Abstract

Static and dynamic characteristics of weakly index-guided vertical-cavity surface-emitting lasers in a multi-transverse-mode regime are analyzed by use of a model that takes into account the transverse modes supported by the waveguide and a consistent spectral gain including many-body effects. Waveguide effects are addressed by consideration of different refractive-index steps. We show that stronger competition between transverse modes occurs when their confinement in the waveguide is increased. Selection of a particular high-order transverse mode by use of azimuthal-dependent current profiling can be obtained over a wide current range. We study the alternate current modulation of two orthogonal high-order transverse modes, taking into account thermal effects. This current-induced spatial switching leads to good-quality high-frequency beam steering in the laser azimuthal direction when an appropriate current profile is considered according to the refractive-index step.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. J. Chang-Hasnain, J. P. Harbison, G. Hasnain, A. C. von Lehmen, L. T. Florez, and N. G. Stoffel, “Dynamic, polarization and transverse mode characteristics of VCSELs,” IEEE J. Quantum Electron. 27, 1402–1409 (1991).
    [CrossRef]
  2. D. Vakhshoori, J. D. Wynn, G. J. Zydzik, R. E. Leibenguth, M. T. Asom, K. Kojima, and R. A. Morgan, “Top-surface emitting lasers with 1.9 V threshold voltage and the effect of spatial hole burning on their transverse mode operation and efficiencies,” Appl. Phys. Lett. 62, 1448–1450 (1993).
    [CrossRef]
  3. O. Buccafusca, J. L. A. Chilla, J. J. Rocca, S. Feld, C. Wilmsen, V. Morozov, and R. Leibenguth, “Transverse mode dynamics in vertical cavity surface emitting lasers excited by fast electrical pulses,” Appl. Phys. Lett. 68, 590–592 (1996).
    [CrossRef]
  4. Y. Satuby and M. Orenstein, “Small signal modulation of multitransverse modes vertical cavity surface emitting lasers,” IEEE Photon. Technol. Lett. 10, 757–759 (1998).
    [CrossRef]
  5. C. Mignosi, P. Dowd, L. Raddatz, I. H. White, M. C. Nowell, D. G. Cunningham, M. R. Tan, and S. Y. Wang, “Dynamics of mode partitioning in gain guided GaAs vertical cavity surface emitting lasers,” in Advances in Vertical Cavity Surface Emitting Lasers, C. Chang-Hasnain, ed., Vol. 15 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), pp. 77–82.
  6. M. Giudici, J. R. Tredicce, G. Vaschenko, J. Rocca, and C. S. Menoni, “Spatio-temporal dynamics in vertical cavity surface emitting lasers excited by fast electrical pulses,” Opt. Commun. 158, 313–321 (1998).
    [CrossRef]
  7. D. A. Richie, T. Zhang, K. D. Choquette, R. E. Leibenguth, J. C. Zachman, and N. Tabatabaie, “Chaotic dynamics of mode competition in a vertical-cavity surface emitting laser diode under DC excitation,” IEEE J. Quantum Electron. 30, 2500–2506 (1994).
    [CrossRef]
  8. G. C. Wilson, D. M. Kuchta, J. D. Walker, and J. S. Smith, “Spatial hole burning and self-focusing in vertical cavity surface emitting laser diodes,” Appl. Phys. Lett. 64, 542–544 (1994).
    [CrossRef]
  9. A. Valle, J. Sarma, and K. A. Shore, “Spatial holeburning effects on the dynamics of vertical cavity surface-emitting laser diodes,” IEEE J. Quantum Electron. 31, 1423–1431 (1995).
    [CrossRef]
  10. J. Y. Law and G. P. Agrawal, “Effects of spatial hole burning on gain switching in vertical cavity surface emitting lasers,” IEEE J. Quantum Electron. 33, 462–468 (1997).
    [CrossRef]
  11. M. Ogura, S. Fuiji, T. Okada, M. Mori, K. Mori, T. Asaka, and H. Iwano, “Transverse mode characteristics of a DBR surface emitting laser with buried heterostructure,” Jpn. J. Appl. Phys. 30, 3879–3882 (1991).
    [CrossRef]
  12. R. A. Morgan, G. D. Guth, M. W. Focht, M. T. Asom, K. Kojima, L. E. Rogers, and S. E. Callis, “Transverse mode control of vertical-cavity top-surface emitting lasers,” IEEE Photon. Technol. Lett. 4, 374–376 (1993).
    [CrossRef]
  13. M. A. Hadley, G. C. Wilson, K. Y. Lau, and J. S. Smith, “High single transverse mode output from external cavity surface emitting laser diodes,” Appl. Phys. Lett. 63, 1607–1609 (1993).
    [CrossRef]
  14. K. D. Choquette, K. L. Lear, R. E. Leibenguth, and M. T. Asom, “Polarization modulation of cruciform VCSELs,” Appl. Phys. Lett. 64, 2767–2769 (1994).
    [CrossRef]
  15. Y. A. Wu, G. S. Li, R. F. Nabiev, K. D. Choquette, C. Caneau, and C. J. Chang Hasnain, “Single mode, passive antiguide vertical cavity surface emitting laser,” IEEE J. Sel. Top. Quantum Electron. 1, 629–637 (1995).
    [CrossRef]
  16. K. D. Choquette, G. R. Hadley, H. Q. Hou, K. M. Geib, and B. E. Hammons, “Leaky mode vertical cavity lasers using cavity resonance modification,” Electron. Lett. 34, 991–993 (1998).
    [CrossRef]
  17. J. Dellunde, A. Valle, and K. A. Shore, “Transverse-mode selection in external-cavity vertical-cavity surface-emitting laser diodes,” J. Opt. Soc. Am. B 13, 2477–2483 (1996).
    [CrossRef]
  18. J. Y. Law and G. P. Agrawal, “Effects of optical feedback on static and dynamic characteristics of VCSELs,” IEEE J. Sel. Top. Quantum Electron. 3, 353–358 (1997).
    [CrossRef]
  19. Y. G. Zhao and J. G. McInerney, “Transverse mode control of vertical cavity surface emitting lasers,” IEEE J. Quantum Electron. 32, 1950–1958 (1996).
    [CrossRef]
  20. H. Li, T. H. Lucas, J. G. McInerney, and R. A. Morgan, “Transverse modes and patterns of electrically pumped vertical cavity surface emitting semiconductor lasers,” Chaos Solitons Fractals 4, 1619–1636 (1994).
    [CrossRef]
  21. F. B. de Colstoun, G. Khitrova, A. V. Fedorov, T. R. Nelson, C. Lowry, T. M. Brennan, B. G. Hammons, and P. Maker, “Transverse modes, vortices, and vertical cavity surface emitting lasers,” Chaos Solitons Fractals 4, 1575–1596 (1994).
    [CrossRef]
  22. F. Prati, M. Travagnin, and L. A. Lugiato, “Logic gates and optical switching with vertical-cavity surface emitting lasers,” Phys. Rev. A 55, 690–700 (1997).
    [CrossRef]
  23. R. Balasubramanyam and J. Sarma, “Influence of surface recombination and current profiles on VCSEL operation,” presented at the Conference on Semiconductor and Integrated Optoelectronics, Cardiff, Wales, UK, March 27–29, 1995, paper 57.
  24. A. Valle, “High-frequency beam steering induced by switching of high-order transverse modes in vertical cavity surface emitting lasers,” Appl. Phys. Lett. 73, 1607–1609 (1998).
    [CrossRef]
  25. K. L. Lear, A. Mar, K. D. Choquette, S. P. Kilcoyne, R. P. Schneider, and K. M. Geib, “High frequency modulation of oxide-confined vertical cavity surface emitting lasers,” Electron. Lett. 32, 457–458 (1996).
    [CrossRef]
  26. L. Fan, M. C. Wu, H. C. Lee, and P. Grodzinski, “Novel vertical-cavity surface-emitting lasers with integrated optical beam router,” Electron. Lett. 31, 729–730 (1995).
    [CrossRef]
  27. L. Fan, M. C. Wu, H. C. Lee, and P. Grodzinski, “Dynamic beam switching of vertical-cavity surface-emitting lasers with integrated optical beam routers,” IEEE Photon. Technol. Lett. 9, 505–507 (1997).
    [CrossRef]
  28. N. Nieuborg, K. Panajotov, A. Goulet, I. Veretennicoff, and H. Thienpont, “Data transparent reconfigurable optical interconnections based on polarization-switching VCSELs and polarization-selective diffractive optical elements,” IEEE Photon. Technol. Lett. 10, 973–975 (1998).
    [CrossRef]
  29. A. Valle, “Selection and modulation of high-order transverse modes in vertical cavity surface emitting lasers,” IEEE J. Quantum Electron. 34, 1924–1932 (1998).
    [CrossRef]
  30. F. P. Logue, P. Rees, J. F. Heffernan, C. Jordan, J. F. Donegan, J. Hegarty, F. Hiei, S. Taniguchi, T. Hino, K. Nakano, and A. Ishibashi, “Optical gain in (Zn, Cd)Se–Zn(S, Se) quantum wells,” J. Opt. Soc. Am. B 15, 1295–1303 (1998).
    [CrossRef]
  31. F. P. Logue, P. Rees, J. F. Heffernan, C. Jordan, J. F. Donegan, J. Hegarty, F. Hiei, and A. Ishibashi, “Effect of Coulomb enhancement on optical gain in (Zn, Cd)Se/ZnSe multiple quantum wells,” Phys. Rev. B 54, 16417–16420 (1996).
    [CrossRef]
  32. P. Rees, J. F. Heffernan, F. P. Logue, J. F. Donegan, C. Jordan, J. Hegarty, F. Hiei, and A. Ishibashi, “High temperature gain measurements in optically pumped ZnCdSe–ZnSe quantum wells,” IEE Proc. Optoelectron. 143, 110–112 (1996).
    [CrossRef]
  33. C. H. Chong and J. Sarma, “Lasing mode selection in vertical cavity surface emitting laser diodes,” IEEE Photon. Technol. Lett. 5, 761–763 (1993).
    [CrossRef]
  34. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983).
  35. T. Mukaihara, N. Ohnoki, Y. Hayashi, N. Hatori, F. Koyama, and K. Iga, “Polarization control of vertical-cavity surface-emitting lasers using a birefringent metal/dielectric polarizer loaded on top distributed-Bragg-reflector,” IEEE J. Sel. Top. Quantum Electron. 1, 667–673 (1995).
    [CrossRef]
  36. P. Dowd, P. J. Heard, J. A. Nicholson, L. Raddatz, I. H. White, R. V. Penty, J. C. C. Day, G. C. Allen, S. W. Corzine, and M. R. T. Tan, “Complete polarization control of GaAs gain guided top-surface emitting vertical cavity lasers,” Electron. Lett. 33, 1315–1317 (1997).
    [CrossRef]
  37. W. W. Chow, S. W. Koch, and M. Sargent III, Semiconductor Laser Physics (Springer-Verlag, Berlin, 1994), p. 317.
  38. J. Martin Regalado, J. L. A. Chilla, J. J. Rocca, and P. Brusenbach, “Polarization switching in vertical-cavity surface emitting lasers observed at constant active region temperature,” Appl. Phys. Lett. 70, 3350–3352 (1997).
    [CrossRef]
  39. T. E. Sale, Vertical Cavity Surface Emitting Lasers (Research Studies, Taunton, UK, 1995).
  40. M. Orenstein, N. G. Stoffel, A. C. von Lehmen, J. P. Harbison, and L. T. Florez, “Efficient continuous wave operation of vertical-cavity surface emitting lasers using buried compensation layers to optimize current flow,” Appl. Phys. Lett. 59, 31–33 (1991).
    [CrossRef]
  41. L. M. F. Chirovsky, R. E. Leibenguth, W. S. Hobson, S. P. Hui, G. J. Zydzik, B. J. Tseng, J. D. Wynn, J. Lopata, and L. A. D’Asaro, “Vertical-cavity surface emitting lasers with ion-implanted current apertures and index guiding,” in Conference on Lasers and Electro-Optics (CLEO), Vol. 6 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), paper CPD14.

