Abstract

Nd lasers operating on the  4F3/2 to  4I9/2 transition, usually at ∼0.94 µm, can provide a useful source for many applications when they operate efficiently. Both efficiency and energy output are substantially increased by two new approaches: improvement of the basic design and the use of new laser materials, specifically, Nd:GYAG. Laser performance and gain results for both Nd:YAG and Nd:GYAG lasers that operate on the  4F3/2 to  4I9/2 transition are reported as a function of temperature. For the sake of comparison, results for these lasers when they operate on the  4F3/2 to  4I11/2 transition at 1.064 µm are reported as well. In addition, preliminary second-harmonic generation results for this 0.94-µm laser are reported.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Barnes, N. P. Barnes, and G. E. Miller, “Master oscillator power amplifier performance of Ti:Al2O3,” IEEE J. Quantum Electron. QE-24, 1029–1038 (1988).
    [CrossRef]
  2. R. W. Wallace and S. E. Harris, “Oscillation and doubling of the 0.946-μm line in Nd3+:YAG,” Appl. Phys. Lett. 15, 111–112 (1969).
    [CrossRef]
  3. M. Birnbaum, A. W. Tucker, and P. J. Pomphrey, “New Nd:YAG laser transitions 4F3/2 to 4I9/2,” IEEE J. Quantum Electron. 8, 501–501 (1972).
    [CrossRef]
  4. T. Y. Fan and R. L. Byer, “Modeling and cw operation of a quasi three level 946 nm Nd:YAG laser,” IEEE J. Quantum Electron. 23, 605–612 (1987).
    [CrossRef]
  5. W. P. Risk and W. Lenth, “Room temperature continuous wave 946 nm Nd:YAG laser pumped by laser diode arrays and intracavity frequency doubling to 473 nm,” Opt. Lett. 12, 993–995 (1987).
    [CrossRef] [PubMed]
  6. G. Hollemann, E. Piek, and H. W. Walther, “Frequency stabilized diode pumped Nd:YAG at 946 nm with harmonics at 473 nm and 237 nm,” Opt. Lett. 19, 192–194 (1994).
    [CrossRef]
  7. W. A. Clarkson, R. Koch, and D. C. Hanna, “Room temperature diode bar pumped Nd:YAG laser at 946 nm,” Opt. Lett. 21, 737–739 (1996).
    [CrossRef] [PubMed]
  8. T. Kellner, F. Heine, and G. Huber, “Efficient laser performance of Nd:YAG and intracavity frequency doubling with LiJO3, β-BaB2O4, and LiB3O5,” Appl. Phys. B: Photophys. Laser Chem. 65, 789–792 (1997).
    [CrossRef]
  9. S. Dimov, E. Peik, and H. Walther, “A flashlamp pumped 946 nm Nd:YAG laser,” Appl. Phys. B 53, 6–10 (1991).
    [CrossRef]
  10. F. Hansen, “Efficient operation of a room temperature Nd:YAG 946 nm laser pumped with multiple diode arrays,” Opt. Lett. 20, 148–150 (1995).
    [CrossRef]
  11. F. Hansen and P. Poirier, “Long pulse and Q-switched operation of diode pumped Nd:YAG at 0.946 μm,” in Advanced Solid State Lasers, W. R. Bosenberg and M. M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 317–319.
  12. B. M. Walsh, N. P. Barnes, R. E. Hutcheson, and R. Equall, “Spectroscopy and lasing characteristics of Nd-doped Y3GaxAl(5−x)O12 materials: applications toward a compositionally tuned 0.94-μm laser,” J. Opt. Soc. Am. B 15, 2794–2801 (1998).
    [CrossRef]
  13. N. P. Barnes, B. M. Walsh, D. J. Reichle, and R. E. Hutcheson, “Nd:GYAG for improved performance at 0.946 μm,” in Advanced Solid State Lasers, W. R. Bosenberg and M. M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 108–110.
  14. J. B. Gruber, M. E. Hills, T. H. Allik, C. K. Jayasankar, J. R. Quagliano, and F. S. Richardson, “Comparative analysis of Nd3+(4f3) energy levels in four garnet hosts,” Phys. Rev. B 41, 7999–8012 (1990).
    [CrossRef]
  15. S. Singh, R. G. Smith, and L. G. Van Uitert, “Stimulated emission cross section and fluorescent quantum efficiency of Nd3+ in yttrium aluminum garnet at room temperature,” Phys. Rev. B 10, 2566–2572 (1974).
    [CrossRef]
  16. N. P. Barnes and B. M. Walsh, “Amplified spontaneous emission: application to Nd:YAG lasers,” IEEE J. Quantum Electron. QE-35, 101–109 (1999).
    [CrossRef]
  17. T. Kushida, “Linewidth and thermal shifts of spectral lines in neodymium doped yttrium aluminum garnet and calcium fluorophosphate,” Phys. Rev. 185, 500–508 (1969).
    [CrossRef]

