Abstract

The design of an all-optical nor gate is presented. The logic operation is performed by the nonlinear Kerr interaction between beams that enter with cosine field shapes in a planar waveguide, as could be obtained, for example, by input channel guides. The beams have orthogonal polarizations. The gate is not phase dependent, grants a fan-out of two, and might also work in the presence of moderate nonlinear absorption.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. S. Aitchison, Y. Silberberg, A. M. Weiner, D. E. Leaird, M. K. Oliver, J. L. Jackel, E. M. Vogel, and P. W. E. Smith, “Spatial optical solitons in planar glass waveguides,” J. Opt. Soc. Am. B 8, 1290–1296 (1991).
    [CrossRef]
  2. D. W. Aossey, S. R. Skinner, J. L. Cooney, J. E. Williams, M. T. Gavin, D. R. Andersen, and K. E. Lonngren, “Properties of soliton–soliton collision,” Phys. Rev. A 45, 2606–2610 (1992).
    [CrossRef] [PubMed]
  3. F. Reynaud and A. Bartelemy, “Optically controlled interaction between two fundamental soliton beams,” Europhys. Lett. 12, 401–405 (1990).
    [CrossRef]
  4. T. T. Shi and S. Chi, “Nonlinear photonic switching by using the spatial soliton collision,” Opt. Lett. 15, 1123–1125 (1990).
    [CrossRef] [PubMed]
  5. R. McLeod, K. Wagner, and S. Blair, “(3+1)-dimensional optical soliton dragging logic,” Phys. Rev. A 52, 3254–3278 (1995).
    [CrossRef] [PubMed]
  6. X. D. Cao and D. D. Meyerhofer, “All-optical switching by means of collisions of spatial vector solitons,” Opt. Lett. 19, 1711–1713 (1994).
    [CrossRef] [PubMed]
  7. F. Garzia, C. Sibilia, and M. Bertolotti, “Swing effect of spatial solitons,” Opt. Commun. 139, 193–198 (1997).
    [CrossRef]
  8. F. Garzia, C. Sibilia, and M. Bertolotti, “All-optical division and multiplication operation,” in Physics and Simulation of Optoelectronic Devices III, M. Osinski and W. W. Chow, eds., Proc. SPIE 2399, 58–69 (1995).
    [CrossRef]
  9. F. Garzia, C. Sibilia, and M. Bertolotti, “Step-ended waveguide soliton demultiplexer,” in Fiber Integrated Optics, G. C. Righini, ed., Proc. SPIE 2954, 76–87 (1996).
    [CrossRef]
  10. M. Bertolotti, E. Fazio, G. Lanciani, C. Sibilia, M. Suriano, and M. Zitelli, “Spatial optical solitons in a BK7 glass planar waveguide,” in Proceedings of the European Conference on Integrated Optics (ECIO ’97) (Royal Institute of Technology, Stockholm, Sweden, April 4–8, 1997).
  11. A. Barthelemy, C. Froehly, S. Maneuf, and F. Reynaud, “Experimental observation of beams’ self-deflection appearing with two-dimensional spatial soliton propagation in bulk Kerr material,” Opt. Lett. 17, 844–846 (1992).
    [CrossRef]
  12. A. J. Stentz, M. Kauranen, J. J. Maki, G. P. Agrawal, and R. W. Boyd, “Induced focusing and spatial wave breaking from cross-phase modulation in a self-defocusing medium,” Opt. Lett. 17, 19–21 (1992).
    [CrossRef] [PubMed]
  13. Y. Silberberg, “Collapse of optical pulses,” Opt. Lett. 15, 1282–1284 (1990).
    [CrossRef] [PubMed]
  14. U. Bartuch, U. Peschel, Th. Gabler, R. Waldhausl, and H. H. Horhold, “Experimental investigations and numerical simulations of spatial solitons in planar polymer waveguides,” Opt. Commun. 134, 49–54 (1997).
    [CrossRef]
  15. A. D. Boardman and K. Xie, “Bright spatial soliton dynamics in a symmetric optical planar waveguide structure,” Phys. Rev. A 50, 1851–1866 (1994).
    [CrossRef] [PubMed]
  16. S. Blair, K. Wagner, and R. McLeod, “Material figures of merit for spatial soliton interactions in the presence of absorption,” J. Opt. Soc. Am. B 13, 2141–2153 (1996).
    [CrossRef]
  17. S. Blair, K. Wagner, and R. McLeod, “Asymmetric spatial soliton dragging,” Opt. Lett. 19, 1943–1945 (1994).
    [CrossRef] [PubMed]
  18. B. A. Malomed and S. Wabnitz, “Soliton annihilation and fusion from resonant inelastic collisions in birefringent optical fibers,” Opt. Lett. 18, 1388–1390 (1991).
    [CrossRef]
  19. G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1995).