1998

Y. Satuby and M. Orenstein, “Small signal modulation of multitransverse modes vertical cavity surface emitting lasers,” IEEE Photon. Technol. Lett. 10, 757–759 (1998).
[CrossRef]

M. Giudici, J. R. Tredicce, G. Vaschenko, J. Rocca, and C. S. Menoni, “Spatio-temporal dynamics in vertical cavity surface emitting lasers excited by fast electrical pulses,” Opt. Commun. 158, 313–321 (1998).
[CrossRef]

K. D. Choquette, G. R. Hadley, H. Q. Hou, K. M. Geib, and B. E. Hammons, “Leaky mode vertical cavity lasers using cavity resonance modification,” Electron. Lett. 34, 991–993 (1998).
[CrossRef]

A. Valle, “High-frequency beam steering induced by switching of high-order transverse modes in vertical cavity surface emitting lasers,” Appl. Phys. Lett. 73, 1607–1609 (1998).
[CrossRef]

N. Nieuborg, K. Panajotov, A. Goulet, I. Veretennicoff, and H. Thienpont, “Data transparent reconfigurable optical interconnections based on polarization-switching VCSELs and polarization-selective diffractive optical elements,” IEEE Photon. Technol. Lett. 10, 973–975 (1998).
[CrossRef]