1999 (1)

N. P. Barnes and B. M. Walsh, “Amplified spontaneous emission: application to Nd:YAG lasers,” IEEE J. Quantum Electron. QE-35, 101–109 (1999).
[CrossRef]

1998 (1)

1997 (1)

T. Kellner, F. Heine, and G. Huber, “Efficient laser performance of Nd:YAG and intracavity frequency doubling with LiJO3, β-BaB2O4, and LiB3O5,” Appl. Phys. B: Photophys. Laser Chem. 65, 789–792 (1997).
[CrossRef]

1996 (1)

1995 (1)

1994 (1)

1991 (1)

S. Dimov, E. Peik, and H. Walther, “A flashlamp pumped 946 nm Nd:YAG laser,” Appl. Phys. B 53, 6–10 (1991).
[CrossRef]

1990 (1)

J. B. Gruber, M. E. Hills, T. H. Allik, C. K. Jayasankar, J. R. Quagliano, and F. S. Richardson, “Comparative analysis of Nd3+(4f3) energy levels in four garnet hosts,” Phys. Rev. B 41, 7999–8012 (1990).
[CrossRef]

1988 (1)

J. C. Barnes, N. P. Barnes, and G. E. Miller, “Master oscillator power amplifier performance of Ti:Al2O3,” IEEE J. Quantum Electron. QE-24, 1029–1038 (1988).
[CrossRef]

1987 (2)

T. Y. Fan and R. L. Byer, “Modeling and cw operation of a quasi three level 946 nm Nd:YAG laser,” IEEE J. Quantum Electron. 23, 605–612 (1987).
[CrossRef]

W. P. Risk and W. Lenth, “Room temperature continuous wave 946 nm Nd:YAG laser pumped by laser diode arrays and intracavity frequency doubling to 473 nm,” Opt. Lett. 12, 993–995 (1987).
[CrossRef] [PubMed]

1974 (1)

S. Singh, R. G. Smith, and L. G. Van Uitert, “Stimulated emission cross section and fluorescent quantum efficiency of Nd3+ in yttrium aluminum garnet at room temperature,” Phys. Rev. B 10, 2566–2572 (1974).
[CrossRef]

1972 (1)

M. Birnbaum, A. W. Tucker, and P. J. Pomphrey, “New Nd:YAG laser transitions 4F3/2 to 4I9/2,” IEEE J. Quantum Electron. 8, 501–501 (1972).
[CrossRef]

1969 (2)

R. W. Wallace and S. E. Harris, “Oscillation and doubling of the 0.946-μm line in Nd3+:YAG,” Appl. Phys. Lett. 15, 111–112 (1969).
[CrossRef]

T. Kushida, “Linewidth and thermal shifts of spectral lines in neodymium doped yttrium aluminum garnet and calcium fluorophosphate,” Phys. Rev. 185, 500–508 (1969).
[CrossRef]

Allik, T. H.

J. B. Gruber, M. E. Hills, T. H. Allik, C. K. Jayasankar, J. R. Quagliano, and F. S. Richardson, “Comparative analysis of Nd3+(4f3) energy levels in four garnet hosts,” Phys. Rev. B 41, 7999–8012 (1990).
[CrossRef]

Barnes, J. C.

J. C. Barnes, N. P. Barnes, and G. E. Miller, “Master oscillator power amplifier performance of Ti:Al2O3,” IEEE J. Quantum Electron. QE-24, 1029–1038 (1988).
[CrossRef]

Barnes, N. P.

