 crystals,” in Nonlinear Optical Materials III, P. Günter, ed., Proc. SPIE 1273, 58–60 (1990).

Song, Q. W.

St. J. Russell, P.

J. Amin, V. Pruneri, J. Webjörn, P. St. J. Russell, D. C. Hanna, and J. S. Wilkinson, “Blue light generation in a periodically poled Ti:LiNbO3 channel waveguide,” Opt. Commun. 135, 41–44 (1997).
[CrossRef]

Sturman, B. I.

S. G. Odoulov and B. I. Sturman, “Four-wave polarization interaction in photorefractive crystals,” Sov. Phys. JETP 65, 1134–1144 (1987).

B. I. Sturman, “The photogalvanic effect—a mechanism of non linear wave interaction in electrooptic crystals,” Sov. J. Quantum Electron. 10, 276–278 (1980).
[CrossRef]

Suche, H.

W. Sohler and H. Suche, “Second-harmonic generation in Ti-diffused LiNbO3 optical waveguides with 25% conversion efficiency,” Appl. Phys. Lett. 33, 518–520 (1978).
[CrossRef]

Sukharev, B. V.

O. V. Kandidova, V. V. Lemanov, and B. V. Sukharev, “Self-diffraction of light in lithium niobate waveguides,” Sov. Phys. Tech. Phys. 29, 1019–1022 (1984).

O. V. Kandidova, V. V. Lemanov, and B. V. Sukharev, “Hologram writing in lithium niobate planar lightguides,” Sov. Phys. Tech. Phys. 9, 335–336 (1983).

O. V. Kandidova, V. V. Lemanov, and B. V. Sukharev, “Hologram storage in planar lithium niobate waveguides,” Sov. Tech. Phys. Lett. 9, 335–336 (1982).

Talbot, P. J.

Townsend, P. D.

von der Linde, D.

A. M. Glass, D. von der Linde, and T. J. Negran, “High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3,” Appl. Phys. Lett. 25, 233–235 (1974).
[CrossRef]

Webjörn, J.

J. Amin, V. Pruneri, J. Webjörn, P. St. J. Russell, D. C. Hanna, and J. S. Wilkinson, “Blue light generation in a periodically poled Ti:LiNbO3 channel waveguide,” Opt. Commun. 135, 41–44 (1997).
[CrossRef]

Wilkinson, J. S.

J. Amin, V. Pruneri, J. Webjörn, P. St. J. Russell, D. C. Hanna, and J. S. Wilkinson, “Blue light generation in a periodically poled Ti:LiNbO3 channel waveguide,” Opt. Commun. 135, 41–44 (1997).
[CrossRef]

Youden, K. E.

Zhang, C.

Zhang, L.

Appl. Opt. (1)

Appl. Phys. B (2)

D. Kip, B. Kemper, I. Nee, R. Pankrath, and P. Moretti, “Photorefractive properties of ion-implanted waveguides in strontium barium niobate crystals,” Appl. Phys. B 65, 511–516 (1997).
[CrossRef]

S. M. Kostritskii, D. Kip, and E. Krätzig, “Improvement of photorefractive properties of proton-exchanged LiTaO3 waveguides,” Appl. Phys. B 65, 517–522 (1997).
[CrossRef]

Appl. Phys. Lett. (3)

W. Sohler and H. Suche, “Second-harmonic generation in Ti-diffused LiNbO3 optical waveguides with 25% conversion efficiency,” Appl. Phys. Lett. 33, 518–520 (1978).
[CrossRef]

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[CrossRef]

A. M. Glass, D. von der Linde, and T. J. Negran, “High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3,” Appl. Phys. Lett. 25, 233–235 (1974).
[CrossRef]

Ferroelectrics (1)

K. Shvarts, A. Ozols, P. Augustov, and M. Reinfelde, “Photorefraction and self enhancement of holograms in LiNbO3 and LiTaO3 crystals,” Ferroelectrics 75, 231–249 (1987).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. Marcuse, “Modes of a symmetric slab optical waveguide in birefringent media. II. Slab with coplanar optical axis,” IEEE J. Quantum Electron. QE-15, 92–101 (1979).
[CrossRef]

J. Opt. Soc. Am. B (4)

JETP Lett. (1)

S. G. Odoulov, “Spatially oscillating photovoltaic current in iron-doped lithium niobate crystals,” JETP Lett. 35, 10–13 (1982).

