Abstract

We study the polarization-resolved dynamics of a vertical-cavity surface-emitting laser with mode-matched and polarization-preserving optical feedback. The total power can display low-frequency fluctuations, which are associated with drops in power of the dominant linearly polarized mode and with bursts of power of the depressed mode. However, for most parameter values the vertical-cavity surface-emitting laser output does not display low-frequency fluctuations, although antiphase dynamics between the two linear polarization components has been found. A theoretical model that includes all reflections in the external cavity with a minimum computational cost is developed.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. For a review see K. Petermann, “External optical feedback phenomena in semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 1, 480–489 (1995).
    [CrossRef]
  2. R. W. Tkach and A. R. Chraplyvy, “Regimes of feedback effects in 1.5-μm distributed feedback lasers,” J. Lightwave Technol. LT-4, 1655–1661 (1986).
    [CrossRef]
  3. A. P. Bogatov, P. G. Eliseev, L. P. Ivanov, A. S. Logginov, M. A. Manko, and K. Ya Senatorov, “Study of the single-mode injection laser,” IEEE J. Quantum Electron. 9, 392–398 (1973).
    [CrossRef]
  4. D. Lenstra, B. H. Verbeek, and A. J. den Boef, “Coherence collapse in single-mode semiconductor lasers due to optical feedback,” IEEE J. Quantum Electron. QE-21, 674–679 (1985).
    [CrossRef]
  5. W. W. Chow, K. D. Choquette, M. H. Crawford, K. L. Lear, and G. R. Hadley, “Design fabrication and performance of infrared and visible vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 33, 1810–1824 (1997).
    [CrossRef]
  6. C. J. Chang-Hasnain, in Semiconductor Lasers: Past, Present and Future, G. P. Agrawal, ed. (American Institute of Physics, New York, 1995), Chap. 5.
  7. T. E. Sale, Vertical Cavity Surface Emitting Lasers (Research Studies, Somerset, UK, 1995).
  8. Z. G. Pan, S. Jiang, M. Dagenais, R. A. Morgan, K. Kojima, M. T. Asom, R. E. Leibenguth, G. D. Guth, and M. W. Focht, “Optical injection induced polarization bistability in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 63, 2999–3001 (1993).
    [CrossRef]
  9. U. Fiedler and K. J. Ebeling, “Design of VCSEL’s for feedback insensitive data transmission and external cavity active mode-locking,” IEEE J. Sel. Top. Quantum Electron. 1, 442–450 (1995).
    [CrossRef]
  10. Y. C. Chung and Y. H. Lee, “Spectral characteristics of vertical-cavity surface-emitting laser with optical feedback,” IEEE Photon. Technol. Lett. 3, 597–599 (1991).
    [CrossRef]
  11. S. Jiang, Z. Pan, M. Dagenais, R. A. Morgan, and K. Kojima, “Influence of external optical feedback on threshold and spectral characteristics of vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 6, 34–36 (1994); S. Jiang, M. Dageanis, and R. A. Morgan, “Spectral characteristics of vertical-cavity surface-emitting lasers with strong external optical feedback,” IEEE Photon. Technol. Lett. 7, 739–741 (1995).
    [CrossRef]
  12. J. Dellunde, A. Valle, and K. A. Shore, “Transverse mode selection in external cavity vertical cavity surface emitting laser diodes,” J. Opt. Soc. Am. B 13, 2477–2483 (1996).
    [CrossRef]
  13. J. Y. Law and G. P. Agrawal, “Effects of optical feedback on static and dynamic characteristics of vertical-cavity surface-emitting lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 353–358 (1997).
    [CrossRef]
  14. F. Robert, P. Besnard, M. L. Chares, and G. M. Stephan, “Polarization modulation dynamics of vertical-cavity surface-emitting lasers with an extended cavity,” IEEE J. Quantum Electron. 33, 2231–2239 (1997); P. Besnard, F. Robert, M. L. Chares, and G. M. Stephan, “Theoretical modeling of vertical-cavity surface-emitting lasers with polarized optical feedback,” Phys. Rev. A 56, 3191–3205 (1997).
    [CrossRef]
  15. H. Li, A. Hohl, A. Gavrielides, H. Hou, and K. D. Choquette, “Stable polarization self-modulation in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 72, 2355–2357 (1998).
    [CrossRef]
  16. N. A. Loiko, A. V. Naumenko, and N. B. Abraham, “Modelling of switching and stability of vertical-cavity lasers with polarization-selective feedback,” Quantum Semiclassic. Opt. 10, 125–140 (1998).
    [CrossRef]
  17. M. San Miguel, Q. Feng, and J. V. Moloney, “Light polarization dynamics in surface emitting semiconductor lasers,” Phys. Rev. A 52, 1728–1739 (1995).
    [CrossRef] [PubMed]
  18. J. Martín-Regalado, M. San Miguel, N. B. Abraham, and F. Prati, “Polarization switching in quantum-well vertical-cavity surface-emitting lasers,” Opt. Lett. 21, 351–353 (1996); “Polarization properties of vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 33, 765–783 (1997); J. Martín-Regalado, J. L. A. Chilla, J. J. Rocca, and P. Brusenbach, “Polarization switching in vertical-cavity surface-emitting lasers observed at constant active-region temperature,” Appl. Phys. Lett. APPLAB 70, 3350–3352 (1997).
    [CrossRef] [PubMed]
  19. R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor laser properties,” IEEE J. Quantum Electron. QE-16, 347–355 (1980).
    [CrossRef]
  20. J. Jewell, J. P. Harbison, A. Scherer, Y. H. Lee, and L. T. Florez, “Vertical-cavity surface-emitting lasers: design, growth, fabrication, characterization,” IEEE J. Quantum Electron. 27, 1332–1346 (1991); A. K. J. van Doorn, M. P. van Exter, and J. P. Woerdman, “Elasto-optic anisotropy and polarization orientation of vertical-cavity surface-emitting semiconductor lasers,” Appl. Phys. Lett. 69, 1041–1043 (1996).
    [CrossRef]
  21. C. Masoller and N. B. Abraham, “Low-frequency fluctuations in vertical-cavity surface-emitting semiconductor lasers with optical feedback,” Phys. Rev. A 59, 3021–3031 (1999).
    [CrossRef]
  22. P. S. Spencer, C. R. Mirasso, and K. A. Shore, “Effect of strong optical feedback on vertical cavity surface emitting lasers,” IEEE Photon. Technol. Lett. 10, 191–193 (1998).
    [CrossRef]
  23. G. Huyet, S. Balle, M. Giudici, C. Green, G. Giacomelli, and J. R. Tredicce, “Low frequency fluctuations and multimode operation of a semiconductor laser with optical feedback,” Opt. Commun. 149, 341–347 (1998).
    [CrossRef]
  24. G. Huyet, S. P. Hegarty, M. Giudici, B. de Bruyn, and J. G. McInerney, “Statistical properties of the dynamics of semiconductor lasers with optical feedback,” Europhys. Lett. 40, 619–624 (1997).
    [CrossRef]
  25. G. Vaschenko, M. Giudici, J. J. Rocca, C. S. Menoni, J. R. Tredicce, and S. Balle, “Temporal dynamics of semiconductor lasers with optical feedback,” Phys. Rev. Lett. 81, 5536–5539 (1998).
    [CrossRef]
  26. A. Valle, J. Sarma, and K. A. Shore, “Spatial holeburning effects on the dynamics of vertical-cavity surface-emitting laser diodes,” IEEE J. Quantum Electron. 31, 1423–1431 (1995).
    [CrossRef]
  27. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits, Wiley Series in Microwave and Optical Engineering (Wiley, New York, 1995).

1999

C. Masoller and N. B. Abraham, “Low-frequency fluctuations in vertical-cavity surface-emitting semiconductor lasers with optical feedback,” Phys. Rev. A 59, 3021–3031 (1999).
[CrossRef]

1998

P. S. Spencer, C. R. Mirasso, and K. A. Shore, “Effect of strong optical feedback on vertical cavity surface emitting lasers,” IEEE Photon. Technol. Lett. 10, 191–193 (1998).
[CrossRef]

G. Huyet, S. Balle, M. Giudici, C. Green, G. Giacomelli, and J. R. Tredicce, “Low frequency fluctuations and multimode operation of a semiconductor laser with optical feedback,” Opt. Commun. 149, 341–347 (1998).
[CrossRef]

H. Li, A. Hohl, A. Gavrielides, H. Hou, and K. D. Choquette, “Stable polarization self-modulation in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 72, 2355–2357 (1998).
[CrossRef]

N. A. Loiko, A. V. Naumenko, and N. B. Abraham, “Modelling of switching and stability of vertical-cavity lasers with polarization-selective feedback,” Quantum Semiclassic. Opt. 10, 125–140 (1998).
[CrossRef]

G. Vaschenko, M. Giudici, J. J. Rocca, C. S. Menoni, J. R. Tredicce, and S. Balle, “Temporal dynamics of semiconductor lasers with optical feedback,” Phys. Rev. Lett. 81, 5536–5539 (1998).
[CrossRef]

1997

J. Y. Law and G. P. Agrawal, “Effects of optical feedback on static and dynamic characteristics of vertical-cavity surface-emitting lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 353–358 (1997).
[CrossRef]

G. Huyet, S. P. Hegarty, M. Giudici, B. de Bruyn, and J. G. McInerney, “Statistical properties of the dynamics of semiconductor lasers with optical feedback,” Europhys. Lett. 40, 619–624 (1997).
[CrossRef]

W. W. Chow, K. D. Choquette, M. H. Crawford, K. L. Lear, and G. R. Hadley, “Design fabrication and performance of infrared and visible vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 33, 1810–1824 (1997).
[CrossRef]

1996

1995

U. Fiedler and K. J. Ebeling, “Design of VCSEL’s for feedback insensitive data transmission and external cavity active mode-locking,” IEEE J. Sel. Top. Quantum Electron. 1, 442–450 (1995).
[CrossRef]

For a review see K. Petermann, “External optical feedback phenomena in semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 1, 480–489 (1995).
[CrossRef]

M. San Miguel, Q. Feng, and J. V. Moloney, “Light polarization dynamics in surface emitting semiconductor lasers,” Phys. Rev. A 52, 1728–1739 (1995).
[CrossRef] [PubMed]

A. Valle, J. Sarma, and K. A. Shore, “Spatial holeburning effects on the dynamics of vertical-cavity surface-emitting laser diodes,” IEEE J. Quantum Electron. 31, 1423–1431 (1995).
[CrossRef]

1993

Z. G. Pan, S. Jiang, M. Dagenais, R. A. Morgan, K. Kojima, M. T. Asom, R. E. Leibenguth, G. D. Guth, and M. W. Focht, “Optical injection induced polarization bistability in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 63, 2999–3001 (1993).
[CrossRef]

1991

Y. C. Chung and Y. H. Lee, “Spectral characteristics of vertical-cavity surface-emitting laser with optical feedback,” IEEE Photon. Technol. Lett. 3, 597–599 (1991).
[CrossRef]

1986

R. W. Tkach and A. R. Chraplyvy, “Regimes of feedback effects in 1.5-μm distributed feedback lasers,” J. Lightwave Technol. LT-4, 1655–1661 (1986).
[CrossRef]

1985

D. Lenstra, B. H. Verbeek, and A. J. den Boef, “Coherence collapse in single-mode semiconductor lasers due to optical feedback,” IEEE J. Quantum Electron. QE-21, 674–679 (1985).
[CrossRef]

1980

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor laser properties,” IEEE J. Quantum Electron. QE-16, 347–355 (1980).
[CrossRef]

1973

A. P. Bogatov, P. G. Eliseev, L. P. Ivanov, A. S. Logginov, M. A. Manko, and K. Ya Senatorov, “Study of the single-mode injection laser,” IEEE J. Quantum Electron. 9, 392–398 (1973).
[CrossRef]

Abraham, N. B.

C. Masoller and N. B. Abraham, “Low-frequency fluctuations in vertical-cavity surface-emitting semiconductor lasers with optical feedback,” Phys. Rev. A 59, 3021–3031 (1999).
[CrossRef]

N. A. Loiko, A. V. Naumenko, and N. B. Abraham, “Modelling of switching and stability of vertical-cavity lasers with polarization-selective feedback,” Quantum Semiclassic. Opt. 10, 125–140 (1998).
[CrossRef]

Agrawal, G. P.

J. Y. Law and G. P. Agrawal, “Effects of optical feedback on static and dynamic characteristics of vertical-cavity surface-emitting lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 353–358 (1997).
[CrossRef]

Asom, M. T.

Z. G. Pan, S. Jiang, M. Dagenais, R. A. Morgan, K. Kojima, M. T. Asom, R. E. Leibenguth, G. D. Guth, and M. W. Focht, “Optical injection induced polarization bistability in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 63, 2999–3001 (1993).
[CrossRef]

Balle, S.

G. Huyet, S. Balle, M. Giudici, C. Green, G. Giacomelli, and J. R. Tredicce, “Low frequency fluctuations and multimode operation of a semiconductor laser with optical feedback,” Opt. Commun. 149, 341–347 (1998).
[CrossRef]

G. Vaschenko, M. Giudici, J. J. Rocca, C. S. Menoni, J. R. Tredicce, and S. Balle, “Temporal dynamics of semiconductor lasers with optical feedback,” Phys. Rev. Lett. 81, 5536–5539 (1998).
[CrossRef]

Bogatov, A. P.

A. P. Bogatov, P. G. Eliseev, L. P. Ivanov, A. S. Logginov, M. A. Manko, and K. Ya Senatorov, “Study of the single-mode injection laser,” IEEE J. Quantum Electron. 9, 392–398 (1973).
[CrossRef]

Choquette, K. D.

H. Li, A. Hohl, A. Gavrielides, H. Hou, and K. D. Choquette, “Stable polarization self-modulation in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 72, 2355–2357 (1998).
[CrossRef]

W. W. Chow, K. D. Choquette, M. H. Crawford, K. L. Lear, and G. R. Hadley, “Design fabrication and performance of infrared and visible vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 33, 1810–1824 (1997).
[CrossRef]

Chow, W. W.

W. W. Chow, K. D. Choquette, M. H. Crawford, K. L. Lear, and G. R. Hadley, “Design fabrication and performance of infrared and visible vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 33, 1810–1824 (1997).
[CrossRef]

Chraplyvy, A. R.

R. W. Tkach and A. R. Chraplyvy, “Regimes of feedback effects in 1.5-μm distributed feedback lasers,” J. Lightwave Technol. LT-4, 1655–1661 (1986).
[CrossRef]

Chung, Y. C.

Y. C. Chung and Y. H. Lee, “Spectral characteristics of vertical-cavity surface-emitting laser with optical feedback,” IEEE Photon. Technol. Lett. 3, 597–599 (1991).
[CrossRef]

Crawford, M. H.

W. W. Chow, K. D. Choquette, M. H. Crawford, K. L. Lear, and G. R. Hadley, “Design fabrication and performance of infrared and visible vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 33, 1810–1824 (1997).
[CrossRef]

Dagenais, M.

Z. G. Pan, S. Jiang, M. Dagenais, R. A. Morgan, K. Kojima, M. T. Asom, R. E. Leibenguth, G. D. Guth, and M. W. Focht, “Optical injection induced polarization bistability in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 63, 2999–3001 (1993).
[CrossRef]

de Bruyn, B.

G. Huyet, S. P. Hegarty, M. Giudici, B. de Bruyn, and J. G. McInerney, “Statistical properties of the dynamics of semiconductor lasers with optical feedback,” Europhys. Lett. 40, 619–624 (1997).
[CrossRef]

Dellunde, J.

den Boef, A. J.

D. Lenstra, B. H. Verbeek, and A. J. den Boef, “Coherence collapse in single-mode semiconductor lasers due to optical feedback,” IEEE J. Quantum Electron. QE-21, 674–679 (1985).
[CrossRef]

Ebeling, K. J.

U. Fiedler and K. J. Ebeling, “Design of VCSEL’s for feedback insensitive data transmission and external cavity active mode-locking,” IEEE J. Sel. Top. Quantum Electron. 1, 442–450 (1995).
[CrossRef]

Eliseev, P. G.

A. P. Bogatov, P. G. Eliseev, L. P. Ivanov, A. S. Logginov, M. A. Manko, and K. Ya Senatorov, “Study of the single-mode injection laser,” IEEE J. Quantum Electron. 9, 392–398 (1973).
[CrossRef]

Feng, Q.

M. San Miguel, Q. Feng, and J. V. Moloney, “Light polarization dynamics in surface emitting semiconductor lasers,” Phys. Rev. A 52, 1728–1739 (1995).
[CrossRef] [PubMed]

Fiedler, U.

U. Fiedler and K. J. Ebeling, “Design of VCSEL’s for feedback insensitive data transmission and external cavity active mode-locking,” IEEE J. Sel. Top. Quantum Electron. 1, 442–450 (1995).
[CrossRef]

Focht, M. W.

Z. G. Pan, S. Jiang, M. Dagenais, R. A. Morgan, K. Kojima, M. T. Asom, R. E. Leibenguth, G. D. Guth, and M. W. Focht, “Optical injection induced polarization bistability in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 63, 2999–3001 (1993).
[CrossRef]

Gavrielides, A.

H. Li, A. Hohl, A. Gavrielides, H. Hou, and K. D. Choquette, “Stable polarization self-modulation in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 72, 2355–2357 (1998).
[CrossRef]

Giacomelli, G.

G. Huyet, S. Balle, M. Giudici, C. Green, G. Giacomelli, and J. R. Tredicce, “Low frequency fluctuations and multimode operation of a semiconductor laser with optical feedback,” Opt. Commun. 149, 341–347 (1998).
[CrossRef]

Giudici, M.

G. Huyet, S. Balle, M. Giudici, C. Green, G. Giacomelli, and J. R. Tredicce, “Low frequency fluctuations and multimode operation of a semiconductor laser with optical feedback,” Opt. Commun. 149, 341–347 (1998).
[CrossRef]

G. Vaschenko, M. Giudici, J. J. Rocca, C. S. Menoni, J. R. Tredicce, and S. Balle, “Temporal dynamics of semiconductor lasers with optical feedback,” Phys. Rev. Lett. 81, 5536–5539 (1998).
[CrossRef]

G. Huyet, S. P. Hegarty, M. Giudici, B. de Bruyn, and J. G. McInerney, “Statistical properties of the dynamics of semiconductor lasers with optical feedback,” Europhys. Lett. 40, 619–624 (1997).
[CrossRef]

Green, C.

G. Huyet, S. Balle, M. Giudici, C. Green, G. Giacomelli, and J. R. Tredicce, “Low frequency fluctuations and multimode operation of a semiconductor laser with optical feedback,” Opt. Commun. 149, 341–347 (1998).
[CrossRef]

Guth, G. D.

Z. G. Pan, S. Jiang, M. Dagenais, R. A. Morgan, K. Kojima, M. T. Asom, R. E. Leibenguth, G. D. Guth, and M. W. Focht, “Optical injection induced polarization bistability in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 63, 2999–3001 (1993).
[CrossRef]

Hadley, G. R.

W. W. Chow, K. D. Choquette, M. H. Crawford, K. L. Lear, and G. R. Hadley, “Design fabrication and performance of infrared and visible vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 33, 1810–1824 (1997).
[CrossRef]

Hegarty, S. P.

G. Huyet, S. P. Hegarty, M. Giudici, B. de Bruyn, and J. G. McInerney, “Statistical properties of the dynamics of semiconductor lasers with optical feedback,” Europhys. Lett. 40, 619–624 (1997).
[CrossRef]

Hohl, A.

H. Li, A. Hohl, A. Gavrielides, H. Hou, and K. D. Choquette, “Stable polarization self-modulation in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 72, 2355–2357 (1998).
[CrossRef]

Hou, H.

H. Li, A. Hohl, A. Gavrielides, H. Hou, and K. D. Choquette, “Stable polarization self-modulation in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 72, 2355–2357 (1998).
[CrossRef]

Huyet, G.

G. Huyet, S. Balle, M. Giudici, C. Green, G. Giacomelli, and J. R. Tredicce, “Low frequency fluctuations and multimode operation of a semiconductor laser with optical feedback,” Opt. Commun. 149, 341–347 (1998).
[CrossRef]

G. Huyet, S. P. Hegarty, M. Giudici, B. de Bruyn, and J. G. McInerney, “Statistical properties of the dynamics of semiconductor lasers with optical feedback,” Europhys. Lett. 40, 619–624 (1997).
[CrossRef]

Ivanov, L. P.

A. P. Bogatov, P. G. Eliseev, L. P. Ivanov, A. S. Logginov, M. A. Manko, and K. Ya Senatorov, “Study of the single-mode injection laser,” IEEE J. Quantum Electron. 9, 392–398 (1973).
[CrossRef]

Jiang, S.

Z. G. Pan, S. Jiang, M. Dagenais, R. A. Morgan, K. Kojima, M. T. Asom, R. E. Leibenguth, G. D. Guth, and M. W. Focht, “Optical injection induced polarization bistability in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 63, 2999–3001 (1993).
[CrossRef]

Kobayashi, K.

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor laser properties,” IEEE J. Quantum Electron. QE-16, 347–355 (1980).
[CrossRef]

Kojima, K.

Z. G. Pan, S. Jiang, M. Dagenais, R. A. Morgan, K. Kojima, M. T. Asom, R. E. Leibenguth, G. D. Guth, and M. W. Focht, “Optical injection induced polarization bistability in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 63, 2999–3001 (1993).
[CrossRef]

Lang, R.

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor laser properties,” IEEE J. Quantum Electron. QE-16, 347–355 (1980).
[CrossRef]

Law, J. Y.

J. Y. Law and G. P. Agrawal, “Effects of optical feedback on static and dynamic characteristics of vertical-cavity surface-emitting lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 353–358 (1997).
[CrossRef]

Lear, K. L.

W. W. Chow, K. D. Choquette, M. H. Crawford, K. L. Lear, and G. R. Hadley, “Design fabrication and performance of infrared and visible vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 33, 1810–1824 (1997).
[CrossRef]

Lee, Y. H.

Y. C. Chung and Y. H. Lee, “Spectral characteristics of vertical-cavity surface-emitting laser with optical feedback,” IEEE Photon. Technol. Lett. 3, 597–599 (1991).
[CrossRef]

Leibenguth, R. E.

Z. G. Pan, S. Jiang, M. Dagenais, R. A. Morgan, K. Kojima, M. T. Asom, R. E. Leibenguth, G. D. Guth, and M. W. Focht, “Optical injection induced polarization bistability in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 63, 2999–3001 (1993).
[CrossRef]

Lenstra, D.

D. Lenstra, B. H. Verbeek, and A. J. den Boef, “Coherence collapse in single-mode semiconductor lasers due to optical feedback,” IEEE J. Quantum Electron. QE-21, 674–679 (1985).
[CrossRef]

Li, H.

H. Li, A. Hohl, A. Gavrielides, H. Hou, and K. D. Choquette, “Stable polarization self-modulation in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 72, 2355–2357 (1998).
[CrossRef]

Logginov, A. S.

A. P. Bogatov, P. G. Eliseev, L. P. Ivanov, A. S. Logginov, M. A. Manko, and K. Ya Senatorov, “Study of the single-mode injection laser,” IEEE J. Quantum Electron. 9, 392–398 (1973).
[CrossRef]

Loiko, N. A.

N. A. Loiko, A. V. Naumenko, and N. B. Abraham, “Modelling of switching and stability of vertical-cavity lasers with polarization-selective feedback,” Quantum Semiclassic. Opt. 10, 125–140 (1998).
[CrossRef]

Manko, M. A.

A. P. Bogatov, P. G. Eliseev, L. P. Ivanov, A. S. Logginov, M. A. Manko, and K. Ya Senatorov, “Study of the single-mode injection laser,” IEEE J. Quantum Electron. 9, 392–398 (1973).
[CrossRef]

Masoller, C.

C. Masoller and N. B. Abraham, “Low-frequency fluctuations in vertical-cavity surface-emitting semiconductor lasers with optical feedback,” Phys. Rev. A 59, 3021–3031 (1999).
[CrossRef]

McInerney, J. G.

G. Huyet, S. P. Hegarty, M. Giudici, B. de Bruyn, and J. G. McInerney, “Statistical properties of the dynamics of semiconductor lasers with optical feedback,” Europhys. Lett. 40, 619–624 (1997).
[CrossRef]

Menoni, C. S.

G. Vaschenko, M. Giudici, J. J. Rocca, C. S. Menoni, J. R. Tredicce, and S. Balle, “Temporal dynamics of semiconductor lasers with optical feedback,” Phys. Rev. Lett. 81, 5536–5539 (1998).
[CrossRef]

Mirasso, C. R.

P. S. Spencer, C. R. Mirasso, and K. A. Shore, “Effect of strong optical feedback on vertical cavity surface emitting lasers,” IEEE Photon. Technol. Lett. 10, 191–193 (1998).
[CrossRef]

Moloney, J. V.

M. San Miguel, Q. Feng, and J. V. Moloney, “Light polarization dynamics in surface emitting semiconductor lasers,” Phys. Rev. A 52, 1728–1739 (1995).
[CrossRef] [PubMed]

Morgan, R. A.

Z. G. Pan, S. Jiang, M. Dagenais, R. A. Morgan, K. Kojima, M. T. Asom, R. E. Leibenguth, G. D. Guth, and M. W. Focht, “Optical injection induced polarization bistability in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 63, 2999–3001 (1993).
[CrossRef]

Naumenko, A. V.

N. A. Loiko, A. V. Naumenko, and N. B. Abraham, “Modelling of switching and stability of vertical-cavity lasers with polarization-selective feedback,” Quantum Semiclassic. Opt. 10, 125–140 (1998).
[CrossRef]

Pan, Z. G.

Z. G. Pan, S. Jiang, M. Dagenais, R. A. Morgan, K. Kojima, M. T. Asom, R. E. Leibenguth, G. D. Guth, and M. W. Focht, “Optical injection induced polarization bistability in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 63, 2999–3001 (1993).
[CrossRef]

Petermann, K.

For a review see K. Petermann, “External optical feedback phenomena in semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 1, 480–489 (1995).
[CrossRef]

Rocca, J. J.