1997 (2)

F. Garzia, C. Sibilia, and M. Bertolotti, “Swing effect of spatial solitons,” Opt. Commun. 139, 193–198 (1997).
[CrossRef]

U. Bartuch, U. Peschel, Th. Gabler, R. Waldhausl, and H. H. Horhold, “Experimental investigations and numerical simulations of spatial solitons in planar polymer waveguides,” Opt. Commun. 134, 49–54 (1997).
[CrossRef]

1996 (2)

S. Blair, K. Wagner, and R. McLeod, “Material figures of merit for spatial soliton interactions in the presence of absorption,” J. Opt. Soc. Am. B 13, 2141–2153 (1996).
[CrossRef]

F. Garzia, C. Sibilia, and M. Bertolotti, “Step-ended waveguide soliton demultiplexer,” in Fiber Integrated Optics, G. C. Righini, ed., Proc. SPIE 2954, 76–87 (1996).
[CrossRef]

1995 (2)

R. McLeod, K. Wagner, and S. Blair, “(3+1)-dimensional optical soliton dragging logic,” Phys. Rev. A 52, 3254–3278 (1995).
[CrossRef] [PubMed]

F. Garzia, C. Sibilia, and M. Bertolotti, “All-optical division and multiplication operation,” in Physics and Simulation of Optoelectronic Devices III, M. Osinski and W. W. Chow, eds., Proc. SPIE 2399, 58–69 (1995).
[CrossRef]

1994 (3)

1992 (3)

1991 (2)

1990 (3)

Agrawal, G. P.

Aitchison, J. S.

Andersen, D. R.

D. W. Aossey, S. R. Skinner, J. L. Cooney, J. E. Williams, M. T. Gavin, D. R. Andersen, and K. E. Lonngren, “Properties of soliton–soliton collision,” Phys. Rev. A 45, 2606–2610 (1992).
[CrossRef] [PubMed]

Aossey, D. W.

D. W. Aossey, S. R. Skinner, J. L. Cooney, J. E. Williams, M. T. Gavin, D. R. Andersen, and K. E. Lonngren, “Properties of soliton–soliton collision,” Phys. Rev. A 45, 2606–2610 (1992).
[CrossRef] [PubMed]

Bartelemy, A.

F. Reynaud and A. Bartelemy, “Optically controlled interaction between two fundamental soliton beams,” Europhys. Lett. 12, 401–405 (1990).
[CrossRef]

Barthelemy, A.

Bartuch, U.

U. Bartuch, U. Peschel, Th. Gabler, R. Waldhausl, and H. H. Horhold, “Experimental investigations and numerical simulations of spatial solitons in planar polymer waveguides,” Opt. Commun. 134, 49–54 (1997).
[CrossRef]

Bertolotti, M.

F. Garzia, C. Sibilia, and M. Bertolotti, “Swing effect of spatial solitons,” Opt. Commun. 139, 193–198 (1997).
[CrossRef]

F. Garzia, C. Sibilia, and M. Bertolotti, “Step-ended waveguide soliton demultiplexer,” in Fiber Integrated Optics, G. C. Righini, ed., Proc. SPIE 2954, 76–87 (1996).
[CrossRef]

F. Garzia, C. Sibilia, and M. Bertolotti, “All-optical division and multiplication operation,” in Physics and Simulation of Optoelectronic Devices III, M. Osinski and W. W. Chow, eds., Proc. SPIE 2399, 58–69 (1995).
[CrossRef]

Blair, S.

Boardman, A. D.

A. D. Boardman and K. Xie, “Bright spatial soliton dynamics in a symmetric optical planar waveguide structure,” Phys. Rev. A 50, 1851–1866 (1994).
[CrossRef] [PubMed]

Boyd, R. W.

Cao, X. D.

Chi, S.

Cooney, J. L.

D. W. Aossey, S. R. Skinner, J. L. Cooney, J. E. Williams, M. T. Gavin, D. R. Andersen, and K. E. Lonngren, “Properties of soliton–soliton collision,” Phys. Rev. A 45, 2606–2610 (1992).
[CrossRef] [PubMed]

Froehly, C.

