Abstract

Coherence degradation in the soliton pulse-compression process and supercontinuum generation in the presence of amplified spontaneous emission are studied with numerical simulations. We have developed a new simulation method to study the quality of a pulse train and use numerical simulations to present three ways to suppress its coherence degradation. We point out that a simple measurement of the pulse train’s power spectrum does not fully represent the quality of the pulse train because it does not contain detailed information on noise.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Nakazawa, E. Yoshida, and K. Tamura, “10 GHz, 2 ps regeneratively and harmonically FM mode-locked erbium fiber ring laser,” Electron. Lett. 32, 1285–1287 (1996).
    [CrossRef]
  2. H. Tanaka, S. Kawanishi, and M. Saruwatari, “20 GHz transform-limited optical pulse generation and bit-error-free operation using a tunable, actively modelocked Er-doped fiber ring laser,” Electron. Lett. 29, 1149–1150 (1993).
    [CrossRef]
  3. E. B. Treacy, “Optical pulse compression with diffracting gratings,” IEEE J. Quantum Electron. 5, 454–458 (1969).
    [CrossRef]
  4. W. J. Tomlinson, R. H. Stolen, and C. V. Shank, “Compression of optical pulses chirped by self-phase modulation in fibers,” J. Opt. Soc. Am. B 1, 139–149 (1984).
    [CrossRef]
  5. A. S. Gouveia-Neto, A. S. L. Gomes, and J. R. Taylor, “High-order soliton pulse compression and splitting at 1.32 μm in a single-mode optical fiber,” IEEE J. Quantum Electron. 23, 1193–1198 (1987).
    [CrossRef]
  6. T. Morioka, S. Kawanishi, K. Mori, and M. Saruwatari, “Nearly penalty-free, <4 ps supercontinuum Gbit/s pulse generation over 1535–1560 nm,” Electron. Lett. 30, 790–791 (1994).
    [CrossRef]
  7. K. Mori, H. Takara, S. Kawanishi, M. Saruwatari, and T. Morioka, “Flatly broadened supercontinuum spectrum generated in a dispersion decreasing fibre with a convex dispersion profile,” Electron. Lett. 33, 1806–1808 (1997).
    [CrossRef]
  8. T. Okuno, M. Onishi, and M. Nishimura, “Generation of ultra-broad-band supercontinuum by dispersion-flattened and decreasing fiber,” IEEE Photonics Technol. Lett. 10, 72–74 (1998).
    [CrossRef]
  9. K. Mori, H. Takara, and S. Kawanishi, “The effect of pump fluctuation in supercontinuum pulse generation,” in Nonlinear Guided Waves and Their Applications, Vol. 5 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), p. 276.
  10. H. Kubota and M. Nakazawa, “Soliton transmission control in time and frequency domains,” IEEE J. Quantum Electron. 29, 2189–2197 (1993); “Soliton transmission control for ultra high speed system,” IEICE Trans. Electron. E78-C, 5–11 (1995).
    [CrossRef]
  11. M. Nakazawa, K. Suzuki, H. Kubota, and H. A. Haus, “High-order solitons and modulation instability,” Phys. Rev. 39, 5768–5776 (1989).
    [CrossRef]
  12. G. P. Agrawal and M. J. Potasek, “Nonlinear pulse distortion in single-mode optical fibers at the zero-dispersion wavelength,” Phys. Rev. A 33, 1765–1776 (1986).
    [CrossRef] [PubMed]
  13. M. J. Potasek, G. P. Agrawal, and S. C. Pinault, “Numerical study of pulse broadening in nonlinear dispersive optical fibers,” J. Opt. Soc. Am. B 3, 205–211 (1986).
    [CrossRef]
  14. A. Sahara, H. Kubota, and M. Nakazawa, “Q factor contour mapping for evaluation of optical transmission systems: soliton against NRZ against RZ pulse at zero group velocity dispersion,” Electron. Lett. 32, 915–916 (1996).
    [CrossRef]
  15. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes (Cambridge U. Press, Cambridge, 1986).
  16. J. P. Gordon and H. A. Haus, “Random walk of coherently amplified solitons in optical fiber transmission,” Opt. Lett. 33, 665–667 (1986).
    [CrossRef]
  17. K. Tamura and M. Nakazawa, “Timing jitter of solitons compressed in dispersion-decreasing fibers,” Opt. Lett. 23, 1360–1362 (1998).
    [CrossRef]
  18. K. Tai, A. Hasegawa, and N. Bekki, “Fission of optical solitons induced by stimulated Raman effect,” Opt. Lett. 13, 392–394 (1988).
    [CrossRef] [PubMed]
  19. N. J. Smith and N. J. Doran, “Modulational instabilities in fibers with periodic dispersion management,” Opt. Lett. 21, 570–572 (1996).
    [CrossRef] [PubMed]
  20. L. F. Mollenauer, E. Lichtman, M. J. Newbelt, and G. T. Harvey, “Demonstration, using sliding-frequency guiding filter, of error-free soliton transmission over more than 20Mm at 10 Gbit/s, single channel, and over more than 13Mm at 20 Gbit/s in a two-channel WDM,” Electron. Lett. 29, 910–911 (1993).
    [CrossRef]
  21. R. L. Fork, C. V. Shank, C. Hirlimann, R. Yen, and W. J. Tomlinson, “Femtosecond white-light continuum pulses,” Opt. Lett. 8, 1–3 (1983).
    [CrossRef] [PubMed]
  22. G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1989).
  23. H. E. Lassen, F. Mengel, B. Tromborg, N. C. Albertson, and P. L. Christiansen, “Evolution of chirped pulses in nonlinear single-mode fibers,” Opt. Lett. 10, 34–36 (1985).
    [CrossRef] [PubMed]
  24. M. Nakazawa, K. Tamura, H. Kubota, and E. Yoshida, “Coherence degradation in the process of supercontinuum generation in an optical fiber,” Opt. Fiber Technol.: Mater., Devices Syst. 4, 215–223 (1998).
    [CrossRef]
  25. K. Tamura, E. Yoshida, and M. Nakazawa, “Generation of a 10 GHz pulse train at 16 wavelengths by spectrally slicing a high power femtosecond source,” Electron. Lett. 32, 1691–1692 (1996).
    [CrossRef]