A. Valle, “Selection and modulation of high-order transverse modes in vertical cavity surface emitting lasers,” IEEE J. Quantum Electron. 34, 1924–1932 (1998).
[CrossRef]

F. P. Logue, P. Rees, J. F. Heffernan, C. Jordan, J. F. Donegan, J. Hegarty, F. Hiei, S. Taniguchi, T. Hino, K. Nakano, and A. Ishibashi, “Optical gain in (Zn, Cd)Se–Zn(S, Se) quantum wells,” J. Opt. Soc. Am. B 15, 1295–1303 (1998).
[CrossRef]

1997

P. Dowd, P. J. Heard, J. A. Nicholson, L. Raddatz, I. H. White, R. V. Penty, J. C. C. Day, G. C. Allen, S. W. Corzine, and M. R. T. Tan, “Complete polarization control of GaAs gain guided top-surface emitting vertical cavity lasers,” Electron. Lett. 33, 1315–1317 (1997).
[CrossRef]

J. Martin Regalado, J. L. A. Chilla, J. J. Rocca, and P. Brusenbach, “Polarization switching in vertical-cavity surface emitting lasers observed at constant active region temperature,” Appl. Phys. Lett. 70, 3350–3352 (1997).
[CrossRef]

F. Prati, M. Travagnin, and L. A. Lugiato, “Logic gates and optical switching with vertical-cavity surface emitting lasers,” Phys. Rev. A 55, 690–700 (1997).
[CrossRef]

L. Fan, M. C. Wu, H. C. Lee, and P. Grodzinski, “Dynamic beam switching of vertical-cavity surface-emitting lasers with integrated optical beam routers,” IEEE Photon. Technol. Lett. 9, 505–507 (1997).
[CrossRef]

J. Y. Law and G. P. Agrawal, “Effects of optical feedback on static and dynamic characteristics of VCSELs,” IEEE J. Sel. Top. Quantum Electron. 3, 353–358 (1997).
[CrossRef]

J. Y. Law and G. P. Agrawal, “Effects of spatial hole burning on gain switching in vertical cavity surface emitting lasers,” IEEE J. Quantum Electron. 33, 462–468 (1997).
[CrossRef]

1996

J. Dellunde, A. Valle, and K. A. Shore, “Transverse-mode selection in external-cavity vertical-cavity surface-emitting laser diodes,” J. Opt. Soc. Am. B 13, 2477–2483 (1996).
[CrossRef]

O. Buccafusca, J. L. A. Chilla, J. J. Rocca, S. Feld, C. Wilmsen, V. Morozov, and R. Leibenguth, “Transverse mode dynamics in vertical cavity surface emitting lasers excited by fast electrical pulses,” Appl. Phys. Lett. 68, 590–592 (1996).
[CrossRef]

Y. G. Zhao and J. G. McInerney, “Transverse mode control of vertical cavity surface emitting lasers,” IEEE J. Quantum Electron. 32, 1950–1958 (1996).
[CrossRef]

K. L. Lear, A. Mar, K. D. Choquette, S. P. Kilcoyne, R. P. Schneider, and K. M. Geib, “High frequency modulation of oxide-confined vertical cavity surface emitting lasers,” Electron. Lett. 32, 457–458 (1996).
[CrossRef]

F. P. Logue, P. Rees, J. F. Heffernan, C. Jordan, J. F. Donegan, J. Hegarty, F. Hiei, and A. Ishibashi, “Effect of Coulomb enhancement on optical gain in (Zn, Cd)Se/ZnSe multiple quantum wells,” Phys. Rev. B 54, 16417–16420 (1996).
[CrossRef]

P. Rees, J. F. Heffernan, F. P. Logue, J. F. Donegan, C. Jordan, J. Hegarty, F. Hiei, and A. Ishibashi, “High temperature gain measurements in optically pumped ZnCdSe–ZnSe quantum wells,” IEE Proc. Optoelectron. 143, 110–112 (1996).
[CrossRef]

1995

T. Mukaihara, N. Ohnoki, Y. Hayashi, N. Hatori, F. Koyama, and K. Iga, “Polarization control of vertical-cavity surface-emitting lasers using a birefringent metal/dielectric polarizer loaded on top distributed-Bragg-reflector,” IEEE J. Sel. Top. Quantum Electron. 1, 667–673 (1995).
[CrossRef]

L. Fan, M. C. Wu, H. C. Lee, and P. Grodzinski, “Novel vertical-cavity surface-emitting lasers with integrated optical beam router,” Electron. Lett. 31, 729–730 (1995).
[CrossRef]

A. Valle, J. Sarma, and K. A. Shore, “Spatial holeburning effects on the dynamics of vertical cavity surface-emitting laser diodes,” IEEE J. Quantum Electron. 31, 1423–1431 (1995).
[CrossRef]

Y. A. Wu, G. S. Li, R. F. Nabiev, K. D. Choquette, C. Caneau, and C. J. Chang Hasnain, “Single mode, passive antiguide vertical cavity surface emitting laser,” IEEE J. Sel. Top. Quantum Electron. 1, 629–637 (1995).
[CrossRef]

1994

K. D. Choquette, K. L. Lear, R. E. Leibenguth, and M. T. Asom, “Polarization modulation of cruciform VCSELs,” Appl. Phys. Lett. 64, 2767–2769 (1994).
[CrossRef]

D. A. Richie, T. Zhang, K. D. Choquette, R. E. Leibenguth, J. C. Zachman, and N. Tabatabaie, “Chaotic dynamics of mode competition in a vertical-cavity surface emitting laser diode under DC excitation,” IEEE J. Quantum Electron. 30, 2500–2506 (1994).
[CrossRef]

G. C. Wilson, D. M. Kuchta, J. D. Walker, and J. S. Smith, “Spatial hole burning and self-focusing in vertical cavity surface emitting laser diodes,” Appl. Phys. Lett. 64, 542–544 (1994).
[CrossRef]

H. Li, T. H. Lucas, J. G. McInerney, and R. A. Morgan, “Transverse modes and patterns of electrically pumped vertical cavity surface emitting semiconductor lasers,” Chaos Solitons Fractals 4, 1619–1636 (1994).
[CrossRef]

F. B. de Colstoun, G. Khitrova, A. V. Fedorov, T. R. Nelson, C. Lowry, T. M. Brennan, B. G. Hammons, and P. Maker, “Transverse modes, vortices, and vertical cavity surface emitting lasers,” Chaos Solitons Fractals 4, 1575–1596 (1994).
[CrossRef]

1993

C. H. Chong and J. Sarma, “Lasing mode selection in vertical cavity surface emitting laser diodes,” IEEE Photon. Technol. Lett. 5, 761–763 (1993).
[CrossRef]

D. Vakhshoori, J. D. Wynn, G. J. Zydzik, R. E. Leibenguth, M. T. Asom, K. Kojima, and R. A. Morgan, “Top-surface emitting lasers with 1.9 V threshold voltage and the effect of spatial hole burning on their transverse mode operation and efficiencies,” Appl. Phys. Lett. 62, 1448–1450 (1993).
[CrossRef]

R. A. Morgan, G. D. Guth, M. W. Focht, M. T. Asom, K. Kojima, L. E. Rogers, and S. E. Callis, “Transverse mode control of vertical-cavity top-surface emitting lasers,” IEEE Photon. Technol. Lett. 4, 374–376 (1993).
[CrossRef]

M. A. Hadley, G. C. Wilson, K. Y. Lau, and J. S. Smith, “High single transverse mode output from external cavity surface emitting laser diodes,” Appl. Phys. Lett. 63, 1607–1609 (1993).
[CrossRef]

1991

M. Ogura, S. Fuiji, T. Okada, M. Mori, K. Mori, T. Asaka, and H. Iwano, “Transverse mode characteristics of a DBR surface emitting laser with buried heterostructure,” Jpn. J. Appl. Phys. 30, 3879–3882 (1991).
[CrossRef]

C. J. Chang-Hasnain, J. P. Harbison, G. Hasnain, A. C. von Lehmen, L. T. Florez, and N. G. Stoffel, “Dynamic, polarization and transverse mode characteristics of VCSELs,” IEEE J. Quantum Electron. 27, 1402–1409 (1991).
[CrossRef]

M. Orenstein, N. G. Stoffel, A. C. von Lehmen, J. P. Harbison, and L. T. Florez, “Efficient continuous wave operation of vertical-cavity surface emitting lasers using buried compensation layers to optimize current flow,” Appl. Phys. Lett. 59, 31–33 (1991).
[CrossRef]

Agrawal, G. P.

J. Y. Law and G. P. Agrawal, “Effects of spatial hole burning on gain switching in vertical cavity surface emitting lasers,” IEEE J. Quantum Electron. 33, 462–468 (1997).
[CrossRef]

J. Y. Law and G. P. Agrawal, “Effects of optical feedback on static and dynamic characteristics of VCSELs,” IEEE J. Sel. Top. Quantum Electron. 3, 353–358 (1997).
[CrossRef]

Allen, G. C.

P. Dowd, P. J. Heard, J. A. Nicholson, L. Raddatz, I. H. White, R. V. Penty, J. C. C. Day, G. C. Allen, S. W. Corzine, and M. R. T. Tan, “Complete polarization control of GaAs gain guided top-surface emitting vertical cavity lasers,” Electron. Lett. 33, 1315–1317 (1997).
[CrossRef]

Asaka, T.

M. Ogura, S. Fuiji, T. Okada, M. Mori, K. Mori, T. Asaka, and H. Iwano, “Transverse mode characteristics of a DBR surface emitting laser with buried heterostructure,” Jpn. J. Appl. Phys. 30, 3879–3882 (1991).
[CrossRef]

Asom, M. T.

K. D. Choquette, K. L. Lear, R. E. Leibenguth, and M. T. Asom, “Polarization modulation of cruciform VCSELs,” Appl. Phys. Lett. 64, 2767–2769 (1994).
[CrossRef]

R. A. Morgan, G. D. Guth, M. W. Focht, M. T. Asom, K. Kojima, L. E. Rogers, and S. E. Callis, “Transverse mode control of vertical-cavity top-surface emitting lasers,” IEEE Photon. Technol. Lett. 4, 374–376 (1993).
[CrossRef]

D. Vakhshoori, J. D. Wynn, G. J. Zydzik, R. E. Leibenguth, M. T. Asom, K. Kojima, and R. A. Morgan, “Top-surface emitting lasers with 1.9 V threshold voltage and the effect of spatial hole burning on their transverse mode operation and efficiencies,” Appl. Phys. Lett. 62, 1448–1450 (1993).
[CrossRef]

Brennan, T. M.

F. B. de Colstoun, G. Khitrova, A. V. Fedorov, T. R. Nelson, C. Lowry, T. M. Brennan, B. G. Hammons, and P. Maker, “Transverse modes, vortices, and vertical cavity surface emitting lasers,” Chaos Solitons Fractals 4, 1575–1596 (1994).
[CrossRef]

Brusenbach, P.

J. Martin Regalado, J. L. A. Chilla, J. J. Rocca, and P. Brusenbach, “Polarization switching in vertical-cavity surface emitting lasers observed at constant active region temperature,” Appl. Phys. Lett. 70, 3350–3352 (1997).
[CrossRef]

Buccafusca, O.

O. Buccafusca, J. L. A. Chilla, J. J. Rocca, S. Feld, C. Wilmsen, V. Morozov, and R. Leibenguth, “Transverse mode dynamics in vertical cavity surface emitting lasers excited by fast electrical pulses,” Appl. Phys. Lett. 68, 590–592 (1996).
[CrossRef]

Callis, S. E.

R. A. Morgan, G. D. Guth, M. W. Focht, M. T. Asom, K. Kojima, L. E. Rogers, and S. E. Callis, “Transverse mode control of vertical-cavity top-surface emitting lasers,” IEEE Photon. Technol. Lett. 4, 374–376 (1993).
[CrossRef]

Caneau, C.

Y. A. Wu, G. S. Li, R. F. Nabiev, K. D. Choquette, C. Caneau, and C. J. Chang Hasnain, “Single mode, passive antiguide vertical cavity surface emitting laser,” IEEE J. Sel. Top. Quantum Electron. 1, 629–637 (1995).
[CrossRef]

Chang Hasnain, C. J.

Y. A. Wu, G. S. Li, R. F. Nabiev, K. D. Choquette, C. Caneau, and C. J. Chang Hasnain, “Single mode, passive antiguide vertical cavity surface emitting laser,” IEEE J. Sel. Top. Quantum Electron. 1, 629–637 (1995).
[CrossRef]

Chang-Hasnain, C. J.

C. J. Chang-Hasnain, J. P. Harbison, G. Hasnain, A. C. von Lehmen, L. T. Florez, and N. G. Stoffel, “Dynamic, polarization and transverse mode characteristics of VCSELs,” IEEE J. Quantum Electron. 27, 1402–1409 (1991).
[CrossRef]

Chilla, J. L. A.

J. Martin Regalado, J. L. A. Chilla, J. J. Rocca, and P. Brusenbach, “Polarization switching in vertical-cavity surface emitting lasers observed at constant active region temperature,” Appl. Phys. Lett. 70, 3350–3352 (1997).
[CrossRef]

O. Buccafusca, J. L. A. Chilla, J. J. Rocca, S. Feld, C. Wilmsen, V. Morozov, and R. Leibenguth, “Transverse mode dynamics in vertical cavity surface emitting lasers excited by fast electrical pulses,” Appl. Phys. Lett. 68, 590–592 (1996).
[CrossRef]

Chong, C. H.

C. H. Chong and J. Sarma, “Lasing mode selection in vertical cavity surface emitting laser diodes,” IEEE Photon. Technol. Lett. 5, 761–763 (1993).
[CrossRef]

Choquette, K. D.

K. D. Choquette, G. R. Hadley, H. Q. Hou, K. M. Geib, and B. E. Hammons, “Leaky mode vertical cavity lasers using cavity resonance modification,” Electron. Lett. 34, 991–993 (1998).
[CrossRef]

K. L. Lear, A. Mar, K. D. Choquette, S. P. Kilcoyne, R. P. Schneider, and K. M. Geib, “High frequency modulation of oxide-confined vertical cavity surface emitting lasers,” Electron. Lett. 32, 457–458 (1996).
[CrossRef]

Y. A. Wu, G. S. Li, R. F. Nabiev, K. D. Choquette, C. Caneau, and C. J. Chang Hasnain, “Single mode, passive antiguide vertical cavity surface emitting laser,” IEEE J. Sel. Top. Quantum Electron. 1, 629–637 (1995).
[CrossRef]

K. D. Choquette, K. L. Lear, R. E. Leibenguth, and M. T. Asom, “Polarization modulation of cruciform VCSELs,” Appl. Phys. Lett. 64, 2767–2769 (1994).
[CrossRef]

D. A. Richie, T. Zhang, K. D. Choquette, R. E. Leibenguth, J. C. Zachman, and N. Tabatabaie, “Chaotic dynamics of mode competition in a vertical-cavity surface emitting laser diode under DC excitation,” IEEE J. Quantum Electron. 30, 2500–2506 (1994).
[CrossRef]

Corzine, S. W.

P. Dowd, P. J. Heard, J. A. Nicholson, L. Raddatz, I. H. White, R. V. Penty, J. C. C. Day, G. C. Allen, S. W. Corzine, and M. R. T. Tan, “Complete polarization control of GaAs gain guided top-surface emitting vertical cavity lasers,” Electron. Lett. 33, 1315–1317 (1997).
[CrossRef]

Day, J. C. C.

P. Dowd, P. J. Heard, J. A. Nicholson, L. Raddatz, I. H. White, R. V. Penty, J. C. C. Day, G. C. Allen, S. W. Corzine, and M. R. T. Tan, “Complete polarization control of GaAs gain guided top-surface emitting vertical cavity lasers,” Electron. Lett. 33, 1315–1317 (1997).
[CrossRef]

de Colstoun, F. B.

F. B. de Colstoun, G. Khitrova, A. V. Fedorov, T. R. Nelson, C. Lowry, T. M. Brennan, B. G. Hammons, and P. Maker, “Transverse modes, vortices, and vertical cavity surface emitting lasers,” Chaos Solitons Fractals 4, 1575–1596 (1994).
[CrossRef]

Dellunde, J.

Donegan, J. F.

F. P. Logue, P. Rees, J. F. Heffernan, C. Jordan, J. F. Donegan, J. Hegarty, F. Hiei, S. Taniguchi, T. Hino, K. Nakano, and A. Ishibashi, “Optical gain in (Zn, Cd)Se–Zn(S, Se) quantum wells,” J. Opt. Soc. Am. B 15, 1295–1303 (1998).
[CrossRef]

F. P. Logue, P. Rees, J. F. Heffernan, C. Jordan, J. F. Donegan, J. Hegarty, F. Hiei, and A. Ishibashi, “Effect of Coulomb enhancement on optical gain in (Zn, Cd)Se/ZnSe multiple quantum wells,” Phys. Rev. B 54, 16417–16420 (1996).
[CrossRef]

P. Rees, J. F. Heffernan, F. P. Logue, J. F. Donegan, C. Jordan, J. Hegarty, F. Hiei, and A. Ishibashi, “High temperature gain measurements in optically pumped ZnCdSe–ZnSe quantum wells,” IEE Proc. Optoelectron. 143, 110–112 (1996).
[CrossRef]

Dowd, P.

P. Dowd, P. J. Heard, J. A. Nicholson, L. Raddatz, I. H. White, R. V. Penty, J. C. C. Day, G. C. Allen, S. W. Corzine, and M. R. T. Tan, “Complete polarization control of GaAs gain guided top-surface emitting vertical cavity lasers,” Electron. Lett. 33, 1315–1317 (1997).
[CrossRef]

Fan, L.

L. Fan, M. C. Wu, H. C. Lee, and P. Grodzinski, “Dynamic beam switching of vertical-cavity surface-emitting lasers with integrated optical beam routers,” IEEE Photon. Technol. Lett. 9, 505–507 (1997).
[CrossRef]

L. Fan, M. C. Wu, H. C. Lee, and P. Grodzinski, “Novel vertical-cavity surface-emitting lasers with integrated optical beam router,” Electron. Lett. 31, 729–730 (1995).
[CrossRef]

Fedorov, A. V.

F. B. de Colstoun, G. Khitrova, A. V. Fedorov, T. R. Nelson, C. Lowry, T. M. Brennan, B. G. Hammons, and P. Maker, “Transverse modes, vortices, and vertical cavity surface emitting lasers,” Chaos Solitons Fractals 4, 1575–1596 (1994).
[CrossRef]

Feld, S.

O. Buccafusca, J. L. A. Chilla, J. J. Rocca, S. Feld, C. Wilmsen, V. Morozov, and R. Leibenguth, “Transverse mode dynamics in vertical cavity surface emitting lasers excited by fast electrical pulses,” Appl. Phys. Lett. 68, 590–592 (1996).
[CrossRef]

Florez, L. T.

C. J. Chang-Hasnain, J. P. Harbison, G. Hasnain, A. C. von Lehmen, L. T. Florez, and N. G. Stoffel, “Dynamic, polarization and transverse mode characteristics of VCSELs,” IEEE J. Quantum Electron. 27, 1402–1409 (1991).
[CrossRef]

M. Orenstein, N. G. Stoffel, A. C. von Lehmen, J. P. Harbison, and L. T. Florez, “Efficient continuous wave operation of vertical-cavity surface emitting lasers using buried compensation layers to optimize current flow,” Appl. Phys. Lett. 59, 31–33 (1991).
[CrossRef]

Focht, M. W.

R. A. Morgan, G. D. Guth, M. W. Focht, M. T. Asom, K. Kojima, L. E. Rogers, and S. E. Callis, “Transverse mode control of vertical-cavity top-surface emitting lasers,” IEEE Photon. Technol. Lett. 4, 374–376 (1993).
[CrossRef]

Fuiji, S.

M. Ogura, S. Fuiji, T. Okada, M. Mori, K. Mori, T. Asaka, and H. Iwano, “Transverse mode characteristics of a DBR surface emitting laser with buried heterostructure,” Jpn. J. Appl. Phys. 30, 3879–3882 (1991).
[CrossRef]

Geib, K. M.

K. D. Choquette, G. R. Hadley, H. Q. Hou, K. M. Geib, and B. E. Hammons, “Leaky mode vertical cavity lasers using cavity resonance modification,” Electron. Lett. 34, 991–993 (1998).
[CrossRef]

K. L. Lear, A. Mar, K. D. Choquette, S. P. Kilcoyne, R. P. Schneider, and K. M. Geib, “High frequency modulation of oxide-confined vertical cavity surface emitting lasers,” Electron. Lett. 32, 457–458 (1996).
[CrossRef]

Giudici, M.

M. Giudici, J. R. Tredicce, G. Vaschenko, J. Rocca, and C. S. Menoni, “Spatio-temporal dynamics in vertical cavity surface emitting lasers excited by fast electrical pulses,” Opt. Commun. 158, 313–321 (1998).
[CrossRef]

Goulet, A.

N. Nieuborg, K. Panajotov, A. Goulet, I. Veretennicoff, and H. Thienpont, “Data transparent reconfigurable optical interconnections based on polarization-switching VCSELs and polarization-selective diffractive optical elements,” IEEE Photon. Technol. Lett. 10, 973–975 (1998).
[CrossRef]

Grodzinski, P.

L. Fan, M. C. Wu, H. C. Lee, and P. Grodzinski, “Dynamic beam switching of vertical-cavity surface-emitting lasers with integrated optical beam routers,” IEEE Photon. Technol. Lett. 9, 505–507 (1997).
[CrossRef]

L. Fan, M. C. Wu, H. C. Lee, and P. Grodzinski, “Novel vertical-cavity surface-emitting lasers with integrated optical beam router,” Electron. Lett. 31, 729–730 (1995).
[CrossRef]

Guth, G. D.

R. A. Morgan, G. D. Guth, M. W. Focht, M. T. Asom, K. Kojima, L. E. Rogers, and S. E. Callis, “Transverse mode control of vertical-cavity top-surface emitting lasers,” IEEE Photon. Technol. Lett. 4, 374–376 (1993).
[CrossRef]

Hadley, G. R.

K. D. Choquette, G. R. Hadley, H. Q. Hou, K. M. Geib, and B. E. Hammons, “Leaky mode vertical cavity lasers using cavity resonance modification,” Electron. Lett. 34, 991–993 (1998).
[CrossRef]

Hadley, M. A.

M. A. Hadley, G. C. Wilson, K. Y. Lau, and J. S. Smith, “High single transverse mode output from external cavity surface emitting laser diodes,” Appl. Phys. Lett. 63, 1607–1609 (1993).
[CrossRef]

Hammons, B. E.

K. D. Choquette, G. R. Hadley, H. Q. Hou, K. M. Geib, and B. E. Hammons, “Leaky mode vertical cavity lasers using cavity resonance modification,” Electron. Lett. 34, 991–993 (1998).
[CrossRef]

Hammons, B. G.

F. B. de Colstoun, G. Khitrova, A. V. Fedorov, T. R. Nelson, C. Lowry, T. M. Brennan, B. G. Hammons, and P. Maker, “Transverse modes, vortices, and vertical cavity surface emitting lasers,” Chaos Solitons Fractals 4, 1575–1596 (1994).
[CrossRef]

Harbison, J. P.

C. J. Chang-Hasnain, J. P. Harbison, G. Hasnain, A. C. von Lehmen, L. T. Florez, and N. G. Stoffel, “Dynamic, polarization and transverse mode characteristics of VCSELs,” IEEE J. Quantum Electron. 27, 1402–1409 (1991).
[CrossRef]

M. Orenstein, N. G. Stoffel, A. C. von Lehmen, J. P. Harbison, and L. T. Florez, “Efficient continuous wave operation of vertical-cavity surface emitting lasers using buried compensation layers to optimize current flow,” Appl. Phys. Lett. 59, 31–33 (1991).
[CrossRef]

Hasnain, G.

C. J. Chang-Hasnain, J. P. Harbison, G. Hasnain, A. C. von Lehmen, L. T. Florez, and N. G. Stoffel, “Dynamic, polarization and transverse mode characteristics of VCSELs,” IEEE J. Quantum Electron. 27, 1402–1409 (1991).
[CrossRef]

Hatori, N.

T. Mukaihara, N. Ohnoki, Y. Hayashi, N. Hatori, F. Koyama, and K. Iga, “Polarization control of vertical-cavity surface-emitting lasers using a birefringent metal/dielectric polarizer loaded on top distributed-Bragg-reflector,” IEEE J. Sel. Top. Quantum Electron. 1, 667–673 (1995).
[CrossRef]

Hayashi, Y.

T. Mukaihara, N. Ohnoki, Y. Hayashi, N. Hatori, F. Koyama, and K. Iga, “Polarization control of vertical-cavity surface-emitting lasers using a birefringent metal/dielectric polarizer loaded on top distributed-Bragg-reflector,” IEEE J. Sel. Top. Quantum Electron. 1, 667–673 (1995).
[CrossRef]

Heard, P. J.

P. Dowd, P. J. Heard, J. A. Nicholson, L. Raddatz, I. H. White, R. V. Penty, J. C. C. Day, G. C. Allen, S. W. Corzine, and M. R. T. Tan, “Complete polarization control of GaAs gain guided top-surface emitting vertical cavity lasers,” Electron. Lett. 33, 1315–1317 (1997).
[CrossRef]

Heffernan, J. F.

F. P. Logue, P. Rees, J. F. Heffernan, C. Jordan, J. F. Donegan, J. Hegarty, F. Hiei, S. Taniguchi, T. Hino, K. Nakano, and A. Ishibashi, “Optical gain in (Zn, Cd)Se–Zn(S, Se) quantum wells,” J. Opt. Soc. Am. B 15, 1295–1303 (1998).
[CrossRef]

F. P. Logue, P. Rees, J. F. Heffernan, C. Jordan, J. F. Donegan, J. Hegarty, F. Hiei, and A. Ishibashi, “Effect of Coulomb enhancement on optical gain in (Zn, Cd)Se/ZnSe multiple quantum wells,” Phys. Rev. B 54, 16417–16420 (1996).
[CrossRef]

P. Rees, J. F. Heffernan, F. P. Logue, J. F. Donegan, C. Jordan, J. Hegarty, F. Hiei, and A. Ishibashi, “High temperature gain measurements in optically pumped ZnCdSe–ZnSe quantum wells,” IEE Proc. Optoelectron. 143, 110–112 (1996).
[CrossRef]

Hegarty, J.

F. P. Logue, P. Rees, J. F. Heffernan, C. Jordan, J. F. Donegan, J. Hegarty, F. Hiei, S. Taniguchi, T. Hino, K. Nakano, and A. Ishibashi, “Optical gain in (Zn, Cd)Se–Zn(S, Se) quantum wells,” J. Opt. Soc. Am. B 15, 1295–1303 (1998).
[CrossRef]

P. Rees, J. F. Heffernan, F. P. Logue, J. F. Donegan, C. Jordan, J. Hegarty, F. Hiei, and A. Ishibashi, “High temperature gain measurements in optically pumped ZnCdSe–ZnSe quantum wells,” IEE Proc. Optoelectron. 143, 110–112 (1996).
[CrossRef]

F. P. Logue, P. Rees, J. F. Heffernan, C. Jordan, J. F. Donegan, J. Hegarty, F. Hiei, and A. Ishibashi, “Effect of Coulomb enhancement on optical gain in (Zn, Cd)Se/ZnSe multiple quantum wells,” Phys. Rev. B 54, 16417–16420 (1996).
[CrossRef]

Hiei, F.

F. P. Logue, P. Rees, J. F. Heffernan, C. Jordan, J. F. Donegan, J. Hegarty, F. Hiei, S. Taniguchi, T. Hino, K. Nakano, and A. Ishibashi, “Optical gain in (Zn, Cd)Se–Zn(S, Se) quantum wells,” J. Opt. Soc. Am. B 15, 1295–1303 (1998).
[CrossRef]

F. P. Logue, P. Rees, J. F. Heffernan, C. Jordan, J. F. Donegan, J. Hegarty, F. Hiei, and A. Ishibashi, “Effect of Coulomb enhancement on optical gain in (Zn, Cd)Se/ZnSe multiple quantum wells,” Phys. Rev. B 54, 16417–16420 (1996).
[CrossRef]

P. Rees, J. F. Heffernan, F. P. Logue, J. F. Donegan, C. Jordan, J. Hegarty, F. Hiei, and A. Ishibashi, “High temperature gain measurements in optically pumped ZnCdSe–ZnSe quantum wells,” IEE Proc. Optoelectron. 143, 110–112 (1996).
[CrossRef]

Hino, T.

Hou, H. Q.

K. D. Choquette, G. R. Hadley, H. Q. Hou, K. M. Geib, and B. E. Hammons, “Leaky mode vertical cavity lasers using cavity resonance modification,” Electron. Lett. 34, 991–993 (1998).
[CrossRef]

Iga, K.

T. Mukaihara, N. Ohnoki, Y. Hayashi, N. Hatori, F. Koyama, and K. Iga, “Polarization control of vertical-cavity surface-emitting lasers using a birefringent metal/dielectric polarizer loaded on top distributed-Bragg-reflector,” IEEE J. Sel. Top. Quantum Electron. 1, 667–673 (1995).
[CrossRef]

Ishibashi, A.

F. P. Logue, P. Rees, J. F. Heffernan, C. Jordan, J. F. Donegan, J. Hegarty, F. Hiei, S. Taniguchi, T. Hino, K. Nakano, and A. Ishibashi, “Optical gain in (Zn, Cd)Se–Zn(S, Se) quantum wells,” J. Opt. Soc. Am. B 15, 1295–1303 (1998).
[CrossRef]

F. P. Logue, P. Rees, J. F. Heffernan, C. Jordan, J. F. Donegan, J. Hegarty, F. Hiei, and A. Ishibashi, “Effect of Coulomb enhancement on optical gain in (Zn, Cd)Se/ZnSe multiple quantum wells,” Phys. Rev. B 54, 16417–16420 (1996).
[CrossRef]

P. Rees, J. F. Heffernan, F. P. Logue, J. F. Donegan, C. Jordan, J. Hegarty, F. Hiei, and A. Ishibashi, “High temperature gain measurements in optically pumped ZnCdSe–ZnSe quantum wells,” IEE Proc. Optoelectron. 143, 110–112 (1996).
[CrossRef]

Iwano, H.

M. Ogura, S. Fuiji, T. Okada, M. Mori, K. Mori, T. Asaka, and H. Iwano, “Transverse mode characteristics of a DBR surface emitting laser with buried heterostructure,” Jpn. J. Appl. Phys. 30, 3879–3882 (1991).
[CrossRef]

Jordan, C.

F. P. Logue, P. Rees, J. F. Heffernan, C. Jordan, J. F. Donegan, J. Hegarty, F. Hiei, S. Taniguchi, T. Hino, K. Nakano, and A. Ishibashi, “Optical gain in (Zn, Cd)Se–Zn(S, Se) quantum wells,” J. Opt. Soc. Am. B 15, 1295–1303 (1998).
[CrossRef]

P. Rees, J. F. Heffernan, F. P. Logue, J. F. Donegan, C. Jordan, J. Hegarty, F. Hiei, and A. Ishibashi, “High temperature gain measurements in optically pumped ZnCdSe–ZnSe quantum wells,” IEE Proc. Optoelectron. 143, 110–112 (1996).
[CrossRef]

F. P. Logue, P. Rees, J. F. Heffernan, C. Jordan, J. F. Donegan, J. Hegarty, F. Hiei, and A. Ishibashi, “Effect of Coulomb enhancement on optical gain in (Zn, Cd)Se/ZnSe multiple quantum wells,” Phys. Rev. B 54, 16417–16420 (1996).
[CrossRef]

Khitrova, G.

F. B. de Colstoun, G. Khitrova, A. V. Fedorov, T. R. Nelson, C. Lowry, T. M. Brennan, B. G. Hammons, and P. Maker, “Transverse modes, vortices, and vertical cavity surface emitting lasers,” Chaos Solitons Fractals 4, 1575–1596 (1994).
[CrossRef]

Kilcoyne, S. P.

K. L. Lear, A. Mar, K. D. Choquette, S. P. Kilcoyne, R. P. Schneider, and K. M. Geib, “High frequency modulation of oxide-confined vertical cavity surface emitting lasers,” Electron. Lett. 32, 457–458 (1996).
[CrossRef]

Kojima, K.

R. A. Morgan, G. D. Guth, M. W. Focht, M. T. Asom, K. Kojima, L. E. Rogers, and S. E. Callis, “Transverse mode control of vertical-cavity top-surface emitting lasers,” IEEE Photon. Technol. Lett. 4, 374–376 (1993).
[CrossRef]

D. Vakhshoori, J. D. Wynn, G. J. Zydzik, R. E. Leibenguth, M. T. Asom, K. Kojima, and R. A. Morgan, “Top-surface emitting lasers with 1.9 V threshold voltage and the effect of spatial hole burning on their transverse mode operation and efficiencies,” Appl. Phys. Lett. 62, 1448–1450 (1993).
[CrossRef]

Koyama, F.