G. Vaschenko, M. Giudici, J. J. Rocca, C. S. Menoni, J. R. Tredicce, and S. Balle, “Temporal dynamics of semiconductor lasers with optical feedback,” Phys. Rev. Lett. 81, 5536–5539 (1998).
[CrossRef]

San Miguel, M.

M. San Miguel, Q. Feng, and J. V. Moloney, “Light polarization dynamics in surface emitting semiconductor lasers,” Phys. Rev. A 52, 1728–1739 (1995).
[CrossRef] [PubMed]

Sarma, J.

A. Valle, J. Sarma, and K. A. Shore, “Spatial holeburning effects on the dynamics of vertical-cavity surface-emitting laser diodes,” IEEE J. Quantum Electron. 31, 1423–1431 (1995).
[CrossRef]

Senatorov, K. Ya

A. P. Bogatov, P. G. Eliseev, L. P. Ivanov, A. S. Logginov, M. A. Manko, and K. Ya Senatorov, “Study of the single-mode injection laser,” IEEE J. Quantum Electron. 9, 392–398 (1973).
[CrossRef]

Shore, K. A.

P. S. Spencer, C. R. Mirasso, and K. A. Shore, “Effect of strong optical feedback on vertical cavity surface emitting lasers,” IEEE Photon. Technol. Lett. 10, 191–193 (1998).
[CrossRef]

J. Dellunde, A. Valle, and K. A. Shore, “Transverse mode selection in external cavity vertical cavity surface emitting laser diodes,” J. Opt. Soc. Am. B 13, 2477–2483 (1996).
[CrossRef]

A. Valle, J. Sarma, and K. A. Shore, “Spatial holeburning effects on the dynamics of vertical-cavity surface-emitting laser diodes,” IEEE J. Quantum Electron. 31, 1423–1431 (1995).
[CrossRef]

Spencer, P. S.

P. S. Spencer, C. R. Mirasso, and K. A. Shore, “Effect of strong optical feedback on vertical cavity surface emitting lasers,” IEEE Photon. Technol. Lett. 10, 191–193 (1998).
[CrossRef]

Tkach, R. W.

R. W. Tkach and A. R. Chraplyvy, “Regimes of feedback effects in 1.5-μm distributed feedback lasers,” J. Lightwave Technol. LT-4, 1655–1661 (1986).
[CrossRef]

Tredicce, J. R.

G. Vaschenko, M. Giudici, J. J. Rocca, C. S. Menoni, J. R. Tredicce, and S. Balle, “Temporal dynamics of semiconductor lasers with optical feedback,” Phys. Rev. Lett. 81, 5536–5539 (1998).
[CrossRef]

G. Huyet, S. Balle, M. Giudici, C. Green, G. Giacomelli, and J. R. Tredicce, “Low frequency fluctuations and multimode operation of a semiconductor laser with optical feedback,” Opt. Commun. 149, 341–347 (1998).
[CrossRef]

Valle, A.

J. Dellunde, A. Valle, and K. A. Shore, “Transverse mode selection in external cavity vertical cavity surface emitting laser diodes,” J. Opt. Soc. Am. B 13, 2477–2483 (1996).
[CrossRef]

A. Valle, J. Sarma, and K. A. Shore, “Spatial holeburning effects on the dynamics of vertical-cavity surface-emitting laser diodes,” IEEE J. Quantum Electron. 31, 1423–1431 (1995).
[CrossRef]

Vaschenko, G.

G. Vaschenko, M. Giudici, J. J. Rocca, C. S. Menoni, J. R. Tredicce, and S. Balle, “Temporal dynamics of semiconductor lasers with optical feedback,” Phys. Rev. Lett. 81, 5536–5539 (1998).
[CrossRef]

Verbeek, B. H.

D. Lenstra, B. H. Verbeek, and A. J. den Boef, “Coherence collapse in single-mode semiconductor lasers due to optical feedback,” IEEE J. Quantum Electron. QE-21, 674–679 (1985).
[CrossRef]

Appl. Phys. Lett.

Z. G. Pan, S. Jiang, M. Dagenais, R. A. Morgan, K. Kojima, M. T. Asom, R. E. Leibenguth, G. D. Guth, and M. W. Focht, “Optical injection induced polarization bistability in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 63, 2999–3001 (1993).
[CrossRef]

H. Li, A. Hohl, A. Gavrielides, H. Hou, and K. D. Choquette, “Stable polarization self-modulation in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 72, 2355–2357 (1998).
[CrossRef]

Europhys. Lett.

G. Huyet, S. P. Hegarty, M. Giudici, B. de Bruyn, and J. G. McInerney, “Statistical properties of the dynamics of semiconductor lasers with optical feedback,” Europhys. Lett. 40, 619–624 (1997).
[CrossRef]

IEEE J. Quantum Electron.

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor laser properties,” IEEE J. Quantum Electron. QE-16, 347–355 (1980).
[CrossRef]

A. Valle, J. Sarma, and K. A. Shore, “Spatial holeburning effects on the dynamics of vertical-cavity surface-emitting laser diodes,” IEEE J. Quantum Electron. 31, 1423–1431 (1995).
[CrossRef]

A. P. Bogatov, P. G. Eliseev, L. P. Ivanov, A. S. Logginov, M. A. Manko, and K. Ya Senatorov, “Study of the single-mode injection laser,” IEEE J. Quantum Electron. 9, 392–398 (1973).
[CrossRef]

D. Lenstra, B. H. Verbeek, and A. J. den Boef, “Coherence collapse in single-mode semiconductor lasers due to optical feedback,” IEEE J. Quantum Electron. QE-21, 674–679 (1985).
[CrossRef]

W. W. Chow, K. D. Choquette, M. H. Crawford, K. L. Lear, and G. R. Hadley, “Design fabrication and performance of infrared and visible vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 33, 1810–1824 (1997).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

U. Fiedler and K. J. Ebeling, “Design of VCSEL’s for feedback insensitive data transmission and external cavity active mode-locking,” IEEE J. Sel. Top. Quantum Electron. 1, 442–450 (1995).
[CrossRef]

For a review see K. Petermann, “External optical feedback phenomena in semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 1, 480–489 (1995).
[CrossRef]

J. Y. Law and G. P. Agrawal, “Effects of optical feedback on static and dynamic characteristics of vertical-cavity surface-emitting lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 353–358 (1997).
[CrossRef]

IEEE Photon. Technol. Lett.

Y. C. Chung and Y. H. Lee, “Spectral characteristics of vertical-cavity surface-emitting laser with optical feedback,” IEEE Photon. Technol. Lett. 3, 597–599 (1991).
[CrossRef]

P. S. Spencer, C. R. Mirasso, and K. A. Shore, “Effect of strong optical feedback on vertical cavity surface emitting lasers,” IEEE Photon. Technol. Lett. 10, 191–193 (1998).
[CrossRef]

J. Lightwave Technol.

R. W. Tkach and A. R. Chraplyvy, “Regimes of feedback effects in 1.5-μm distributed feedback lasers,” J. Lightwave Technol. LT-4, 1655–1661 (1986).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Commun.

G. Huyet, S. Balle, M. Giudici, C. Green, G. Giacomelli, and J. R. Tredicce, “Low frequency fluctuations and multimode operation of a semiconductor laser with optical feedback,” Opt. Commun. 149, 341–347 (1998).
[CrossRef]

Phys. Rev. A

C. Masoller and N. B. Abraham, “Low-frequency fluctuations in vertical-cavity surface-emitting semiconductor lasers with optical feedback,” Phys. Rev. A 59, 3021–3031 (1999).
[CrossRef]

M. San Miguel, Q. Feng, and J. V. Moloney, “Light polarization dynamics in surface emitting semiconductor lasers,” Phys. Rev. A 52, 1728–1739 (1995).
[CrossRef] [PubMed]

Phys. Rev. Lett.

G. Vaschenko, M. Giudici, J. J. Rocca, C. S. Menoni, J. R. Tredicce, and S. Balle, “Temporal dynamics of semiconductor lasers with optical feedback,” Phys. Rev. Lett. 81, 5536–5539 (1998).
[CrossRef]

Quantum Semiclassic. Opt.

N. A. Loiko, A. V. Naumenko, and N. B. Abraham, “Modelling of switching and stability of vertical-cavity lasers with polarization-selective feedback,” Quantum Semiclassic. Opt. 10, 125–140 (1998).
[CrossRef]

Other

J. Martín-Regalado, M. San Miguel, N. B. Abraham, and F. Prati, “Polarization switching in quantum-well vertical-cavity surface-emitting lasers,” Opt. Lett. 21, 351–353 (1996); “Polarization properties of vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 33, 765–783 (1997); J. Martín-Regalado, J. L. A. Chilla, J. J. Rocca, and P. Brusenbach, “Polarization switching in vertical-cavity surface-emitting lasers observed at constant active-region temperature,” Appl. Phys. Lett. APPLAB 70, 3350–3352 (1997).
[CrossRef] [PubMed]

F. Robert, P. Besnard, M. L. Chares, and G. M. Stephan, “Polarization modulation dynamics of vertical-cavity surface-emitting lasers with an extended cavity,” IEEE J. Quantum Electron. 33, 2231–2239 (1997); P. Besnard, F. Robert, M. L. Chares, and G. M. Stephan, “Theoretical modeling of vertical-cavity surface-emitting lasers with polarized optical feedback,” Phys. Rev. A 56, 3191–3205 (1997).
[CrossRef]

S. Jiang, Z. Pan, M. Dagenais, R. A. Morgan, and K. Kojima, “Influence of external optical feedback on threshold and spectral characteristics of vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 6, 34–36 (1994); S. Jiang, M. Dageanis, and R. A. Morgan, “Spectral characteristics of vertical-cavity surface-emitting lasers with strong external optical feedback,” IEEE Photon. Technol. Lett. 7, 739–741 (1995).
[CrossRef]

C. J. Chang-Hasnain, in Semiconductor Lasers: Past, Present and Future, G. P. Agrawal, ed. (American Institute of Physics, New York, 1995), Chap. 5.

T. E. Sale, Vertical Cavity Surface Emitting Lasers (Research Studies, Somerset, UK, 1995).

J. Jewell, J. P. Harbison, A. Scherer, Y. H. Lee, and L. T. Florez, “Vertical-cavity surface-emitting lasers: design, growth, fabrication, characterization,” IEEE J. Quantum Electron. 27, 1332–1346 (1991); A. K. J. van Doorn, M. P. van Exter, and J. P. Woerdman, “Elasto-optic anisotropy and polarization orientation of vertical-cavity surface-emitting semiconductor lasers,” Appl. Phys. Lett. 69, 1041–1043 (1996).
[CrossRef]

L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits, Wiley Series in Microwave and Optical Engineering (Wiley, New York, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Schematic experimental setup for high feedback: C, collimator, BS’s, polarization-preserving beam splitters; PBS, polarizing beam splitter; M’s, mirrors; L’s, lenses; APD’s, avalanche photodiodes; D, broad-area slow detector; FP, plano–planar scanning Fabry–Perot interferometer; A, amplifier.