1998 (3)

T. Okuno, M. Onishi, and M. Nishimura, “Generation of ultra-broad-band supercontinuum by dispersion-flattened and decreasing fiber,” IEEE Photonics Technol. Lett. 10, 72–74 (1998).
[CrossRef]

K. Tamura and M. Nakazawa, “Timing jitter of solitons compressed in dispersion-decreasing fibers,” Opt. Lett. 23, 1360–1362 (1998).
[CrossRef]

M. Nakazawa, K. Tamura, H. Kubota, and E. Yoshida, “Coherence degradation in the process of supercontinuum generation in an optical fiber,” Opt. Fiber Technol.: Mater., Devices Syst. 4, 215–223 (1998).
[CrossRef]

1997 (1)

K. Mori, H. Takara, S. Kawanishi, M. Saruwatari, and T. Morioka, “Flatly broadened supercontinuum spectrum generated in a dispersion decreasing fibre with a convex dispersion profile,” Electron. Lett. 33, 1806–1808 (1997).
[CrossRef]

1996 (4)

A. Sahara, H. Kubota, and M. Nakazawa, “Q factor contour mapping for evaluation of optical transmission systems: soliton against NRZ against RZ pulse at zero group velocity dispersion,” Electron. Lett. 32, 915–916 (1996).
[CrossRef]

N. J. Smith and N. J. Doran, “Modulational instabilities in fibers with periodic dispersion management,” Opt. Lett. 21, 570–572 (1996).
[CrossRef] [PubMed]

M. Nakazawa, E. Yoshida, and K. Tamura, “10 GHz, 2 ps regeneratively and harmonically FM mode-locked erbium fiber ring laser,” Electron. Lett. 32, 1285–1287 (1996).
[CrossRef]

K. Tamura, E. Yoshida, and M. Nakazawa, “Generation of a 10 GHz pulse train at 16 wavelengths by spectrally slicing a high power femtosecond source,” Electron. Lett. 32, 1691–1692 (1996).
[CrossRef]

1994 (1)

T. Morioka, S. Kawanishi, K. Mori, and M. Saruwatari, “Nearly penalty-free, <4 ps supercontinuum Gbit/s pulse generation over 1535–1560 nm,” Electron. Lett. 30, 790–791 (1994).
[CrossRef]

1993 (2)