Gabler, Th.

U. Bartuch, U. Peschel, Th. Gabler, R. Waldhausl, and H. H. Horhold, “Experimental investigations and numerical simulations of spatial solitons in planar polymer waveguides,” Opt. Commun. 134, 49–54 (1997).
[CrossRef]

Garzia, F.

F. Garzia, C. Sibilia, and M. Bertolotti, “Swing effect of spatial solitons,” Opt. Commun. 139, 193–198 (1997).
[CrossRef]

F. Garzia, C. Sibilia, and M. Bertolotti, “Step-ended waveguide soliton demultiplexer,” in Fiber Integrated Optics, G. C. Righini, ed., Proc. SPIE 2954, 76–87 (1996).
[CrossRef]

F. Garzia, C. Sibilia, and M. Bertolotti, “All-optical division and multiplication operation,” in Physics and Simulation of Optoelectronic Devices III, M. Osinski and W. W. Chow, eds., Proc. SPIE 2399, 58–69 (1995).
[CrossRef]

Gavin, M. T.

D. W. Aossey, S. R. Skinner, J. L. Cooney, J. E. Williams, M. T. Gavin, D. R. Andersen, and K. E. Lonngren, “Properties of soliton–soliton collision,” Phys. Rev. A 45, 2606–2610 (1992).
[CrossRef] [PubMed]

Horhold, H. H.

U. Bartuch, U. Peschel, Th. Gabler, R. Waldhausl, and H. H. Horhold, “Experimental investigations and numerical simulations of spatial solitons in planar polymer waveguides,” Opt. Commun. 134, 49–54 (1997).
[CrossRef]

Jackel, J. L.

Kauranen, M.

Leaird, D. E.

Lonngren, K. E.

D. W. Aossey, S. R. Skinner, J. L. Cooney, J. E. Williams, M. T. Gavin, D. R. Andersen, and K. E. Lonngren, “Properties of soliton–soliton collision,” Phys. Rev. A 45, 2606–2610 (1992).
[CrossRef] [PubMed]

Maki, J. J.

Malomed, B. A.

Maneuf, S.

McLeod, R.

Meyerhofer, D. D.

Oliver, M. K.

Peschel, U.

U. Bartuch, U. Peschel, Th. Gabler, R. Waldhausl, and H. H. Horhold, “Experimental investigations and numerical simulations of spatial solitons in planar polymer waveguides,” Opt. Commun. 134, 49–54 (1997).
[CrossRef]

Reynaud, F.

Shi, T. T.

Sibilia, C.

F. Garzia, C. Sibilia, and M. Bertolotti, “Swing effect of spatial solitons,” Opt. Commun. 139, 193–198 (1997).
[CrossRef]

F. Garzia, C. Sibilia, and M. Bertolotti, “Step-ended waveguide soliton demultiplexer,” in Fiber Integrated Optics, G. C. Righini, ed., Proc. SPIE 2954, 76–87 (1996).
[CrossRef]

F. Garzia, C. Sibilia, and M. Bertolotti, “All-optical division and multiplication operation,” in Physics and Simulation of Optoelectronic Devices III, M. Osinski and W. W. Chow, eds., Proc. SPIE 2399, 58–69 (1995).
[CrossRef]

Silberberg, Y.

Skinner, S. R.

D. W. Aossey, S. R. Skinner, J. L. Cooney, J. E. Williams, M. T. Gavin, D. R. Andersen, and K. E. Lonngren, “Properties of soliton–soliton collision,” Phys. Rev. A 45, 2606–2610 (1992).
[CrossRef] [PubMed]

Smith, P. W. E.

Stentz, A. J.

Vogel, E. M.

Wabnitz, S.

Wagner, K.

Waldhausl, R.

U. Bartuch, U. Peschel, Th. Gabler, R. Waldhausl, and H. H. Horhold, “Experimental investigations and numerical simulations of spatial solitons in planar polymer waveguides,” Opt. Commun. 134, 49–54 (1997).
[CrossRef]

Weiner, A. M.

Williams, J. E.

D. W. Aossey, S. R. Skinner, J. L. Cooney, J. E. Williams, M. T. Gavin, D. R. Andersen, and K. E. Lonngren, “Properties of soliton–soliton collision,” Phys. Rev. A 45, 2606–2610 (1992).
[CrossRef] [PubMed]

Xie, K.