N. P. Barnes and B. M. Walsh, “Amplified spontaneous emission: application to Nd:YAG lasers,” IEEE J. Quantum Electron. QE-35, 101–109 (1999).
[CrossRef]

B. M. Walsh, N. P. Barnes, R. E. Hutcheson, and R. Equall, “Spectroscopy and lasing characteristics of Nd-doped Y3GaxAl(5−x)O12 materials: applications toward a compositionally tuned 0.94-μm laser,” J. Opt. Soc. Am. B 15, 2794–2801 (1998).
[CrossRef]

J. C. Barnes, N. P. Barnes, and G. E. Miller, “Master oscillator power amplifier performance of Ti:Al2O3,” IEEE J. Quantum Electron. QE-24, 1029–1038 (1988).
[CrossRef]

Birnbaum, M.

M. Birnbaum, A. W. Tucker, and P. J. Pomphrey, “New Nd:YAG laser transitions 4F3/2 to 4I9/2,” IEEE J. Quantum Electron. 8, 501–501 (1972).
[CrossRef]

Byer, R. L.

T. Y. Fan and R. L. Byer, “Modeling and cw operation of a quasi three level 946 nm Nd:YAG laser,” IEEE J. Quantum Electron. 23, 605–612 (1987).
[CrossRef]

Clarkson, W. A.

Dimov, S.

S. Dimov, E. Peik, and H. Walther, “A flashlamp pumped 946 nm Nd:YAG laser,” Appl. Phys. B 53, 6–10 (1991).
[CrossRef]

Equall, R.

Fan, T. Y.

T. Y. Fan and R. L. Byer, “Modeling and cw operation of a quasi three level 946 nm Nd:YAG laser,” IEEE J. Quantum Electron. 23, 605–612 (1987).
[CrossRef]

Gruber, J. B.

J. B. Gruber, M. E. Hills, T. H. Allik, C. K. Jayasankar, J. R. Quagliano, and F. S. Richardson, “Comparative analysis of Nd3+(4f3) energy levels in four garnet hosts,” Phys. Rev. B 41, 7999–8012 (1990).
[CrossRef]

Hanna, D. C.

Hansen, F.

Harris, S. E.

R. W. Wallace and S. E. Harris, “Oscillation and doubling of the 0.946-μm line in Nd3+:YAG,” Appl. Phys. Lett. 15, 111–112 (1969).
[CrossRef]

Heine, F.

T. Kellner, F. Heine, and G. Huber, “Efficient laser performance of Nd:YAG and intracavity frequency doubling with LiJO3, β-BaB2O4, and LiB3O5,” Appl. Phys. B: Photophys. Laser Chem. 65, 789–792 (1997).
[CrossRef]

Hills, M. E.

J. B. Gruber, M. E. Hills, T. H. Allik, C. K. Jayasankar, J. R. Quagliano, and F. S. Richardson, “Comparative analysis of Nd3+(4f3) energy levels in four garnet hosts,” Phys. Rev. B 41, 7999–8012 (1990).
[CrossRef]

Hollemann, G.

Huber, G.

T. Kellner, F. Heine, and G. Huber, “Efficient laser performance of Nd:YAG and intracavity frequency doubling with LiJO3, β-BaB2O4, and LiB3O5,” Appl. Phys. B: Photophys. Laser Chem. 65, 789–792 (1997).
[CrossRef]

Hutcheson, R. E.

Jayasankar, C. K.

J. B. Gruber, M. E. Hills, T. H. Allik, C. K. Jayasankar, J. R. Quagliano, and F. S. Richardson, “Comparative analysis of Nd3+(4f3) energy levels in four garnet hosts,” Phys. Rev. B 41, 7999–8012 (1990).
[CrossRef]

Kellner, T.

T. Kellner, F. Heine, and G. Huber, “Efficient laser performance of Nd:YAG and intracavity frequency doubling with LiJO3, β-BaB2O4, and LiB3O5,” Appl. Phys. B: Photophys. Laser Chem. 65, 789–792 (1997).
[CrossRef]

Koch, R.

Kushida, T.

T. Kushida, “Linewidth and thermal shifts of spectral lines in neodymium doped yttrium aluminum garnet and calcium fluorophosphate,” Phys. Rev. 185, 500–508 (1969).
[CrossRef]

Lenth, W.

Miller, G. E.

J. C. Barnes, N. P. Barnes, and G. E. Miller, “Master oscillator power amplifier performance of Ti:Al2O3,” IEEE J. Quantum Electron. QE-24, 1029–1038 (1988).
[CrossRef]

Peik, E.

S. Dimov, E. Peik, and H. Walther, “A flashlamp pumped 946 nm Nd:YAG laser,” Appl. Phys. B 53, 6–10 (1991).
[CrossRef]

Piek, E.

Pomphrey, P. J.

M. Birnbaum, A. W. Tucker, and P. J. Pomphrey, “New Nd:YAG laser transitions 4F3/2 to 4I9/2,” IEEE J. Quantum Electron. 8, 501–501 (1972).
[CrossRef]

Quagliano, J. R.

J. B. Gruber, M. E. Hills, T. H. Allik, C. K. Jayasankar, J. R. Quagliano, and F. S. Richardson, “Comparative analysis of Nd3+(4f3) energy levels in four garnet hosts,” Phys. Rev. B 41, 7999–8012 (1990).
[CrossRef]

Richardson, F. S.

J. B. Gruber, M. E. Hills, T. H. Allik, C. K. Jayasankar, J. R. Quagliano, and F. S. Richardson, “Comparative analysis of Nd3+(4f3) energy levels in four garnet hosts,” Phys. Rev. B 41, 7999–8012 (1990).
[CrossRef]

Risk, W. P.

Singh, S.

S. Singh, R. G. Smith, and L. G. Van Uitert, “Stimulated emission cross section and fluorescent quantum efficiency of Nd3+ in yttrium aluminum garnet at room temperature,” Phys. Rev. B 10, 2566–2572 (1974).
[CrossRef]

Smith, R. G.

S. Singh, R. G. Smith, and L. G. Van Uitert, “Stimulated emission cross section and fluorescent quantum efficiency of Nd3+ in yttrium aluminum garnet at room temperature,” Phys. Rev. B 10, 2566–2572 (1974).
[CrossRef]

Tucker, A. W.

M. Birnbaum, A. W. Tucker, and P. J. Pomphrey, “New Nd:YAG laser transitions 4F3/2 to 4I9/2,” IEEE J. Quantum Electron. 8, 501–501 (1972).
[CrossRef]

Van Uitert, L. G.

S. Singh, R. G. Smith, and L. G. Van Uitert, “Stimulated emission cross section and fluorescent quantum efficiency of Nd3+ in yttrium aluminum garnet at room temperature,” Phys. Rev. B 10, 2566–2572 (1974).
[CrossRef]

Wallace, R. W.

R. W. Wallace and S. E. Harris, “Oscillation and doubling of the 0.946-μm line in Nd3+:YAG,” Appl. Phys. Lett. 15, 111–112 (1969).
[CrossRef]

Walsh, B. M.

Walther, H.

S. Dimov, E. Peik, and H. Walther, “A flashlamp pumped 946 nm Nd:YAG laser,” Appl. Phys. B 53, 6–10 (1991).
[CrossRef]

Walther, H. W.

Appl. Phys. B (1)

S. Dimov, E. Peik, and H. Walther, “A flashlamp pumped 946 nm Nd:YAG laser,” Appl. Phys. B 53, 6–10 (1991).
[CrossRef]

Appl. Phys. B: Photophys. Laser Chem. (1)

T. Kellner, F. Heine, and G. Huber, “Efficient laser performance of Nd:YAG and intracavity frequency doubling with LiJO3, β-BaB2O4, and LiB3O5,” Appl. Phys. B: Photophys. Laser Chem. 65, 789–792 (1997).
[CrossRef]

Appl. Phys. Lett. (1)

R. W. Wallace and S. E. Harris, “Oscillation and doubling of the 0.946-μm line in Nd3+:YAG,” Appl. Phys. Lett. 15, 111–112 (1969).
[CrossRef]

IEEE J. Quantum Electron. (4)

M. Birnbaum, A. W. Tucker, and P. J. Pomphrey, “New Nd:YAG laser transitions 4F3/2 to 4I9/2,” IEEE J. Quantum Electron. 8, 501–501 (1972).
[CrossRef]

T. Y. Fan and R. L. Byer, “Modeling and cw operation of a quasi three level 946 nm Nd:YAG laser,” IEEE J. Quantum Electron. 23, 605–612 (1987).
[CrossRef]