L. F. Mollenauer, E. Lichtman, M. J. Newbelt, and G. T. Harvey, “Demonstration, using sliding-frequency guiding filter, of error-free soliton transmission over more than 20Mm at 10 Gbit/s, single channel, and over more than 13Mm at 20 Gbit/s in a two-channel WDM,” Electron. Lett. 29, 910–911 (1993).
[CrossRef]

H. Tanaka, S. Kawanishi, and M. Saruwatari, “20 GHz transform-limited optical pulse generation and bit-error-free operation using a tunable, actively modelocked Er-doped fiber ring laser,” Electron. Lett. 29, 1149–1150 (1993).
[CrossRef]

1989 (1)

M. Nakazawa, K. Suzuki, H. Kubota, and H. A. Haus, “High-order solitons and modulation instability,” Phys. Rev. 39, 5768–5776 (1989).
[CrossRef]

1988 (1)

1987 (1)

A. S. Gouveia-Neto, A. S. L. Gomes, and J. R. Taylor, “High-order soliton pulse compression and splitting at 1.32 μm in a single-mode optical fiber,” IEEE J. Quantum Electron. 23, 1193–1198 (1987).
[CrossRef]

1986 (3)

G. P. Agrawal and M. J. Potasek, “Nonlinear pulse distortion in single-mode optical fibers at the zero-dispersion wavelength,” Phys. Rev. A 33, 1765–1776 (1986).
[CrossRef] [PubMed]

M. J. Potasek, G. P. Agrawal, and S. C. Pinault, “Numerical study of pulse broadening in nonlinear dispersive optical fibers,” J. Opt. Soc. Am. B 3, 205–211 (1986).
[CrossRef]

J. P. Gordon and H. A. Haus, “Random walk of coherently amplified solitons in optical fiber transmission,” Opt. Lett. 33, 665–667 (1986).
[CrossRef]

1985 (1)

1984 (1)

1983 (1)

1969 (1)

E. B. Treacy, “Optical pulse compression with diffracting gratings,” IEEE J. Quantum Electron. 5, 454–458 (1969).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal and M. J. Potasek, “Nonlinear pulse distortion in single-mode optical fibers at the zero-dispersion wavelength,” Phys. Rev. A 33, 1765–1776 (1986).
[CrossRef] [PubMed]

M. J. Potasek, G. P. Agrawal, and S. C. Pinault, “Numerical study of pulse broadening in nonlinear dispersive optical fibers,” J. Opt. Soc. Am. B 3, 205–211 (1986).
[CrossRef]

Albertson, N. C.

Bekki, N.

Christiansen, P. L.

Doran, N. J.

Fork, R. L.

Gomes, A. S. L.

A. S. Gouveia-Neto, A. S. L. Gomes, and J. R. Taylor, “High-order soliton pulse compression and splitting at 1.32 μm in a single-mode optical fiber,” IEEE J. Quantum Electron. 23, 1193–1198 (1987).
[CrossRef]

Gordon, J. P.

J. P. Gordon and H. A. Haus, “Random walk of coherently amplified solitons in optical fiber transmission,” Opt. Lett. 33, 665–667 (1986).
[CrossRef]

Gouveia-Neto, A. S.

A. S. Gouveia-Neto, A. S. L. Gomes, and J. R. Taylor, “High-order soliton pulse compression and splitting at 1.32 μm in a single-mode optical fiber,” IEEE J. Quantum Electron. 23, 1193–1198 (1987).
[CrossRef]

Harvey, G. T.

L. F. Mollenauer, E. Lichtman, M. J. Newbelt, and G. T. Harvey, “Demonstration, using sliding-frequency guiding filter, of error-free soliton transmission over more than 20Mm at 10 Gbit/s, single channel, and over more than 13Mm at 20 Gbit/s in a two-channel WDM,” Electron. Lett. 29, 910–911 (1993).
[CrossRef]

Hasegawa, A.

Haus, H. A.

M. Nakazawa, K. Suzuki, H. Kubota, and H. A. Haus, “High-order solitons and modulation instability,” Phys. Rev. 39, 5768–5776 (1989).
[CrossRef]

J. P. Gordon and H. A. Haus, “Random walk of coherently amplified solitons in optical fiber transmission,” Opt. Lett. 33, 665–667 (1986).
[CrossRef]

Hirlimann, C.

Kawanishi, S.

