Abstract

The design and operation of a pulsed quasi-phase-matched periodically poled lithium niobate optical parametric oscillator in the grazing incidence configuration are described. A narrow bandwidth of 0.3 cm-1 is demonstrated over most of the full tuning range of the device. Broad and rapid scanning has been achieved by rotation of a single mirror. Long-term stable operation and a pump-to-signal power efficiency of 46% are shown to be possible. Methods to improve the bandwidth are discussed.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. E. Myers, R. C. Eckhardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. R. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B 12, 2102–2116 (1995).
    [CrossRef]
  2. L. E. Myers and W. R. Bosenberg, “Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators,” IEEE J. Quantum Electron. 33, 1663–1672 (1997), and references therein.
    [CrossRef]
  3. Q. Chen and W. P. Risk, “Periodic poling of KTiOPO4 using an applied electric field,” Electron. Lett. 30, 1516–1517 (1994).
    [CrossRef]
  4. H. Karlsson, F. Laurell, P. Henriksson, and G. Arvidsson, “Frequency doubling in periodically poled RbTiOAsO4,” Electron. Lett. 32, 556–557 (1996).
    [CrossRef]
  5. K. Mizuuchi, K. Yamamoto, and M. Kato, “Generation of ultraviolet light by frequency doubling of a red laser diode in a first order periodically poled bulk LiTaO3,” Appl. Phys. Lett. 70, 1201–1203 (1997).
    [CrossRef]
  6. S. J. Brosnan and R. L. Byer, “Optical parametric oscillator threshold and linewidth studies,” IEEE J. Quantum Electron. 15, 415–431 (1979).
    [CrossRef]
  7. T. K. Minton, S. A. Reid, H. L. Kim, and J. D. McDonald, “A scanning single-mode LiNbO3 optical parametric oscillator,” Opt. Commun. 69, 289–293 (1989).
    [CrossRef]
  8. M. J. T. Minton, T. D. Gardner, G. Chourdakis, and P. T. Woods, “Injection seeding of an infrared optical parametric oscillator with a tunable diode laser,” Opt. Lett. 19, 281–283 (1994).
    [CrossRef]
  9. G. W. Baxter, H. D. Barth, and B. J. Orr, “Laser spectroscopy with a pulsed, narrowband infrared optical parametric oscillator system: a practical, modular approach,” Appl. Phys. B: Lasers Opt. 66, 653–657 (1998).
    [CrossRef]
  10. P. E. Powers, T. J. Kulp, and S. E. Bisson, “Continuous tuning of a cw periodically poled lithium niobate optical parametric oscillator by use of a fan-out grating design,” Opt. Lett. 23, 159–161 (1998).
    [CrossRef]
  11. I. Shoshan, N. N. Danon, and U. P. Oppenheim, “Narrowband operation of a pulsed dye laser without intracavity beam expansion,” J. Appl. Phys. 48, 4495–4497 (1977).
    [CrossRef]
  12. M. G. Littman and H. J. Metcalf, “Spectrally narrow pulsed dye laser without a beam expander,” Appl. Opt. 17, 2224–2227 (1978).
    [CrossRef] [PubMed]
  13. W. R. Bosenberg and D. R. Guyer, “Broadly tunable, single-frequency optical parametric frequency-conversion system,” J. Opt. Soc. Am. B 10, 1716–1722 (1993).
    [CrossRef]
  14. L. A. W. Gloster, I. T. McKinnie, Z. X. Jiang, T. A. King, J. M. Boon-Engering, W. E. van der Veer, and W. Hogervorst, “Narrow-band β-barium borate optical parametric oscillator in a grazing-incidence configuration,” J. Opt. Soc. Am. B 12, 2117–2121 (1995).
    [CrossRef]
  15. See, for example, V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, “Properties of nonlinear optical crystals,” in Handbook of Nonlinear Optical Crystals, 2nd ed., A. E. Siegman, ed. (Springer, New York, 1997), Vol. 64.
  16. “The National Institute of Standards and Technology (NIST) chemistry webbook,” http://webbook.nist.gov/chemistry.
  17. M. G. Littman, “Single-mode operation of a grazing-incidence pulsed dye laser,” Opt. Lett. 3, 138–140 (1978).
    [CrossRef] [PubMed]
  18. J. M. Boon-Engering, W. E. van der Veer, E. A. J. M. Bente, and W. Hogervorst, “Scanning and locking of a single longitudinal mode β-barium borate OPO in a grazing incidence configuration,” Opt. Commun. 136, 261–266 (1997).
    [CrossRef]

1998 (2)

G. W. Baxter, H. D. Barth, and B. J. Orr, “Laser spectroscopy with a pulsed, narrowband infrared optical parametric oscillator system: a practical, modular approach,” Appl. Phys. B: Lasers Opt. 66, 653–657 (1998).
[CrossRef]

P. E. Powers, T. J. Kulp, and S. E. Bisson, “Continuous tuning of a cw periodically poled lithium niobate optical parametric oscillator by use of a fan-out grating design,” Opt. Lett. 23, 159–161 (1998).
[CrossRef]

1997 (3)

J. M. Boon-Engering, W. E. van der Veer, E. A. J. M. Bente, and W. Hogervorst, “Scanning and locking of a single longitudinal mode β-barium borate OPO in a grazing incidence configuration,” Opt. Commun. 136, 261–266 (1997).
[CrossRef]

L. E. Myers and W. R. Bosenberg, “Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators,” IEEE J. Quantum Electron. 33, 1663–1672 (1997), and references therein.
[CrossRef]

K. Mizuuchi, K. Yamamoto, and M. Kato, “Generation of ultraviolet light by frequency doubling of a red laser diode in a first order periodically poled bulk LiTaO3,” Appl. Phys. Lett. 70, 1201–1203 (1997).
[CrossRef]

1996 (1)

H. Karlsson, F. Laurell, P. Henriksson, and G. Arvidsson, “Frequency doubling in periodically poled RbTiOAsO4,” Electron. Lett. 32, 556–557 (1996).
[CrossRef]

1995 (2)

1994 (2)

1993 (1)

1989 (1)

T. K. Minton, S. A. Reid, H. L. Kim, and J. D. McDonald, “A scanning single-mode LiNbO3 optical parametric oscillator,” Opt. Commun. 69, 289–293 (1989).
[CrossRef]

1979 (1)

S. J. Brosnan and R. L. Byer, “Optical parametric oscillator threshold and linewidth studies,” IEEE J. Quantum Electron. 15, 415–431 (1979).
[CrossRef]

1978 (2)

1977 (1)

I. Shoshan, N. N. Danon, and U. P. Oppenheim, “Narrowband operation of a pulsed dye laser without intracavity beam expansion,” J. Appl. Phys. 48, 4495–4497 (1977).
[CrossRef]

Arvidsson, G.

H. Karlsson, F. Laurell, P. Henriksson, and G. Arvidsson, “Frequency doubling in periodically poled RbTiOAsO4,” Electron. Lett. 32, 556–557 (1996).
[CrossRef]

Barth, H. D.

G. W. Baxter, H. D. Barth, and B. J. Orr, “Laser spectroscopy with a pulsed, narrowband infrared optical parametric oscillator system: a practical, modular approach,” Appl. Phys. B: Lasers Opt. 66, 653–657 (1998).
[CrossRef]

Baxter, G. W.

G. W. Baxter, H. D. Barth, and B. J. Orr, “Laser spectroscopy with a pulsed, narrowband infrared optical parametric oscillator system: a practical, modular approach,” Appl. Phys. B: Lasers Opt. 66, 653–657 (1998).
[CrossRef]

Bente, E. A. J. M.

J. M. Boon-Engering, W. E. van der Veer, E. A. J. M. Bente, and W. Hogervorst, “Scanning and locking of a single longitudinal mode β-barium borate OPO in a grazing incidence configuration,” Opt. Commun. 136, 261–266 (1997).
[CrossRef]

Bisson, S. E.

Boon-Engering, J. M.

J. M. Boon-Engering, W. E. van der Veer, E. A. J. M. Bente, and W. Hogervorst, “Scanning and locking of a single longitudinal mode β-barium borate OPO in a grazing incidence configuration,” Opt. Commun. 136, 261–266 (1997).
[CrossRef]

L. A. W. Gloster, I. T. McKinnie, Z. X. Jiang, T. A. King, J. M. Boon-Engering, W. E. van der Veer, and W. Hogervorst, “Narrow-band β-barium borate optical parametric oscillator in a grazing-incidence configuration,” J. Opt. Soc. Am. B 12, 2117–2121 (1995).
[CrossRef]

Bosenberg, W. R.

Brosnan, S. J.

S. J. Brosnan and R. L. Byer, “Optical parametric oscillator threshold and linewidth studies,” IEEE J. Quantum Electron. 15, 415–431 (1979).
[CrossRef]

Byer, R. L.

Chen, Q.

Q. Chen and W. P. Risk, “Periodic poling of KTiOPO4 using an applied electric field,” Electron. Lett. 30, 1516–1517 (1994).
[CrossRef]

Chourdakis, G.

Danon, N. N.

I. Shoshan, N. N. Danon, and U. P. Oppenheim, “Narrowband operation of a pulsed dye laser without intracavity beam expansion,” J. Appl. Phys. 48, 4495–4497 (1977).
[CrossRef]

Eckhardt, R. C.

Fejer, M. M.

Gardner, T. D.

Gloster, L. A. W.

Guyer, D. R.

Henriksson, P.

H. Karlsson, F. Laurell, P. Henriksson, and G. Arvidsson, “Frequency doubling in periodically poled RbTiOAsO4,” Electron. Lett. 32, 556–557 (1996).
[CrossRef]

Hogervorst, W.

J. M. Boon-Engering, W. E. van der Veer, E. A. J. M. Bente, and W. Hogervorst, “Scanning and locking of a single longitudinal mode β-barium borate OPO in a grazing incidence configuration,” Opt. Commun. 136, 261–266 (1997).
[CrossRef]

L. A. W. Gloster, I. T. McKinnie, Z. X. Jiang, T. A. King, J. M. Boon-Engering, W. E. van der Veer, and W. Hogervorst, “Narrow-band β-barium borate optical parametric oscillator in a grazing-incidence configuration,” J. Opt. Soc. Am. B 12, 2117–2121 (1995).
[CrossRef]

Jiang, Z. X.

Karlsson, H.

H. Karlsson, F. Laurell, P. Henriksson, and G. Arvidsson, “Frequency doubling in periodically poled RbTiOAsO4,” Electron. Lett. 32, 556–557 (1996).
[CrossRef]

Kato, M.

K. Mizuuchi, K. Yamamoto, and M. Kato, “Generation of ultraviolet light by frequency doubling of a red laser diode in a first order periodically poled bulk LiTaO3,” Appl. Phys. Lett. 70, 1201–1203 (1997).
[CrossRef]

Kim, H. L.

T. K. Minton, S. A. Reid, H. L. Kim, and J. D. McDonald, “A scanning single-mode LiNbO3 optical parametric oscillator,” Opt. Commun. 69, 289–293 (1989).
[CrossRef]

King, T. A.

Kulp, T. J.

Laurell, F.

H. Karlsson, F. Laurell, P. Henriksson, and G. Arvidsson, “Frequency doubling in periodically poled RbTiOAsO4,” Electron. Lett. 32, 556–557 (1996).
[CrossRef]

Littman, M. G.

McDonald, J. D.

T. K. Minton, S. A. Reid, H. L. Kim, and J. D. McDonald, “A scanning single-mode LiNbO3 optical parametric oscillator,” Opt. Commun. 69, 289–293 (1989).
[CrossRef]

McKinnie, I. T.

Metcalf, H. J.

Minton, M. J. T.

Minton, T. K.

T. K. Minton, S. A. Reid, H. L. Kim, and J. D. McDonald, “A scanning single-mode LiNbO3 optical parametric oscillator,” Opt. Commun. 69, 289–293 (1989).
[CrossRef]

Mizuuchi, K.

K. Mizuuchi, K. Yamamoto, and M. Kato, “Generation of ultraviolet light by frequency doubling of a red laser diode in a first order periodically poled bulk LiTaO3,” Appl. Phys. Lett. 70, 1201–1203 (1997).
[CrossRef]

Myers, L. E.

L. E. Myers and W. R. Bosenberg, “Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators,” IEEE J. Quantum Electron. 33, 1663–1672 (1997), and references therein.
[CrossRef]

L. E. Myers, R. C. Eckhardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. R. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B 12, 2102–2116 (1995).
[CrossRef]

Oppenheim, U. P.

I. Shoshan, N. N. Danon, and U. P. Oppenheim, “Narrowband operation of a pulsed dye laser without intracavity beam expansion,” J. Appl. Phys. 48, 4495–4497 (1977).
[CrossRef]

Orr, B. J.

G. W. Baxter, H. D. Barth, and B. J. Orr, “Laser spectroscopy with a pulsed, narrowband infrared optical parametric oscillator system: a practical, modular approach,” Appl. Phys. B: Lasers Opt. 66, 653–657 (1998).
[CrossRef]

Pierce, J. R.

Powers, P. E.

Reid, S. A.

T. K. Minton, S. A. Reid, H. L. Kim, and J. D. McDonald, “A scanning single-mode LiNbO3 optical parametric oscillator,” Opt. Commun. 69, 289–293 (1989).
[CrossRef]

Risk, W. P.

Q. Chen and W. P. Risk, “Periodic poling of KTiOPO4 using an applied electric field,” Electron. Lett. 30, 1516–1517 (1994).
[CrossRef]

Shoshan, I.

I. Shoshan, N. N. Danon, and U. P. Oppenheim, “Narrowband operation of a pulsed dye laser without intracavity beam expansion,” J. Appl. Phys. 48, 4495–4497 (1977).
[CrossRef]

van der Veer, W. E.

J. M. Boon-Engering, W. E. van der Veer, E. A. J. M. Bente, and W. Hogervorst, “Scanning and locking of a single longitudinal mode β-barium borate OPO in a grazing incidence configuration,” Opt. Commun. 136, 261–266 (1997).
[CrossRef]

L. A. W. Gloster, I. T. McKinnie, Z. X. Jiang, T. A. King, J. M. Boon-Engering, W. E. van der Veer, and W. Hogervorst, “Narrow-band β-barium borate optical parametric oscillator in a grazing-incidence configuration,” J. Opt. Soc. Am. B 12, 2117–2121 (1995).
[CrossRef]

Woods, P. T.

Yamamoto, K.

K. Mizuuchi, K. Yamamoto, and M. Kato, “Generation of ultraviolet light by frequency doubling of a red laser diode in a first order periodically poled bulk LiTaO3,” Appl. Phys. Lett. 70, 1201–1203 (1997).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B: Lasers Opt. (1)

G. W. Baxter, H. D. Barth, and B. J. Orr, “Laser spectroscopy with a pulsed, narrowband infrared optical parametric oscillator system: a practical, modular approach,” Appl. Phys. B: Lasers Opt. 66, 653–657 (1998).
[CrossRef]

Appl. Phys. Lett. (1)

K. Mizuuchi, K. Yamamoto, and M. Kato, “Generation of ultraviolet light by frequency doubling of a red laser diode in a first order periodically poled bulk LiTaO3,” Appl. Phys. Lett. 70, 1201–1203 (1997).
[CrossRef]

Electron. Lett. (2)

Q. Chen and W. P. Risk, “Periodic poling of KTiOPO4 using an applied electric field,” Electron. Lett. 30, 1516–1517 (1994).
[CrossRef]