A. D. Boardman and K. Xie, “Bright spatial soliton dynamics in a symmetric optical planar waveguide structure,” Phys. Rev. A 50, 1851–1866 (1994).
[CrossRef] [PubMed]

Europhys. Lett. (1)

F. Reynaud and A. Bartelemy, “Optically controlled interaction between two fundamental soliton beams,” Europhys. Lett. 12, 401–405 (1990).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Commun. (2)

U. Bartuch, U. Peschel, Th. Gabler, R. Waldhausl, and H. H. Horhold, “Experimental investigations and numerical simulations of spatial solitons in planar polymer waveguides,” Opt. Commun. 134, 49–54 (1997).
[CrossRef]

F. Garzia, C. Sibilia, and M. Bertolotti, “Swing effect of spatial solitons,” Opt. Commun. 139, 193–198 (1997).
[CrossRef]

Opt. Lett. (7)

Phys. Rev. A (3)

A. D. Boardman and K. Xie, “Bright spatial soliton dynamics in a symmetric optical planar waveguide structure,” Phys. Rev. A 50, 1851–1866 (1994).
[CrossRef] [PubMed]

R. McLeod, K. Wagner, and S. Blair, “(3+1)-dimensional optical soliton dragging logic,” Phys. Rev. A 52, 3254–3278 (1995).
[CrossRef] [PubMed]

D. W. Aossey, S. R. Skinner, J. L. Cooney, J. E. Williams, M. T. Gavin, D. R. Andersen, and K. E. Lonngren, “Properties of soliton–soliton collision,” Phys. Rev. A 45, 2606–2610 (1992).
[CrossRef] [PubMed]

Proc. SPIE (2)

F. Garzia, C. Sibilia, and M. Bertolotti, “All-optical division and multiplication operation,” in Physics and Simulation of Optoelectronic Devices III, M. Osinski and W. W. Chow, eds., Proc. SPIE 2399, 58–69 (1995).
[CrossRef]

F. Garzia, C. Sibilia, and M. Bertolotti, “Step-ended waveguide soliton demultiplexer,” in Fiber Integrated Optics, G. C. Righini, ed., Proc. SPIE 2954, 76–87 (1996).
[CrossRef]

Other (2)

M. Bertolotti, E. Fazio, G. Lanciani, C. Sibilia, M. Suriano, and M. Zitelli, “Spatial optical solitons in a BK7 glass planar waveguide,” in Proceedings of the European Conference on Integrated Optics (ECIO ’97) (Royal Institute of Technology, Stockholm, Sweden, April 4–8, 1997).

G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

nor gate realized with three input channel waveguides that enter a planar one. The two oblique left-hand channels bring the signals; the horizontal one carries the pump beam and is collected by an output channel guide that splits to drive two subsequent logic gates.

Fig. 2
Fig. 2

Three cosine-shaped beams enter the planar waveguide; they are assumed to be noninteracting. The left-hand signal, the right-hand signal, and the pump beams enter centered in X=-4, 0, and 0, respectively, with angles V=0.9, 0.9, and 0, respectively. They have amplitudes A=1.5, 1.5, and 2.23, and all have the same width (W=1).

Fig. 3
Fig. 3

Beam collision that takes place when only the left-hand signal and the pump are present. The two beams have orthogonal polarizations; the interaction is not phase dependent.

Fig. 4
Fig. 4

Beam dragging that takes place when only the pump and the right-hand signal are present. The two beams have orthogonal polarizations; the interaction is not phase dependent.

Fig. 5
Fig. 5

Three-beam interaction; the pump and both signals are present. The two signals are initially in phase and have polarizations that are parallel between them and orthogonal to the pump.

Fig. 6
Fig. 6

The pump beam is launched in a planar waveguide with nonlinear loss parameter K=0.005. To have a fan-out rout=2 after 10LD, the input amplitude was raised to A=2.57, with W=1 and rin=2.93.

Fig. 7
Fig. 7

nor gate behavior, with K=0.005, when the three beams are present. The two signals are initially in phase and have polarizations that are parallel between them and orthogonal to the pump.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

i uξ+122uX2+(1+iK)(|u|2+Δ|ν|2)u+iΓu=0,
i νξ+122νX2+(1+iK)(|ν|2+Δ|u|2)ν+iΓν=0,
u(X, ξ=0)=A cos[W(X-X0)]exp(iVX+iϕ0).
V=2πw0λ0n0tan θ.
Pp(ξ)=rin2P02(8/3)Krin2ξ+11/2.
rinrout21-(8/3)Krout2ξ1/2;

Metrics