K. Mori, H. Takara, S. Kawanishi, M. Saruwatari, and T. Morioka, “Flatly broadened supercontinuum spectrum generated in a dispersion decreasing fibre with a convex dispersion profile,” Electron. Lett. 33, 1806–1808 (1997).
[CrossRef]

T. Morioka, S. Kawanishi, K. Mori, and M. Saruwatari, “Nearly penalty-free, <4 ps supercontinuum Gbit/s pulse generation over 1535–1560 nm,” Electron. Lett. 30, 790–791 (1994).
[CrossRef]

H. Tanaka, S. Kawanishi, and M. Saruwatari, “20 GHz transform-limited optical pulse generation and bit-error-free operation using a tunable, actively modelocked Er-doped fiber ring laser,” Electron. Lett. 29, 1149–1150 (1993).
[CrossRef]

Kubota, H.

M. Nakazawa, K. Tamura, H. Kubota, and E. Yoshida, “Coherence degradation in the process of supercontinuum generation in an optical fiber,” Opt. Fiber Technol.: Mater., Devices Syst. 4, 215–223 (1998).
[CrossRef]

A. Sahara, H. Kubota, and M. Nakazawa, “Q factor contour mapping for evaluation of optical transmission systems: soliton against NRZ against RZ pulse at zero group velocity dispersion,” Electron. Lett. 32, 915–916 (1996).
[CrossRef]

M. Nakazawa, K. Suzuki, H. Kubota, and H. A. Haus, “High-order solitons and modulation instability,” Phys. Rev. 39, 5768–5776 (1989).
[CrossRef]

Lassen, H. E.

Lichtman, E.

L. F. Mollenauer, E. Lichtman, M. J. Newbelt, and G. T. Harvey, “Demonstration, using sliding-frequency guiding filter, of error-free soliton transmission over more than 20Mm at 10 Gbit/s, single channel, and over more than 13Mm at 20 Gbit/s in a two-channel WDM,” Electron. Lett. 29, 910–911 (1993).
[CrossRef]

Mengel, F.

Mollenauer, L. F.

L. F. Mollenauer, E. Lichtman, M. J. Newbelt, and G. T. Harvey, “Demonstration, using sliding-frequency guiding filter, of error-free soliton transmission over more than 20Mm at 10 Gbit/s, single channel, and over more than 13Mm at 20 Gbit/s in a two-channel WDM,” Electron. Lett. 29, 910–911 (1993).
[CrossRef]

Mori, K.

K. Mori, H. Takara, S. Kawanishi, M. Saruwatari, and T. Morioka, “Flatly broadened supercontinuum spectrum generated in a dispersion decreasing fibre with a convex dispersion profile,” Electron. Lett. 33, 1806–1808 (1997).
[CrossRef]

T. Morioka, S. Kawanishi, K. Mori, and M. Saruwatari, “Nearly penalty-free, <4 ps supercontinuum Gbit/s pulse generation over 1535–1560 nm,” Electron. Lett. 30, 790–791 (1994).
[CrossRef]

Morioka, T.

K. Mori, H. Takara, S. Kawanishi, M. Saruwatari, and T. Morioka, “Flatly broadened supercontinuum spectrum generated in a dispersion decreasing fibre with a convex dispersion profile,” Electron. Lett. 33, 1806–1808 (1997).
[CrossRef]

T. Morioka, S. Kawanishi, K. Mori, and M. Saruwatari, “Nearly penalty-free, <4 ps supercontinuum Gbit/s pulse generation over 1535–1560 nm,” Electron. Lett. 30, 790–791 (1994).
[CrossRef]

Nakazawa, M.

K. Tamura and M. Nakazawa, “Timing jitter of solitons compressed in dispersion-decreasing fibers,” Opt. Lett. 23, 1360–1362 (1998).
[CrossRef]

M. Nakazawa, K. Tamura, H. Kubota, and E. Yoshida, “Coherence degradation in the process of supercontinuum generation in an optical fiber,” Opt. Fiber Technol.: Mater., Devices Syst. 4, 215–223 (1998).
[CrossRef]

K. Tamura, E. Yoshida, and M. Nakazawa, “Generation of a 10 GHz pulse train at 16 wavelengths by spectrally slicing a high power femtosecond source,” Electron. Lett. 32, 1691–1692 (1996).
[CrossRef]

A. Sahara, H. Kubota, and M. Nakazawa, “Q factor contour mapping for evaluation of optical transmission systems: soliton against NRZ against RZ pulse at zero group velocity dispersion,” Electron. Lett. 32, 915–916 (1996).
[CrossRef]

M. Nakazawa, E. Yoshida, and K. Tamura, “10 GHz, 2 ps regeneratively and harmonically FM mode-locked erbium fiber ring laser,” Electron. Lett. 32, 1285–1287 (1996).
[CrossRef]

M. Nakazawa, K. Suzuki, H. Kubota, and H. A. Haus, “High-order solitons and modulation instability,” Phys. Rev. 39, 5768–5776 (1989).
[CrossRef]

Newbelt, M. J.