J. C. Barnes, N. P. Barnes, and G. E. Miller, “Master oscillator power amplifier performance of Ti:Al2O3,” IEEE J. Quantum Electron. QE-24, 1029–1038 (1988).
[CrossRef]

N. P. Barnes and B. M. Walsh, “Amplified spontaneous emission: application to Nd:YAG lasers,” IEEE J. Quantum Electron. QE-35, 101–109 (1999).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (4)

Phys. Rev. (1)

T. Kushida, “Linewidth and thermal shifts of spectral lines in neodymium doped yttrium aluminum garnet and calcium fluorophosphate,” Phys. Rev. 185, 500–508 (1969).
[CrossRef]

Phys. Rev. B (2)

J. B. Gruber, M. E. Hills, T. H. Allik, C. K. Jayasankar, J. R. Quagliano, and F. S. Richardson, “Comparative analysis of Nd3+(4f3) energy levels in four garnet hosts,” Phys. Rev. B 41, 7999–8012 (1990).
[CrossRef]

S. Singh, R. G. Smith, and L. G. Van Uitert, “Stimulated emission cross section and fluorescent quantum efficiency of Nd3+ in yttrium aluminum garnet at room temperature,” Phys. Rev. B 10, 2566–2572 (1974).
[CrossRef]

Other (2)

N. P. Barnes, B. M. Walsh, D. J. Reichle, and R. E. Hutcheson, “Nd:GYAG for improved performance at 0.946 μm,” in Advanced Solid State Lasers, W. R. Bosenberg and M. M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 108–110.

F. Hansen and P. Poirier, “Long pulse and Q-switched operation of diode pumped Nd:YAG at 0.946 μm,” in Advanced Solid State Lasers, W. R. Bosenberg and M. M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 317–319.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Energy-level diagram of Nd:YAG that shows the laser transitions of interest.

Fig. 2
Fig. 2

Lifetime of Nd:YAG and Nd:GYAG as a function of the pump energy.

Fig. 3
Fig. 3

Gain of Nd:YAG and Nd:GYAG as a function of pump energy.

Fig. 4
Fig. 4

Emission cross section of Nd:YAG and Nd:GYAG as a function of the Gd concentration.

Fig. 5
Fig. 5

Threshold of Nd:YAG and Nd:GYAG versus the negative logarithm of the output mirror reflectivity when they operate on the  4F3/2 to  4I9/2 transition.

Fig. 6
Fig. 6

Slope efficiency of Nd:YAG and Nd:GYAG versus the negative logarithm of the output mirror reflectivity when they operate on the  4F3/2 to  4I11/2 and  4F3/2 to  4I9/2 transitions.

Fig. 7
Fig. 7

Tuning characteristics of Nd:YAG and Nd:GYAG.

Fig. 8
Fig. 8

Threshold of Nd:YAG and Nd:GYAG when they operate on the  4F3/2 to  4I9/2 transition versus temperature.

Fig. 9
Fig. 9

Slope efficiency of Nd:YAG and Nd:GYAG when they operate on the  4F3/2 to  4I9/2 transition versus temperature.

Fig. 10
Fig. 10

Wavelength of Nd:YAG and Nd:GYAG when they operate on the  4F3/2 to  4I9/2 transition as a function of temperature.

Fig. 11
Fig. 11

Normal mode and Q-switched performance of Nd:YAG versus electrical energy.

Fig. 12
Fig. 12

Normal mode and Q-switched performance of Nd:GYAG versus electrical energy.

Fig. 13
Fig. 13

Second-harmonic performance versus fundamental energy for single and tandem BaB2O4 crystals.

Tables (1)

Tables Icon

Table 1 Summary of the Performance of Nd:YAG and Nd:GYAG for Four Configurations

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

g0l|1.06=σeN2l,
g0l|0.94=σeγ[N2-(γ-1)CNNS/γ]l,
γ=1+Z1/Z2.
RMRL exp(2g0THl)=1.
N2TH=bEEETH=(γ-1)CNNS/γ-ln(RMRL)/2γσel,
g0l=ln[(Vp-V0)/(Vc-V0)].
b|YAG/b|GYAG=σe|GYAG/σe|YAG.
σs=σsmax ln(RM)/ln(RMRL)
dEETHdTCNNSbEγ2dγdT,

Metrics