Opt. Commun. (4)

J. Amin, V. Pruneri, J. Webjörn, P. St. J. Russell, D. C. Hanna, and J. S. Wilkinson, “Blue light generation in a periodically poled Ti:LiNbO3 channel waveguide,” Opt. Commun. 135, 41–44 (1997).
[CrossRef]

A. Dazzi, P. Mathey, and P. Jullien, “Energy leaks through the optical barrier created by H+ implantation in BaTiO3 and LiNbO3 waveguides,” Opt. Commun. 149, 135–142 (1998).
[CrossRef]

N. Kukhtarev, V. Markov, and S. Odoulov, “Transient energy transfer during hologram formation in LiNbO3 in external electric field,” Opt. Commun. 23, 338–343 (1977).
[CrossRef]

M. Carrascosa, J. M. Cabrera, and F. Agullo-Lopez, “Role of the photovoltaic drift on the initial writing and erasure rates of holographic gratings: some implications,” Opt. Commun. 69, 83–86 (1988).
[CrossRef]

Opt. Lett. (2)

Proc. SPIE (1)

E. Krätzig and R. Sommerfeld, “Influence of dopants on photorefractive properties of LiNbO3 crystals,” in Nonlinear Optical Materials III, P. Günter, ed., Proc. SPIE 1273, 58–60 (1990).

Sov. J. Quantum Electron. (1)

B. I. Sturman, “The photogalvanic effect—a mechanism of non linear wave interaction in electrooptic crystals,” Sov. J. Quantum Electron. 10, 276–278 (1980).
[CrossRef]

Sov. Phys. JETP (1)

S. G. Odoulov and B. I. Sturman, “Four-wave polarization interaction in photorefractive crystals,” Sov. Phys. JETP 65, 1134–1144 (1987).

Sov. Phys. Tech. Phys. (2)

O. V. Kandidova, V. V. Lemanov, and B. V. Sukharev, “Hologram writing in lithium niobate planar lightguides,” Sov. Phys. Tech. Phys. 9, 335–336 (1983).

O. V. Kandidova, V. V. Lemanov, and B. V. Sukharev, “Self-diffraction of light in lithium niobate waveguides,” Sov. Phys. Tech. Phys. 29, 1019–1022 (1984).

Sov. Tech. Phys. Lett. (1)

O. V. Kandidova, V. V. Lemanov, and B. V. Sukharev, “Hologram storage in planar lithium niobate waveguides,” Sov. Tech. Phys. Lett. 9, 335–336 (1982).

Other (1)

P. Günter and J.-P. Huignard, Photorefractive Materials and Their Applications (Springer-Verlag, Heidelberg, 1988, 1989), Vols. I and II.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

m-Lines spectra at 514.5 nm in an x-cut LiNbO3:Fe waveguide for propagation of (a) TE-polarized light perpendicular to the c axis, (b) TE-polarized light along the c axis, (c) TM-polarized light perpendicular to the c axis, and (d) TM-polarized light along the c axis.

Fig. 2
Fig. 2

Schematic representations of the beams, their polarizations, and their relative dispositions with respect to the optical axis.

Fig. 3
Fig. 3

Typical kinetic curves of (a) the amplification of the TE and TM components of the probe, (b) the depletion of the TE and TM components of the pump. For these curves we take r9; the total estimated intensity inside the guide is 3.9 W/cm2. The configuration corresponds to that in Fig. 2(a).

Fig. 4
Fig. 4

Kinetic curve of the TE outcoupled probe beam obtained by interchanging of the probe and pump beams from those in the arrangement used in Fig. 3.

Fig. 5
Fig. 5

Intensity dependence of the response times τp (filled squares) and τs (filled circles). Straight lines, fits of the experimental data with sublinear functions. The ratio r is fixed at r9.

Fig. 6
Fig. 6

Amplification factors γp and γs versus ratio r. The total incident intensity is kept constant (3.2 W/cm2).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

γp=ProbeintensityatthetransientpeakvalueProbeintensitywhenthepumpisoff,
γs=ProbeintensityatsteadystateProbeintensitywhenthepumpisoff.
Esc=(E02+ED2)1/21+EDEq2+E0Eq21/2,
E1(t)=mEsc[1-exp(-t/τ)],
1τ=1τDIKdiffKDebye2×(K2+KDebye2)(K2+Kdiff2)+KE0 ekBT2(K2+Kdiff2)2+KE0 ekBT2+1jτDIKdiffKDebye2 (K2-KDebye2)KE0 ekBT(K2+Kdiff2)2+KE0 ekBT2,
j=σEpv=καI,

Metrics