L. F. Mollenauer, E. Lichtman, M. J. Newbelt, and G. T. Harvey, “Demonstration, using sliding-frequency guiding filter, of error-free soliton transmission over more than 20Mm at 10 Gbit/s, single channel, and over more than 13Mm at 20 Gbit/s in a two-channel WDM,” Electron. Lett. 29, 910–911 (1993).
[CrossRef]

Nishimura, M.

T. Okuno, M. Onishi, and M. Nishimura, “Generation of ultra-broad-band supercontinuum by dispersion-flattened and decreasing fiber,” IEEE Photonics Technol. Lett. 10, 72–74 (1998).
[CrossRef]

Okuno, T.

T. Okuno, M. Onishi, and M. Nishimura, “Generation of ultra-broad-band supercontinuum by dispersion-flattened and decreasing fiber,” IEEE Photonics Technol. Lett. 10, 72–74 (1998).
[CrossRef]

Onishi, M.

T. Okuno, M. Onishi, and M. Nishimura, “Generation of ultra-broad-band supercontinuum by dispersion-flattened and decreasing fiber,” IEEE Photonics Technol. Lett. 10, 72–74 (1998).
[CrossRef]

Pinault, S. C.

Potasek, M. J.

G. P. Agrawal and M. J. Potasek, “Nonlinear pulse distortion in single-mode optical fibers at the zero-dispersion wavelength,” Phys. Rev. A 33, 1765–1776 (1986).
[CrossRef] [PubMed]

M. J. Potasek, G. P. Agrawal, and S. C. Pinault, “Numerical study of pulse broadening in nonlinear dispersive optical fibers,” J. Opt. Soc. Am. B 3, 205–211 (1986).
[CrossRef]

Sahara, A.

A. Sahara, H. Kubota, and M. Nakazawa, “Q factor contour mapping for evaluation of optical transmission systems: soliton against NRZ against RZ pulse at zero group velocity dispersion,” Electron. Lett. 32, 915–916 (1996).
[CrossRef]

Saruwatari, M.

K. Mori, H. Takara, S. Kawanishi, M. Saruwatari, and T. Morioka, “Flatly broadened supercontinuum spectrum generated in a dispersion decreasing fibre with a convex dispersion profile,” Electron. Lett. 33, 1806–1808 (1997).
[CrossRef]

T. Morioka, S. Kawanishi, K. Mori, and M. Saruwatari, “Nearly penalty-free, <4 ps supercontinuum Gbit/s pulse generation over 1535–1560 nm,” Electron. Lett. 30, 790–791 (1994).
[CrossRef]

H. Tanaka, S. Kawanishi, and M. Saruwatari, “20 GHz transform-limited optical pulse generation and bit-error-free operation using a tunable, actively modelocked Er-doped fiber ring laser,” Electron. Lett. 29, 1149–1150 (1993).
[CrossRef]

Shank, C. V.

Smith, N. J.

Stolen, R. H.

Suzuki, K.

M. Nakazawa, K. Suzuki, H. Kubota, and H. A. Haus, “High-order solitons and modulation instability,” Phys. Rev. 39, 5768–5776 (1989).
[CrossRef]

Tai, K.

Takara, H.

K. Mori, H. Takara, S. Kawanishi, M. Saruwatari, and T. Morioka, “Flatly broadened supercontinuum spectrum generated in a dispersion decreasing fibre with a convex dispersion profile,” Electron. Lett. 33, 1806–1808 (1997).
[CrossRef]

Tamura, K.