Fig. 2
Fig. 2

Polarization-resolved dynamics of a solitary laser for currents of 3.01 mA (upper left) and 4.11 mA (lower left). Right-hand figures display the corresponding optical spectra, with frequency increasing from left to right.

Fig. 3
Fig. 3

Curve representing the polarization-resolved, light output-pumping current of the VCSEL in the high-feedback configuration.

Fig. 4
Fig. 4

Polarization-resolved power emitted by the VCSEL in the high-feedback configuration for current injection I=2.02 mA. Left-hand inset, long-time trace of the polarization-resolved powers; right-hand inset, long-time trace of the total power.

Fig. 5
Fig. 5

Same as Fig. 4, but for I=2.12 mA.

Fig. 6
Fig. 6

Same as Fig. 4, but for I=2.19 mA.

Fig. 7
Fig. 7

rf power spectrum of the VCSEL output when I=2.36 mA for four rotation angles of the λ/2-wave plate: from top to bottom, 0°, 26°, 66°, and 90°. The traces have been offset for clarity, and the dashed lines denote the -60-dB level for the three highest traces.

Fig. 8
Fig. 8

Polarization-resolved time series for the intermediate-feedback configuration when I=3.09 mA.

Fig. 9
Fig. 9

Polarization-resolved time series for the intermediate-feedback configuration when I=3.16 mA.

Fig. 10
Fig. 10

Polarization-resolved time traces obtained by numerical integration of the theoretical model for μ=0.905 and a threshold reduction of ∼12%. The gray trace corresponds to the unfiltered output; the black trace was obtained after low-pass filtering with a second-order Butterworth filter of 500-MHz bandwidth.

Fig. 11
Fig. 11

Unfiltered traces of the power in the X- (solid curve) and Y- (dashed curve) polarization orientations when the current was raised until μ=0.95.

Fig. 12
Fig. 12

Same as Fig. 10, but for μ=1.25.

Fig. 13
Fig. 13

Values of the total power for μ=1.25 during a time span corresponding to that of Fig. 12.

Fig. 14
Fig. 14

Same as Fig. 10, but for μ=1.5.

Fig. 15
Fig. 15

Values of the total power for μ=1.5 during a time span corresponding to that of Fig. 14.

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

R±(t)=c2ng Lrˆ3 1-r22r2A±(t-τ)-r2rˆ3R±(t-τ),
dtN±=I2 eV-γeN±-2g N±-Nt1+s|A±|2|A±|2-γJ(N±-N),
R±(t)=d t A±(t)+κA±(t)+(γa+iγp)A(t)-Γg(1-iα) N±-Nt1+s|A±|2A±,
R±(t)=c2ngLrˆ3 1-r22r2A±(t-τ)-r2rˆ3R±(t-τ)=c2ngLrˆ3 1-r22r2A±(t-τ)-r2rˆ3 c2ngLrˆ3 1-r22r2A±(t-2τ)+,
c2ngLrˆ3 1-r22r2A±(t-τ).
E±=g/γeA±,
N=Γ qκN++N-2-Nt,
n=Γ gκN+-N-2.
R±(t)=κfE±(t-τ)-r2rˆ3R±(t-τ)+[βsp(N±n)]1/2χ±(t),
dtN=γeμ-N-N+n1+s|E+|2|E+|2-N-n1+s|E-|2|E-|2+χN(t),
dtn=-γsn-γe×N+n1+s|E+|2|E+|2-N-n1+s|E-|2|E-|2+χn(t),
R±(t)=dt E±(t)+κE±(t)+(γa+iγp)E(t)-κ(1-iα)(N±n) E±1+s|E±|2
E±(ω, z, ρ)=A±(ω)Ψω(z)Uω(ρ).
2Uω(ρ)+ω2c2εω(ρ)Uω(ρ)=βω2Uω(ρ),
Ψω(z)=r1 exp(iqz)+exp(-iqz),
q=M πL+i2L lnr1 r2+r3 exp(iωτ)1+r2r3 exp(iωτ)
q0+iϕ(ω),
q0=M πL+i2L ln(r1r2),
ϕ(ω)=i2Lln1+1-r22r2r3 exp(iωτ)1+r2r3 exp(iωτ).
-iuA±(u)=-κA±(u)+iΓP±(u)-(γa+iγp)A(u)+(c/ng)ϕ(Ω+u)A±(u),
ϕ(Ω+u)=12L ln1+1-r22r2r3 exp(iΩτ)exp(iuτ)1+r2r3 exp(iωτ)
12L1-r22r2r3 exp(iΩτ)exp(iuτ)1+r2r3 exp(iΩτ)exp(iuτ).
R±(t)+r2rˆ3R±(t-τ)=c2ngLrˆ3 1-r22r2A±(t-τ),
R±(t)=dt A±(t)+κA±(t)-iΓP±(t)+(γa+iγp)A±(t).
P±=-g(α+i) N±-Nt1+s|A±|2A±,

Metrics