Abstract

We present an experimental study of the influence of frequency chirp in 20-fs optical pulses on broadband semiconductor continuum nonlinearities. Differential-transmission (DT) measurements were performed in which either the exciting pump pulse or the readout probe pulse, or both pump and probe, were chirped. We demonstrate that in certain chirp configurations the spectrally integrated DT is enhanced on an ultrafast time scale compared with measurements with unchirped pulses. Therefore pulse chirping has the potential to improve and optimize all-optical ultrafast switching. Spectrally resolved DT measurements explain these findings. Positive and negative DT contributions are observed in different spectral ranges. The spectral position and the magnitude of these contributions change in time. Proper chirping of the pulses optimizes the readout of the positive contributions and maximizes the spectrally integrated DT. A simple quantitative model confirms these considerations.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription