Abstract

A high-finesse optical cavity was employed to perform highly sensitive spectroscopy of molecular oxygen at wavelengths near 763 nm. An equivalent absorption length of ∼1 km was obtained by a 26-cm-long optical cavity with a finesse of 6000. An extended cavity diode laser was frequency locked to the cavity, and pure absorption profiles were recovered by monitoring of the cavity transmission during continuous scans of the cavity resonance through O2 rotational lines, allowing a detailed investigation of the line shapes. Phase modulation of the laser at a frequency equal to the cavity free-spectral-range frequency was employed for detection of weak absorption signals inside the cavity. A minimum detectable absorption coefficient of 6.9×10-11 cm-1 Hz-1/2 was measured. Finally, a test of the symmetrization postulate in  16O nuclei was demonstrated.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. O’Keefe and D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
    [CrossRef]
  2. D. Romanini and K. K. Lehmann, “Ring-down cavity absorption spectroscopy of the very weak HCN overtone bands with six, seven, and eight stretching quanta,” J. Chem. Phys. 99, 6287–6301 (1993).
    [CrossRef]
  3. J. B. Paul, J. J. Scherer, A. O’Keefe, and R. J. Saykally, “Cavity ringdown measures trace concentrations,” Laser Focus World 33, 71–75 (1997).
  4. D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, “CW cavity ring down spectroscopy,” Chem. Phys. Lett. 264, 316–322 (1997).
    [CrossRef]
  5. D. Romanini, A. A. Kachanov, and F. Stoeckel, “Diode laser cavity ring down spectroscopy,” Chem. Phys. Lett. 270, 538–545 (1997).
    [CrossRef]
  6. B. A. Paldus, C. C. Harb, T. G. Spence, B. Wilke, J. Xie, J. S. Harris, and R. N. Zare, “Cavity-locked ring-down spectroscopy,” J. Appl. Phys. 83, 3991–3997 (1998).
    [CrossRef]
  7. M. D. Levenson, B. A. Paldus, T. G. Spence, C. C. Harb, J. S. Harris, and R. N. Zare, “Optical heterodyne detection in cavity ring-down spectroscopy,” Chem. Phys. Lett. 290, 335–340 (1998).
    [CrossRef]
  8. K. Nakagawa, T. Katsuda, A. S. Shelkovnikov, M. de Labachelerie, and M. Ohtsu, “Highly sensitive detection of molecular absorption using a high finesse optical cavity,” Opt. Commun. 107, 369–372 (1994).
    [CrossRef]
  9. J. Ye, L.-S. Ma, and J. L. Hall, “Sub-Doppler optical frequency reference at 1.064 μm by means of ultrasensitive cavity-enhanced frequency modulation spectroscopy of a C2HD overtone transition,” Opt. Lett. 21, 1000–1002 (1996).
    [CrossRef] [PubMed]
  10. J. Ye, L.-S. Ma, and J. L. Hall, “Ultrasensitive detections in atomic and molecular physics: demonstration in molecular overtone spectroscopy,” J. Opt. Soc. Am. B 15, 6–15 (1998).
    [CrossRef]
  11. J. Ye, “Ultrasensitive high resolution laser spectroscopy and its application to optical frequency standards,” Ph.D. dissertation (University of Colorado, Boulder, Colorado, 1997).
  12. A. Mugino, T. Tamamoto, T. Omatsu, M. A. Gubin, A. Morinaga, and N. Takeuchi, “High sensitive detection of trace gases using optical heterodyne method with a high finesse intra-cavity resonator,” Opt. Rev. 3, 243–250 (1996).
    [CrossRef]
  13. H. D. Babcock and L. Herzberg, “Fine structure of the red system of atmospheric oxygen bands,” J. Astrophys. 108, 167–190 (1948).
    [CrossRef]
  14. M. de Angelis, G. Gagliardi, L. Gianfrani, and G. M. Tino, “Test of the symmetrization postulate for spin-0 particles,” Phys. Rev. Lett. 76, 2840–2843 (1996).
    [CrossRef] [PubMed]
  15. R. C. Hilborn and C. L. Yuca, “Spectroscopic test of the symmetrization postulate for spin-0 nuclei,” Phys. Rev. Lett. 76, 2844–2847 (1996).
    [CrossRef] [PubMed]
  16. The laser was an SDL 5400C (mentioned to specify experimental parameters; other sources may be suitable).
  17. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B. 31, 97–105 (1983).
    [CrossRef]
  18. L.-S. Ma, JILA, University of Colorado, Boulder, Colorado (personal communication, 1997).
  19. R. G. DeVoe, C. Fabre, K. Jungmann, J. Hoffnagle, and R. G. Brewer, “Precision optical-frequency-difference measurements,” Phys. Rev. A 37, 1802–1805 (1988).
    [CrossRef] [PubMed]
  20. R. W. Fox, L. D’Evelyn, H. G. Robinson, C. S. Weimer, and L. Hollberg, “Amplitude modulation on frequency-locked extended-cavity diode lasers,” Proc. SPIE 2378, 58–62 (1995).
    [CrossRef]
  21. M. de Angelis, L. Gianfrani, F. Pavone, A. Sasso, and G. M. Tino, “Temperature dependence of self-broadening in molecular-oxygen spectrum,” Nuovo Cimento 18, 557–564 (1996).
    [CrossRef]
  22. K. J. Ritter and T. D. Wilkerson, “High-resolution spectroscopy of the oxygen A-band,” J. Mol. Spectrosc. 121, 1–19 (1987).
    [CrossRef]
  23. P. Dubé, L.-S. Ma, J. Ye, P. Jungner, and J. L. Hall, “Thermally induced self-locking of an optical cavity by overtone absorption in acetylene gas,” J. Opt. Soc. Am. B 13, 2041–2054 (1996).
    [CrossRef]
  24. A. J. Phillips and P. A. Hamilton, “Pressure-shift of the (0, 0) and (1, 0) bands of the oxygen b1Σ+g−X3Σg transition from Fourier transform spectroscopy,” J. Mol. Spectrosc. 174, 587–594 (1995).
    [CrossRef]
  25. H. Naus, A. de Lange, and W. Ubachs, “b1Σ+g−X3Σg (0, 0) band of oxygen isotopomers in relation to tests of the symmetrization postulate in O-16(2),” Phys. Rev. A 56, 4755–4763 (1997).
    [CrossRef]
  26. G. Gagliardi, L. Gianfrani, and G. M. Tino, “Investigation of the b1Σ+g(ν=0)<−X3Σg(ν=0) magnetic-dipole transitions in O-18(2),” Phys. Rev. A 55, 4597–4600 (1997).
    [CrossRef]

1998 (3)

B. A. Paldus, C. C. Harb, T. G. Spence, B. Wilke, J. Xie, J. S. Harris, and R. N. Zare, “Cavity-locked ring-down spectroscopy,” J. Appl. Phys. 83, 3991–3997 (1998).
[CrossRef]

M. D. Levenson, B. A. Paldus, T. G. Spence, C. C. Harb, J. S. Harris, and R. N. Zare, “Optical heterodyne detection in cavity ring-down spectroscopy,” Chem. Phys. Lett. 290, 335–340 (1998).
[CrossRef]

J. Ye, L.-S. Ma, and J. L. Hall, “Ultrasensitive detections in atomic and molecular physics: demonstration in molecular overtone spectroscopy,” J. Opt. Soc. Am. B 15, 6–15 (1998).
[CrossRef]

1997 (5)

J. B. Paul, J. J. Scherer, A. O’Keefe, and R. J. Saykally, “Cavity ringdown measures trace concentrations,” Laser Focus World 33, 71–75 (1997).

D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, “CW cavity ring down spectroscopy,” Chem. Phys. Lett. 264, 316–322 (1997).
[CrossRef]

D. Romanini, A. A. Kachanov, and F. Stoeckel, “Diode laser cavity ring down spectroscopy,” Chem. Phys. Lett. 270, 538–545 (1997).
[CrossRef]

H. Naus, A. de Lange, and W. Ubachs, “b1Σ+g−X3Σg (0, 0) band of oxygen isotopomers in relation to tests of the symmetrization postulate in O-16(2),” Phys. Rev. A 56, 4755–4763 (1997).
[CrossRef]

G. Gagliardi, L. Gianfrani, and G. M. Tino, “Investigation of the b1Σ+g(ν=0)<−X3Σg(ν=0) magnetic-dipole transitions in O-18(2),” Phys. Rev. A 55, 4597–4600 (1997).
[CrossRef]

1996 (6)

P. Dubé, L.-S. Ma, J. Ye, P. Jungner, and J. L. Hall, “Thermally induced self-locking of an optical cavity by overtone absorption in acetylene gas,” J. Opt. Soc. Am. B 13, 2041–2054 (1996).
[CrossRef]

M. de Angelis, L. Gianfrani, F. Pavone, A. Sasso, and G. M. Tino, “Temperature dependence of self-broadening in molecular-oxygen spectrum,” Nuovo Cimento 18, 557–564 (1996).
[CrossRef]

M. de Angelis, G. Gagliardi, L. Gianfrani, and G. M. Tino, “Test of the symmetrization postulate for spin-0 particles,” Phys. Rev. Lett. 76, 2840–2843 (1996).
[CrossRef] [PubMed]

R. C. Hilborn and C. L. Yuca, “Spectroscopic test of the symmetrization postulate for spin-0 nuclei,” Phys. Rev. Lett. 76, 2844–2847 (1996).
[CrossRef] [PubMed]

A. Mugino, T. Tamamoto, T. Omatsu, M. A. Gubin, A. Morinaga, and N. Takeuchi, “High sensitive detection of trace gases using optical heterodyne method with a high finesse intra-cavity resonator,” Opt. Rev. 3, 243–250 (1996).
[CrossRef]

J. Ye, L.-S. Ma, and J. L. Hall, “Sub-Doppler optical frequency reference at 1.064 μm by means of ultrasensitive cavity-enhanced frequency modulation spectroscopy of a C2HD overtone transition,” Opt. Lett. 21, 1000–1002 (1996).
[CrossRef] [PubMed]

1995 (2)

A. J. Phillips and P. A. Hamilton, “Pressure-shift of the (0, 0) and (1, 0) bands of the oxygen b1Σ+g−X3Σg transition from Fourier transform spectroscopy,” J. Mol. Spectrosc. 174, 587–594 (1995).
[CrossRef]

R. W. Fox, L. D’Evelyn, H. G. Robinson, C. S. Weimer, and L. Hollberg, “Amplitude modulation on frequency-locked extended-cavity diode lasers,” Proc. SPIE 2378, 58–62 (1995).
[CrossRef]

1994 (1)

K. Nakagawa, T. Katsuda, A. S. Shelkovnikov, M. de Labachelerie, and M. Ohtsu, “Highly sensitive detection of molecular absorption using a high finesse optical cavity,” Opt. Commun. 107, 369–372 (1994).
[CrossRef]

1993 (1)

D. Romanini and K. K. Lehmann, “Ring-down cavity absorption spectroscopy of the very weak HCN overtone bands with six, seven, and eight stretching quanta,” J. Chem. Phys. 99, 6287–6301 (1993).
[CrossRef]

1988 (2)

A. O’Keefe and D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[CrossRef]

R. G. DeVoe, C. Fabre, K. Jungmann, J. Hoffnagle, and R. G. Brewer, “Precision optical-frequency-difference measurements,” Phys. Rev. A 37, 1802–1805 (1988).
[CrossRef] [PubMed]

1987 (1)

K. J. Ritter and T. D. Wilkerson, “High-resolution spectroscopy of the oxygen A-band,” J. Mol. Spectrosc. 121, 1–19 (1987).
[CrossRef]

1983 (1)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B. 31, 97–105 (1983).
[CrossRef]

1948 (1)

H. D. Babcock and L. Herzberg, “Fine structure of the red system of atmospheric oxygen bands,” J. Astrophys. 108, 167–190 (1948).
[CrossRef]

Babcock, H. D.

H. D. Babcock and L. Herzberg, “Fine structure of the red system of atmospheric oxygen bands,” J. Astrophys. 108, 167–190 (1948).
[CrossRef]

Brewer, R. G.

R. G. DeVoe, C. Fabre, K. Jungmann, J. Hoffnagle, and R. G. Brewer, “Precision optical-frequency-difference measurements,” Phys. Rev. A 37, 1802–1805 (1988).
[CrossRef] [PubMed]

D’Evelyn, L.

R. W. Fox, L. D’Evelyn, H. G. Robinson, C. S. Weimer, and L. Hollberg, “Amplitude modulation on frequency-locked extended-cavity diode lasers,” Proc. SPIE 2378, 58–62 (1995).
[CrossRef]

de Angelis, M.

M. de Angelis, L. Gianfrani, F. Pavone, A. Sasso, and G. M. Tino, “Temperature dependence of self-broadening in molecular-oxygen spectrum,” Nuovo Cimento 18, 557–564 (1996).
[CrossRef]

M. de Angelis, G. Gagliardi, L. Gianfrani, and G. M. Tino, “Test of the symmetrization postulate for spin-0 particles,” Phys. Rev. Lett. 76, 2840–2843 (1996).
[CrossRef] [PubMed]

de Labachelerie, M.

K. Nakagawa, T. Katsuda, A. S. Shelkovnikov, M. de Labachelerie, and M. Ohtsu, “Highly sensitive detection of molecular absorption using a high finesse optical cavity,” Opt. Commun. 107, 369–372 (1994).
[CrossRef]

de Lange, A.

H. Naus, A. de Lange, and W. Ubachs, “b1Σ+g−X3Σg (0, 0) band of oxygen isotopomers in relation to tests of the symmetrization postulate in O-16(2),” Phys. Rev. A 56, 4755–4763 (1997).
[CrossRef]

Deacon, D. A. G.

A. O’Keefe and D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[CrossRef]

DeVoe, R. G.

R. G. DeVoe, C. Fabre, K. Jungmann, J. Hoffnagle, and R. G. Brewer, “Precision optical-frequency-difference measurements,” Phys. Rev. A 37, 1802–1805 (1988).
[CrossRef] [PubMed]

Drever, R. W. P.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B. 31, 97–105 (1983).
[CrossRef]

Dubé, P.

Fabre, C.

R. G. DeVoe, C. Fabre, K. Jungmann, J. Hoffnagle, and R. G. Brewer, “Precision optical-frequency-difference measurements,” Phys. Rev. A 37, 1802–1805 (1988).
[CrossRef] [PubMed]

Ford, G. M.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B. 31, 97–105 (1983).
[CrossRef]

Fox, R. W.

R. W. Fox, L. D’Evelyn, H. G. Robinson, C. S. Weimer, and L. Hollberg, “Amplitude modulation on frequency-locked extended-cavity diode lasers,” Proc. SPIE 2378, 58–62 (1995).
[CrossRef]

Gagliardi, G.

G. Gagliardi, L. Gianfrani, and G. M. Tino, “Investigation of the b1Σ+g(ν=0)<−X3Σg(ν=0) magnetic-dipole transitions in O-18(2),” Phys. Rev. A 55, 4597–4600 (1997).
[CrossRef]

M. de Angelis, G. Gagliardi, L. Gianfrani, and G. M. Tino, “Test of the symmetrization postulate for spin-0 particles,” Phys. Rev. Lett. 76, 2840–2843 (1996).
[CrossRef] [PubMed]

Gianfrani, L.

G. Gagliardi, L. Gianfrani, and G. M. Tino, “Investigation of the b1Σ+g(ν=0)<−X3Σg(ν=0) magnetic-dipole transitions in O-18(2),” Phys. Rev. A 55, 4597–4600 (1997).
[CrossRef]

M. de Angelis, G. Gagliardi, L. Gianfrani, and G. M. Tino, “Test of the symmetrization postulate for spin-0 particles,” Phys. Rev. Lett. 76, 2840–2843 (1996).
[CrossRef] [PubMed]

M. de Angelis, L. Gianfrani, F. Pavone, A. Sasso, and G. M. Tino, “Temperature dependence of self-broadening in molecular-oxygen spectrum,” Nuovo Cimento 18, 557–564 (1996).
[CrossRef]

Gubin, M. A.

A. Mugino, T. Tamamoto, T. Omatsu, M. A. Gubin, A. Morinaga, and N. Takeuchi, “High sensitive detection of trace gases using optical heterodyne method with a high finesse intra-cavity resonator,” Opt. Rev. 3, 243–250 (1996).
[CrossRef]

Hall, J. L.

Hamilton, P. A.

A. J. Phillips and P. A. Hamilton, “Pressure-shift of the (0, 0) and (1, 0) bands of the oxygen b1Σ+g−X3Σg transition from Fourier transform spectroscopy,” J. Mol. Spectrosc. 174, 587–594 (1995).
[CrossRef]

Harb, C. C.

B. A. Paldus, C. C. Harb, T. G. Spence, B. Wilke, J. Xie, J. S. Harris, and R. N. Zare, “Cavity-locked ring-down spectroscopy,” J. Appl. Phys. 83, 3991–3997 (1998).
[CrossRef]

M. D. Levenson, B. A. Paldus, T. G. Spence, C. C. Harb, J. S. Harris, and R. N. Zare, “Optical heterodyne detection in cavity ring-down spectroscopy,” Chem. Phys. Lett. 290, 335–340 (1998).
[CrossRef]

Harris, J. S.

M. D. Levenson, B. A. Paldus, T. G. Spence, C. C. Harb, J. S. Harris, and R. N. Zare, “Optical heterodyne detection in cavity ring-down spectroscopy,” Chem. Phys. Lett. 290, 335–340 (1998).
[CrossRef]

B. A. Paldus, C. C. Harb, T. G. Spence, B. Wilke, J. Xie, J. S. Harris, and R. N. Zare, “Cavity-locked ring-down spectroscopy,” J. Appl. Phys. 83, 3991–3997 (1998).
[CrossRef]

Herzberg, L.

H. D. Babcock and L. Herzberg, “Fine structure of the red system of atmospheric oxygen bands,” J. Astrophys. 108, 167–190 (1948).
[CrossRef]

Hilborn, R. C.

R. C. Hilborn and C. L. Yuca, “Spectroscopic test of the symmetrization postulate for spin-0 nuclei,” Phys. Rev. Lett. 76, 2844–2847 (1996).
[CrossRef] [PubMed]

Hoffnagle, J.

R. G. DeVoe, C. Fabre, K. Jungmann, J. Hoffnagle, and R. G. Brewer, “Precision optical-frequency-difference measurements,” Phys. Rev. A 37, 1802–1805 (1988).
[CrossRef] [PubMed]

Hollberg, L.

R. W. Fox, L. D’Evelyn, H. G. Robinson, C. S. Weimer, and L. Hollberg, “Amplitude modulation on frequency-locked extended-cavity diode lasers,” Proc. SPIE 2378, 58–62 (1995).
[CrossRef]

Hough, J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B. 31, 97–105 (1983).
[CrossRef]

Jungmann, K.

R. G. DeVoe, C. Fabre, K. Jungmann, J. Hoffnagle, and R. G. Brewer, “Precision optical-frequency-difference measurements,” Phys. Rev. A 37, 1802–1805 (1988).
[CrossRef] [PubMed]

Jungner, P.

Kachanov, A. A.

D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, “CW cavity ring down spectroscopy,” Chem. Phys. Lett. 264, 316–322 (1997).
[CrossRef]

D. Romanini, A. A. Kachanov, and F. Stoeckel, “Diode laser cavity ring down spectroscopy,” Chem. Phys. Lett. 270, 538–545 (1997).
[CrossRef]

Katsuda, T.

K. Nakagawa, T. Katsuda, A. S. Shelkovnikov, M. de Labachelerie, and M. Ohtsu, “Highly sensitive detection of molecular absorption using a high finesse optical cavity,” Opt. Commun. 107, 369–372 (1994).
[CrossRef]

Kowalski, F. V.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B. 31, 97–105 (1983).
[CrossRef]

Lehmann, K. K.

D. Romanini and K. K. Lehmann, “Ring-down cavity absorption spectroscopy of the very weak HCN overtone bands with six, seven, and eight stretching quanta,” J. Chem. Phys. 99, 6287–6301 (1993).
[CrossRef]

Levenson, M. D.

M. D. Levenson, B. A. Paldus, T. G. Spence, C. C. Harb, J. S. Harris, and R. N. Zare, “Optical heterodyne detection in cavity ring-down spectroscopy,” Chem. Phys. Lett. 290, 335–340 (1998).
[CrossRef]

Ma, L.-S.

Morinaga, A.

A. Mugino, T. Tamamoto, T. Omatsu, M. A. Gubin, A. Morinaga, and N. Takeuchi, “High sensitive detection of trace gases using optical heterodyne method with a high finesse intra-cavity resonator,” Opt. Rev. 3, 243–250 (1996).
[CrossRef]

Mugino, A.

A. Mugino, T. Tamamoto, T. Omatsu, M. A. Gubin, A. Morinaga, and N. Takeuchi, “High sensitive detection of trace gases using optical heterodyne method with a high finesse intra-cavity resonator,” Opt. Rev. 3, 243–250 (1996).
[CrossRef]

Munley, A. J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B. 31, 97–105 (1983).
[CrossRef]

Nakagawa, K.

K. Nakagawa, T. Katsuda, A. S. Shelkovnikov, M. de Labachelerie, and M. Ohtsu, “Highly sensitive detection of molecular absorption using a high finesse optical cavity,” Opt. Commun. 107, 369–372 (1994).
[CrossRef]

Naus, H.

H. Naus, A. de Lange, and W. Ubachs, “b1Σ+g−X3Σg (0, 0) band of oxygen isotopomers in relation to tests of the symmetrization postulate in O-16(2),” Phys. Rev. A 56, 4755–4763 (1997).
[CrossRef]

O’Keefe, A.

J. B. Paul, J. J. Scherer, A. O’Keefe, and R. J. Saykally, “Cavity ringdown measures trace concentrations,” Laser Focus World 33, 71–75 (1997).

A. O’Keefe and D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[CrossRef]

Ohtsu, M.

K. Nakagawa, T. Katsuda, A. S. Shelkovnikov, M. de Labachelerie, and M. Ohtsu, “Highly sensitive detection of molecular absorption using a high finesse optical cavity,” Opt. Commun. 107, 369–372 (1994).
[CrossRef]

Omatsu, T.

A. Mugino, T. Tamamoto, T. Omatsu, M. A. Gubin, A. Morinaga, and N. Takeuchi, “High sensitive detection of trace gases using optical heterodyne method with a high finesse intra-cavity resonator,” Opt. Rev. 3, 243–250 (1996).
[CrossRef]

Paldus, B. A.

M. D. Levenson, B. A. Paldus, T. G. Spence, C. C. Harb, J. S. Harris, and R. N. Zare, “Optical heterodyne detection in cavity ring-down spectroscopy,” Chem. Phys. Lett. 290, 335–340 (1998).
[CrossRef]

B. A. Paldus, C. C. Harb, T. G. Spence, B. Wilke, J. Xie, J. S. Harris, and R. N. Zare, “Cavity-locked ring-down spectroscopy,” J. Appl. Phys. 83, 3991–3997 (1998).
[CrossRef]

Paul, J. B.

J. B. Paul, J. J. Scherer, A. O’Keefe, and R. J. Saykally, “Cavity ringdown measures trace concentrations,” Laser Focus World 33, 71–75 (1997).

Pavone, F.

M. de Angelis, L. Gianfrani, F. Pavone, A. Sasso, and G. M. Tino, “Temperature dependence of self-broadening in molecular-oxygen spectrum,” Nuovo Cimento 18, 557–564 (1996).
[CrossRef]

Phillips, A. J.

A. J. Phillips and P. A. Hamilton, “Pressure-shift of the (0, 0) and (1, 0) bands of the oxygen b1Σ+g−X3Σg transition from Fourier transform spectroscopy,” J. Mol. Spectrosc. 174, 587–594 (1995).
[CrossRef]

Ritter, K. J.

K. J. Ritter and T. D. Wilkerson, “High-resolution spectroscopy of the oxygen A-band,” J. Mol. Spectrosc. 121, 1–19 (1987).
[CrossRef]

Robinson, H. G.

R. W. Fox, L. D’Evelyn, H. G. Robinson, C. S. Weimer, and L. Hollberg, “Amplitude modulation on frequency-locked extended-cavity diode lasers,” Proc. SPIE 2378, 58–62 (1995).
[CrossRef]

Romanini, D.

D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, “CW cavity ring down spectroscopy,” Chem. Phys. Lett. 264, 316–322 (1997).
[CrossRef]

D. Romanini, A. A. Kachanov, and F. Stoeckel, “Diode laser cavity ring down spectroscopy,” Chem. Phys. Lett. 270, 538–545 (1997).
[CrossRef]

D. Romanini and K. K. Lehmann, “Ring-down cavity absorption spectroscopy of the very weak HCN overtone bands with six, seven, and eight stretching quanta,” J. Chem. Phys. 99, 6287–6301 (1993).
[CrossRef]

Sadeghi, N.

D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, “CW cavity ring down spectroscopy,” Chem. Phys. Lett. 264, 316–322 (1997).
[CrossRef]

Sasso, A.

M. de Angelis, L. Gianfrani, F. Pavone, A. Sasso, and G. M. Tino, “Temperature dependence of self-broadening in molecular-oxygen spectrum,” Nuovo Cimento 18, 557–564 (1996).
[CrossRef]

Saykally, R. J.

J. B. Paul, J. J. Scherer, A. O’Keefe, and R. J. Saykally, “Cavity ringdown measures trace concentrations,” Laser Focus World 33, 71–75 (1997).

Scherer, J. J.

J. B. Paul, J. J. Scherer, A. O’Keefe, and R. J. Saykally, “Cavity ringdown measures trace concentrations,” Laser Focus World 33, 71–75 (1997).

Shelkovnikov, A. S.

K. Nakagawa, T. Katsuda, A. S. Shelkovnikov, M. de Labachelerie, and M. Ohtsu, “Highly sensitive detection of molecular absorption using a high finesse optical cavity,” Opt. Commun. 107, 369–372 (1994).
[CrossRef]

Spence, T. G.

M. D. Levenson, B. A. Paldus, T. G. Spence, C. C. Harb, J. S. Harris, and R. N. Zare, “Optical heterodyne detection in cavity ring-down spectroscopy,” Chem. Phys. Lett. 290, 335–340 (1998).
[CrossRef]

B. A. Paldus, C. C. Harb, T. G. Spence, B. Wilke, J. Xie, J. S. Harris, and R. N. Zare, “Cavity-locked ring-down spectroscopy,” J. Appl. Phys. 83, 3991–3997 (1998).
[CrossRef]

Stoeckel, F.

D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, “CW cavity ring down spectroscopy,” Chem. Phys. Lett. 264, 316–322 (1997).
[CrossRef]

D. Romanini, A. A. Kachanov, and F. Stoeckel, “Diode laser cavity ring down spectroscopy,” Chem. Phys. Lett. 270, 538–545 (1997).
[CrossRef]

Takeuchi, N.

A. Mugino, T. Tamamoto, T. Omatsu, M. A. Gubin, A. Morinaga, and N. Takeuchi, “High sensitive detection of trace gases using optical heterodyne method with a high finesse intra-cavity resonator,” Opt. Rev. 3, 243–250 (1996).
[CrossRef]

Tamamoto, T.

A. Mugino, T. Tamamoto, T. Omatsu, M. A. Gubin, A. Morinaga, and N. Takeuchi, “High sensitive detection of trace gases using optical heterodyne method with a high finesse intra-cavity resonator,” Opt. Rev. 3, 243–250 (1996).
[CrossRef]

Tino, G. M.

G. Gagliardi, L. Gianfrani, and G. M. Tino, “Investigation of the b1Σ+g(ν=0)<−X3Σg(ν=0) magnetic-dipole transitions in O-18(2),” Phys. Rev. A 55, 4597–4600 (1997).
[CrossRef]

M. de Angelis, G. Gagliardi, L. Gianfrani, and G. M. Tino, “Test of the symmetrization postulate for spin-0 particles,” Phys. Rev. Lett. 76, 2840–2843 (1996).
[CrossRef] [PubMed]

M. de Angelis, L. Gianfrani, F. Pavone, A. Sasso, and G. M. Tino, “Temperature dependence of self-broadening in molecular-oxygen spectrum,” Nuovo Cimento 18, 557–564 (1996).
[CrossRef]

Ubachs, W.

H. Naus, A. de Lange, and W. Ubachs, “b1Σ+g−X3Σg (0, 0) band of oxygen isotopomers in relation to tests of the symmetrization postulate in O-16(2),” Phys. Rev. A 56, 4755–4763 (1997).
[CrossRef]

Ward, H.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B. 31, 97–105 (1983).
[CrossRef]

Weimer, C. S.

R. W. Fox, L. D’Evelyn, H. G. Robinson, C. S. Weimer, and L. Hollberg, “Amplitude modulation on frequency-locked extended-cavity diode lasers,” Proc. SPIE 2378, 58–62 (1995).
[CrossRef]

Wilke, B.

B. A. Paldus, C. C. Harb, T. G. Spence, B. Wilke, J. Xie, J. S. Harris, and R. N. Zare, “Cavity-locked ring-down spectroscopy,” J. Appl. Phys. 83, 3991–3997 (1998).
[CrossRef]

Wilkerson, T. D.

K. J. Ritter and T. D. Wilkerson, “High-resolution spectroscopy of the oxygen A-band,” J. Mol. Spectrosc. 121, 1–19 (1987).
[CrossRef]

Xie, J.

B. A. Paldus, C. C. Harb, T. G. Spence, B. Wilke, J. Xie, J. S. Harris, and R. N. Zare, “Cavity-locked ring-down spectroscopy,” J. Appl. Phys. 83, 3991–3997 (1998).
[CrossRef]

Ye, J.

Yuca, C. L.

R. C. Hilborn and C. L. Yuca, “Spectroscopic test of the symmetrization postulate for spin-0 nuclei,” Phys. Rev. Lett. 76, 2844–2847 (1996).
[CrossRef] [PubMed]

Zare, R. N.

M. D. Levenson, B. A. Paldus, T. G. Spence, C. C. Harb, J. S. Harris, and R. N. Zare, “Optical heterodyne detection in cavity ring-down spectroscopy,” Chem. Phys. Lett. 290, 335–340 (1998).
[CrossRef]

B. A. Paldus, C. C. Harb, T. G. Spence, B. Wilke, J. Xie, J. S. Harris, and R. N. Zare, “Cavity-locked ring-down spectroscopy,” J. Appl. Phys. 83, 3991–3997 (1998).
[CrossRef]

Appl. Phys. B. (1)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B. 31, 97–105 (1983).
[CrossRef]

Chem. Phys. Lett. (3)

D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, “CW cavity ring down spectroscopy,” Chem. Phys. Lett. 264, 316–322 (1997).
[CrossRef]

D. Romanini, A. A. Kachanov, and F. Stoeckel, “Diode laser cavity ring down spectroscopy,” Chem. Phys. Lett. 270, 538–545 (1997).
[CrossRef]

M. D. Levenson, B. A. Paldus, T. G. Spence, C. C. Harb, J. S. Harris, and R. N. Zare, “Optical heterodyne detection in cavity ring-down spectroscopy,” Chem. Phys. Lett. 290, 335–340 (1998).
[CrossRef]

J. Appl. Phys. (1)

B. A. Paldus, C. C. Harb, T. G. Spence, B. Wilke, J. Xie, J. S. Harris, and R. N. Zare, “Cavity-locked ring-down spectroscopy,” J. Appl. Phys. 83, 3991–3997 (1998).
[CrossRef]

J. Astrophys. (1)

H. D. Babcock and L. Herzberg, “Fine structure of the red system of atmospheric oxygen bands,” J. Astrophys. 108, 167–190 (1948).
[CrossRef]

J. Chem. Phys. (1)

D. Romanini and K. K. Lehmann, “Ring-down cavity absorption spectroscopy of the very weak HCN overtone bands with six, seven, and eight stretching quanta,” J. Chem. Phys. 99, 6287–6301 (1993).
[CrossRef]

J. Mol. Spectrosc. (2)

K. J. Ritter and T. D. Wilkerson, “High-resolution spectroscopy of the oxygen A-band,” J. Mol. Spectrosc. 121, 1–19 (1987).
[CrossRef]

A. J. Phillips and P. A. Hamilton, “Pressure-shift of the (0, 0) and (1, 0) bands of the oxygen b1Σ+g−X3Σg transition from Fourier transform spectroscopy,” J. Mol. Spectrosc. 174, 587–594 (1995).
[CrossRef]

J. Opt. Soc. Am. B (2)

Laser Focus World (1)

J. B. Paul, J. J. Scherer, A. O’Keefe, and R. J. Saykally, “Cavity ringdown measures trace concentrations,” Laser Focus World 33, 71–75 (1997).

Nuovo Cimento (1)

M. de Angelis, L. Gianfrani, F. Pavone, A. Sasso, and G. M. Tino, “Temperature dependence of self-broadening in molecular-oxygen spectrum,” Nuovo Cimento 18, 557–564 (1996).
[CrossRef]

Opt. Commun. (1)

K. Nakagawa, T. Katsuda, A. S. Shelkovnikov, M. de Labachelerie, and M. Ohtsu, “Highly sensitive detection of molecular absorption using a high finesse optical cavity,” Opt. Commun. 107, 369–372 (1994).
[CrossRef]

Opt. Lett. (1)

Opt. Rev. (1)

A. Mugino, T. Tamamoto, T. Omatsu, M. A. Gubin, A. Morinaga, and N. Takeuchi, “High sensitive detection of trace gases using optical heterodyne method with a high finesse intra-cavity resonator,” Opt. Rev. 3, 243–250 (1996).
[CrossRef]

Phys. Rev. A (3)

R. G. DeVoe, C. Fabre, K. Jungmann, J. Hoffnagle, and R. G. Brewer, “Precision optical-frequency-difference measurements,” Phys. Rev. A 37, 1802–1805 (1988).
[CrossRef] [PubMed]

H. Naus, A. de Lange, and W. Ubachs, “b1Σ+g−X3Σg (0, 0) band of oxygen isotopomers in relation to tests of the symmetrization postulate in O-16(2),” Phys. Rev. A 56, 4755–4763 (1997).
[CrossRef]

G. Gagliardi, L. Gianfrani, and G. M. Tino, “Investigation of the b1Σ+g(ν=0)<−X3Σg(ν=0) magnetic-dipole transitions in O-18(2),” Phys. Rev. A 55, 4597–4600 (1997).
[CrossRef]

Phys. Rev. Lett. (2)

M. de Angelis, G. Gagliardi, L. Gianfrani, and G. M. Tino, “Test of the symmetrization postulate for spin-0 particles,” Phys. Rev. Lett. 76, 2840–2843 (1996).
[CrossRef] [PubMed]

R. C. Hilborn and C. L. Yuca, “Spectroscopic test of the symmetrization postulate for spin-0 nuclei,” Phys. Rev. Lett. 76, 2844–2847 (1996).
[CrossRef] [PubMed]

Proc. SPIE (1)

R. W. Fox, L. D’Evelyn, H. G. Robinson, C. S. Weimer, and L. Hollberg, “Amplitude modulation on frequency-locked extended-cavity diode lasers,” Proc. SPIE 2378, 58–62 (1995).
[CrossRef]

Rev. Sci. Instrum. (1)

A. O’Keefe and D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[CrossRef]

Other (3)

J. Ye, “Ultrasensitive high resolution laser spectroscopy and its application to optical frequency standards,” Ph.D. dissertation (University of Colorado, Boulder, Colorado, 1997).

L.-S. Ma, JILA, University of Colorado, Boulder, Colorado (personal communication, 1997).

The laser was an SDL 5400C (mentioned to specify experimental parameters; other sources may be suitable).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Heterodyne CE experimental setup. The cavity reflection is used to lock the laser to the mth cavity mode and to lock the RF source to the cavity free spectral range. The acousto-optic modulator (AOM) is used to reduce low-frequency-intensity noise. The sidebands from electro-optic modulator (EOM) #2 are transmitted through the (m-1) and (m+1) fundamental cavity modes and detected with a high-speed photodetector, in a manner analogous to RF heterodyne spectroscopy.

Fig. 2
Fig. 2

Directly detected transmitted power from the cavity as the system is scanned over an oxygen absorption line. The six traces are with pressures of 13.3, 106.7, 173.3, 400, 800, and 1333 Pa. The shift in the absorption is primarily the cavity shifting that is due to the increasing refractive index with O2 pressure. The departure from a Doppler line shape is due to the decrease in the effective path length with increasing cavity loss.

Fig. 3
Fig. 3

Peak absorption of the  16O2  PP(9) line as a function of pressure. The system response is linear if the absorption that is due to the gas is much less than the mirror loss and saturates with increasing absorption as the effective path length is reduced. A fit of these data with the theory (see text) results in an accurate determination of the effective path length, nearly 1 km in this case.

Fig. 4
Fig. 4

Dots are data points taken from one trace of Fig. 2. The oxygen pressure is 533 Pa. A least-squares fit of the theory [Eq. (2)] to the data is shown as a thin solid curve nearly on top of the data points. The residuals from the fit are shown above with a 5× magnified scale. A least-squares fit of a Doppler line shape to the data is also shown.

Fig. 5
Fig. 5

Data points are the frequency shift of the apparent absorption line shape as a function of the oxygen pressure and are shown along with a best-fit straight line. The data points were determined from best fits of the Fig. 2 data series to Eq. (2). The shift is primarily due to the increasing index of refraction.

Fig. 6
Fig. 6

Trace A is the direct photocurrent detected from the cavity transmission while scanning over the  PQ(13) line of  16O2 with 50 mTorr of pressure. Trace B is the heterodyne CE signal, the demodulation of the photocurrent at the free-spectral-range frequency. Trace C is the demodulation of the CE signal with a lock-in while the cavity was slowly modulated and swept over the absorption. Trace D is the noise baseline in a nearby spectral region that has no known absorptions. Traces B, C, and D are 10 coadditions (see text).

Fig. 7
Fig. 7

NICE-OHMS signal from absorption of the  PQ(13) line of  16O17O at 764.489 nm for four different pressures of natural-abundance oxygen (from 660 Pa up to 1.3×104 Pa).

Fig. 8
Fig. 8

Peak signal levels from Fig. 7 plotted as a function of pressure. A best-fit simple polynomial curve is shown also. The slight nonlinearity is due to pressure broadening and the decreasing modulation width, not to saturation of the NICE-OHMS signal.

Fig. 9
Fig. 9

Comparison of the signal from a  16O2 line with a known absorption coefficient allows the determination of the absorption coefficient of the  16O17O line. This is given by the ratio between the amplitude of the two signals (∼0.16) times the absorption coefficient of the  16O2 line (4.54×10-8 cm-1 Pa-1) and is divided by the partial pressure of the  16O17O measurement relative to the  16O16O measurement (0.38). The natural molecular fractional abundance of  16O17O is 7.6×10-4.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Et(ν)E0=t1t2 exp(i2πct/λ)exp(i2πnl/λ)×exp(-α(ν)L/2)1-r1r2 exp(i4πnL/λ)exp(-α(ν)pL).
Pt(ν)P0=t12t22(1-r1r2)211+α(ν)pLr1r21-r1r22.
δPt(ν)Pt=1-11+α(ν)pLr1r21-r1r22.
δPtPt(ν)=2α(ν)pL r1r21-r1r2.
πr1r21-r1r2.
Leq=2πFL.
Δνm=-νmΔn.
δPtPtsinglepassmin=αminL=π2F2eBηPt1J0(β)J1(β)2,

Metrics