K. Tamura and M. Nakazawa, “Timing jitter of solitons compressed in dispersion-decreasing fibers,” Opt. Lett. 23, 1360–1362 (1998).
[CrossRef]

M. Nakazawa, K. Tamura, H. Kubota, and E. Yoshida, “Coherence degradation in the process of supercontinuum generation in an optical fiber,” Opt. Fiber Technol.: Mater., Devices Syst. 4, 215–223 (1998).
[CrossRef]

K. Tamura, E. Yoshida, and M. Nakazawa, “Generation of a 10 GHz pulse train at 16 wavelengths by spectrally slicing a high power femtosecond source,” Electron. Lett. 32, 1691–1692 (1996).
[CrossRef]

M. Nakazawa, E. Yoshida, and K. Tamura, “10 GHz, 2 ps regeneratively and harmonically FM mode-locked erbium fiber ring laser,” Electron. Lett. 32, 1285–1287 (1996).
[CrossRef]

Tanaka, H.

H. Tanaka, S. Kawanishi, and M. Saruwatari, “20 GHz transform-limited optical pulse generation and bit-error-free operation using a tunable, actively modelocked Er-doped fiber ring laser,” Electron. Lett. 29, 1149–1150 (1993).
[CrossRef]

Taylor, J. R.

A. S. Gouveia-Neto, A. S. L. Gomes, and J. R. Taylor, “High-order soliton pulse compression and splitting at 1.32 μm in a single-mode optical fiber,” IEEE J. Quantum Electron. 23, 1193–1198 (1987).
[CrossRef]

Tomlinson, W. J.

Treacy, E. B.

E. B. Treacy, “Optical pulse compression with diffracting gratings,” IEEE J. Quantum Electron. 5, 454–458 (1969).
[CrossRef]

Tromborg, B.

Yen, R.

Yoshida, E.

M. Nakazawa, K. Tamura, H. Kubota, and E. Yoshida, “Coherence degradation in the process of supercontinuum generation in an optical fiber,” Opt. Fiber Technol.: Mater., Devices Syst. 4, 215–223 (1998).
[CrossRef]

K. Tamura, E. Yoshida, and M. Nakazawa, “Generation of a 10 GHz pulse train at 16 wavelengths by spectrally slicing a high power femtosecond source,” Electron. Lett. 32, 1691–1692 (1996).
[CrossRef]

M. Nakazawa, E. Yoshida, and K. Tamura, “10 GHz, 2 ps regeneratively and harmonically FM mode-locked erbium fiber ring laser,” Electron. Lett. 32, 1285–1287 (1996).
[CrossRef]

Electron. Lett. (7)

M. Nakazawa, E. Yoshida, and K. Tamura, “10 GHz, 2 ps regeneratively and harmonically FM mode-locked erbium fiber ring laser,” Electron. Lett. 32, 1285–1287 (1996).
[CrossRef]

H. Tanaka, S. Kawanishi, and M. Saruwatari, “20 GHz transform-limited optical pulse generation and bit-error-free operation using a tunable, actively modelocked Er-doped fiber ring laser,” Electron. Lett. 29, 1149–1150 (1993).
[CrossRef]

T. Morioka, S. Kawanishi, K. Mori, and M. Saruwatari, “Nearly penalty-free, <4 ps supercontinuum Gbit/s pulse generation over 1535–1560 nm,” Electron. Lett. 30, 790–791 (1994).
[CrossRef]

K. Mori, H. Takara, S. Kawanishi, M. Saruwatari, and T. Morioka, “Flatly broadened supercontinuum spectrum generated in a dispersion decreasing fibre with a convex dispersion profile,” Electron. Lett. 33, 1806–1808 (1997).
[CrossRef]

A. Sahara, H. Kubota, and M. Nakazawa, “Q factor contour mapping for evaluation of optical transmission systems: soliton against NRZ against RZ pulse at zero group velocity dispersion,” Electron. Lett. 32, 915–916 (1996).
[CrossRef]

L. F. Mollenauer, E. Lichtman, M. J. Newbelt, and G. T. Harvey, “Demonstration, using sliding-frequency guiding filter, of error-free soliton transmission over more than 20Mm at 10 Gbit/s, single channel, and over more than 13Mm at 20 Gbit/s in a two-channel WDM,” Electron. Lett. 29, 910–911 (1993).
[CrossRef]

K. Tamura, E. Yoshida, and M. Nakazawa, “Generation of a 10 GHz pulse train at 16 wavelengths by spectrally slicing a high power femtosecond source,” Electron. Lett. 32, 1691–1692 (1996).
[CrossRef]