H. Karlsson, F. Laurell, P. Henriksson, and G. Arvidsson, “Frequency doubling in periodically poled RbTiOAsO4,” Electron. Lett. 32, 556–557 (1996).
[CrossRef]

IEEE J. Quantum Electron. (2)

S. J. Brosnan and R. L. Byer, “Optical parametric oscillator threshold and linewidth studies,” IEEE J. Quantum Electron. 15, 415–431 (1979).
[CrossRef]

L. E. Myers and W. R. Bosenberg, “Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators,” IEEE J. Quantum Electron. 33, 1663–1672 (1997), and references therein.
[CrossRef]

J. Appl. Phys. (1)

I. Shoshan, N. N. Danon, and U. P. Oppenheim, “Narrowband operation of a pulsed dye laser without intracavity beam expansion,” J. Appl. Phys. 48, 4495–4497 (1977).
[CrossRef]

J. Opt. Soc. Am. B (3)

Opt. Commun. (2)

J. M. Boon-Engering, W. E. van der Veer, E. A. J. M. Bente, and W. Hogervorst, “Scanning and locking of a single longitudinal mode β-barium borate OPO in a grazing incidence configuration,” Opt. Commun. 136, 261–266 (1997).
[CrossRef]

T. K. Minton, S. A. Reid, H. L. Kim, and J. D. McDonald, “A scanning single-mode LiNbO3 optical parametric oscillator,” Opt. Commun. 69, 289–293 (1989).
[CrossRef]

Opt. Lett. (3)

Other (2)

See, for example, V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, “Properties of nonlinear optical crystals,” in Handbook of Nonlinear Optical Crystals, 2nd ed., A. E. Siegman, ed. (Springer, New York, 1997), Vol. 64.

“The National Institute of Standards and Technology (NIST) chemistry webbook,” http://webbook.nist.gov/chemistry.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic of the OPO: ISO, optical isolator; LP, linear polarizer; HP, half-wave plate. Inset, angle of incidence α.

Fig. 2
Fig. 2

OPO threshold as a function of the angle of incidence.

Fig. 3
Fig. 3

OPO signal bandwidth versus angle of incidence. The solid curve was calculated from Eqs. (1) and (3). The dotted curve implies the theoretical transition from Eq. (1) to Eq. (3) at the angle α given by relation (2).

Fig. 4
Fig. 4

Measured OPO signal bandwidth for various oven temperatures. The PPLN crystal temperature cannot be measured directly.

Fig. 5
Fig. 5

Measured OPO signal bandwidth for several PPLN crystal grating periods. Each point represents the peak wavelength for the corresponding grating period.

Fig. 6
Fig. 6

Top, the signal pulse energy and bottom, the corresponding bandwidth versus output wavelength changed by the fine tuning of the position of the rear mirror. A broadband background energy of 13 µJ has been subtracted from the values shown.

Fig. 7
Fig. 7

Optoacoustic spectrum of methane in the vicinity of 6080 cm-1 (1.64 µm). The numbers 1–4 identify the peak positions given in Table 2.

Fig. 8
Fig. 8

Optoacoustic spectrum of methane in the vicinity of 3050 cm-1 (3.28 µm). A Ge filter was inserted in front of the cell window to transmit the idler frequency only into the cell when this spectrum was taken. The numbers 5–9 identify the peak positions given in Table 2.

Fig. 9
Fig. 9

Measured pump depletion (■) and output bandwidth (▲) as the input pump pulse energy is varied from threshold to the maximum available value. The curves drawn through the data points are polynomial fitted curves used only for the purpose of guiding the eye.

Tables (2)

Tables Icon

Table 1 Descriptions of PPLN Crystals Used

Tables Icon

Table 2 Assignment of Peak Positions Shown in Figs. 7 and 8 and Measured Widths of the Corresponding Lines

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δνd=1πωg tan α,
22ωg tan αd sin α,
Δνd,min=22πd sin α,
ΔνOPO=1N×Δνd.

Metrics