IEEE J. Quantum Electron. (2)

E. B. Treacy, “Optical pulse compression with diffracting gratings,” IEEE J. Quantum Electron. 5, 454–458 (1969).
[CrossRef]

A. S. Gouveia-Neto, A. S. L. Gomes, and J. R. Taylor, “High-order soliton pulse compression and splitting at 1.32 μm in a single-mode optical fiber,” IEEE J. Quantum Electron. 23, 1193–1198 (1987).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

T. Okuno, M. Onishi, and M. Nishimura, “Generation of ultra-broad-band supercontinuum by dispersion-flattened and decreasing fiber,” IEEE Photonics Technol. Lett. 10, 72–74 (1998).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Fiber Technol.: Mater., Devices Syst. (1)

M. Nakazawa, K. Tamura, H. Kubota, and E. Yoshida, “Coherence degradation in the process of supercontinuum generation in an optical fiber,” Opt. Fiber Technol.: Mater., Devices Syst. 4, 215–223 (1998).
[CrossRef]

Opt. Lett. (6)

Phys. Rev. (1)

M. Nakazawa, K. Suzuki, H. Kubota, and H. A. Haus, “High-order solitons and modulation instability,” Phys. Rev. 39, 5768–5776 (1989).
[CrossRef]

Phys. Rev. A (1)

G. P. Agrawal and M. J. Potasek, “Nonlinear pulse distortion in single-mode optical fibers at the zero-dispersion wavelength,” Phys. Rev. A 33, 1765–1776 (1986).
[CrossRef] [PubMed]

Other (4)

K. Mori, H. Takara, and S. Kawanishi, “The effect of pump fluctuation in supercontinuum pulse generation,” in Nonlinear Guided Waves and Their Applications, Vol. 5 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), p. 276.

H. Kubota and M. Nakazawa, “Soliton transmission control in time and frequency domains,” IEEE J. Quantum Electron. 29, 2189–2197 (1993); “Soliton transmission control for ultra high speed system,” IEICE Trans. Electron. E78-C, 5–11 (1995).
[CrossRef]

G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1989).

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes (Cambridge U. Press, Cambridge, 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Evolution of high-order solitons (a) without and (b) with ASE noise.

Fig. 2
Fig. 2

Random distortion of a high-order soliton (a) without noise; (b), (c) in the presence of ASE noise. (b) and (c) have different noise characteristics.

Fig. 3
Fig. 3

Spectral broadening of a nonlinear pulse by use of fibers with different normal GVD’s. (a) D=-0.2 ps/(km nm), Dλ=0; (b) D=-0.2 ps/(km nm), Dλ=0.07 ps/(km nm2), A=25 (30 W). BEF, band-eliminating fiber.

Fig. 4
Fig. 4

Spectral broadening with a fiber with a large normal GVD. The GVD is -1.0 ps/(km nm), Dλ=0.07 ps/(km nm2), and A=20 (97 W).

Fig. 5
Fig. 5

Pulse evolution (a) without and (b) with ASE noise in a fiber with normal GVD. A=25 (30 W), D=-0.2 ps/ (km nm), and Dλ=0.

Fig. 6
Fig. 6

Pulse evolution in a fiber with an anomalous GVD (a) in DDF, (b) in DFF.

Fig. 7
Fig. 7

Spectral broadening at the output of a 1-km-long fiber. The results correspond to those in Fig. 6.

Fig. 8
Fig. 8

Soliton waveforms with ASE noise and (a) without and (b) with BEF.

Fig. 9
Fig. 9

Output pulse train of the compressed pulse (a) without and (b) with BEF.

Fig. 10
Fig. 10

Details of the band-eliminating filter, the pulse spectrum, and the MI gain profile. Input power, 7 W; Dλ=0.07 (ps/km)/nm2.

Fig. 11
Fig. 11

Power spectra of a single-pulse calculation (a) without and (b) with BEF. The conditions are the same as those in Fig. 9.

Fig. 12
Fig. 12

Spectral details of the compressed pulse train corresponding to Fig. 9(a) with and (b) without BEF.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δωmax=ωcn2|k|PS1/2,
Gmax=ωcn2PS,
-i uz-12k(z)|k0|2ut2-|u|2u
=i6k|k0|t03ut3-tnt0|u|2t+iΓu.

Metrics