T. Mukaihara, N. Ohnoki, Y. Hayashi, N. Hatori, F. Koyama, and K. Iga, “Polarization control of vertical-cavity surface-emitting lasers using a birefringent metal/dielectric polarizer loaded on top distributed-Bragg-reflector,” IEEE J. Sel. Top. Quantum Electron. 1, 667–673 (1995).
[CrossRef]

Kuchta, D. M.

G. C. Wilson, D. M. Kuchta, J. D. Walker, and J. S. Smith, “Spatial hole burning and self-focusing in vertical cavity surface emitting laser diodes,” Appl. Phys. Lett. 64, 542–544 (1994).
[CrossRef]

Lau, K. Y.

M. A. Hadley, G. C. Wilson, K. Y. Lau, and J. S. Smith, “High single transverse mode output from external cavity surface emitting laser diodes,” Appl. Phys. Lett. 63, 1607–1609 (1993).
[CrossRef]

Law, J. Y.

J. Y. Law and G. P. Agrawal, “Effects of spatial hole burning on gain switching in vertical cavity surface emitting lasers,” IEEE J. Quantum Electron. 33, 462–468 (1997).
[CrossRef]

J. Y. Law and G. P. Agrawal, “Effects of optical feedback on static and dynamic characteristics of VCSELs,” IEEE J. Sel. Top. Quantum Electron. 3, 353–358 (1997).
[CrossRef]

Lear, K. L.

K. L. Lear, A. Mar, K. D. Choquette, S. P. Kilcoyne, R. P. Schneider, and K. M. Geib, “High frequency modulation of oxide-confined vertical cavity surface emitting lasers,” Electron. Lett. 32, 457–458 (1996).
[CrossRef]

K. D. Choquette, K. L. Lear, R. E. Leibenguth, and M. T. Asom, “Polarization modulation of cruciform VCSELs,” Appl. Phys. Lett. 64, 2767–2769 (1994).
[CrossRef]

Lee, H. C.

L. Fan, M. C. Wu, H. C. Lee, and P. Grodzinski, “Dynamic beam switching of vertical-cavity surface-emitting lasers with integrated optical beam routers,” IEEE Photon. Technol. Lett. 9, 505–507 (1997).
[CrossRef]

L. Fan, M. C. Wu, H. C. Lee, and P. Grodzinski, “Novel vertical-cavity surface-emitting lasers with integrated optical beam router,” Electron. Lett. 31, 729–730 (1995).
[CrossRef]

Leibenguth, R.

O. Buccafusca, J. L. A. Chilla, J. J. Rocca, S. Feld, C. Wilmsen, V. Morozov, and R. Leibenguth, “Transverse mode dynamics in vertical cavity surface emitting lasers excited by fast electrical pulses,” Appl. Phys. Lett. 68, 590–592 (1996).
[CrossRef]

Leibenguth, R. E.

D. A. Richie, T. Zhang, K. D. Choquette, R. E. Leibenguth, J. C. Zachman, and N. Tabatabaie, “Chaotic dynamics of mode competition in a vertical-cavity surface emitting laser diode under DC excitation,” IEEE J. Quantum Electron. 30, 2500–2506 (1994).
[CrossRef]

K. D. Choquette, K. L. Lear, R. E. Leibenguth, and M. T. Asom, “Polarization modulation of cruciform VCSELs,” Appl. Phys. Lett. 64, 2767–2769 (1994).
[CrossRef]

D. Vakhshoori, J. D. Wynn, G. J. Zydzik, R. E. Leibenguth, M. T. Asom, K. Kojima, and R. A. Morgan, “Top-surface emitting lasers with 1.9 V threshold voltage and the effect of spatial hole burning on their transverse mode operation and efficiencies,” Appl. Phys. Lett. 62, 1448–1450 (1993).
[CrossRef]

Li, G. S.

Y. A. Wu, G. S. Li, R. F. Nabiev, K. D. Choquette, C. Caneau, and C. J. Chang Hasnain, “Single mode, passive antiguide vertical cavity surface emitting laser,” IEEE J. Sel. Top. Quantum Electron. 1, 629–637 (1995).
[CrossRef]

Li, H.

H. Li, T. H. Lucas, J. G. McInerney, and R. A. Morgan, “Transverse modes and patterns of electrically pumped vertical cavity surface emitting semiconductor lasers,” Chaos Solitons Fractals 4, 1619–1636 (1994).
[CrossRef]

Logue, F. P.

F. P. Logue, P. Rees, J. F. Heffernan, C. Jordan, J. F. Donegan, J. Hegarty, F. Hiei, S. Taniguchi, T. Hino, K. Nakano, and A. Ishibashi, “Optical gain in (Zn, Cd)Se–Zn(S, Se) quantum wells,” J. Opt. Soc. Am. B 15, 1295–1303 (1998).
[CrossRef]

P. Rees, J. F. Heffernan, F. P. Logue, J. F. Donegan, C. Jordan, J. Hegarty, F. Hiei, and A. Ishibashi, “High temperature gain measurements in optically pumped ZnCdSe–ZnSe quantum wells,” IEE Proc. Optoelectron. 143, 110–112 (1996).
[CrossRef]

F. P. Logue, P. Rees, J. F. Heffernan, C. Jordan, J. F. Donegan, J. Hegarty, F. Hiei, and A. Ishibashi, “Effect of Coulomb enhancement on optical gain in (Zn, Cd)Se/ZnSe multiple quantum wells,” Phys. Rev. B 54, 16417–16420 (1996).
[CrossRef]

Lowry, C.

F. B. de Colstoun, G. Khitrova, A. V. Fedorov, T. R. Nelson, C. Lowry, T. M. Brennan, B. G. Hammons, and P. Maker, “Transverse modes, vortices, and vertical cavity surface emitting lasers,” Chaos Solitons Fractals 4, 1575–1596 (1994).
[CrossRef]

Lucas, T. H.

H. Li, T. H. Lucas, J. G. McInerney, and R. A. Morgan, “Transverse modes and patterns of electrically pumped vertical cavity surface emitting semiconductor lasers,” Chaos Solitons Fractals 4, 1619–1636 (1994).
[CrossRef]

Lugiato, L. A.

F. Prati, M. Travagnin, and L. A. Lugiato, “Logic gates and optical switching with vertical-cavity surface emitting lasers,” Phys. Rev. A 55, 690–700 (1997).
[CrossRef]

Maker, P.

F. B. de Colstoun, G. Khitrova, A. V. Fedorov, T. R. Nelson, C. Lowry, T. M. Brennan, B. G. Hammons, and P. Maker, “Transverse modes, vortices, and vertical cavity surface emitting lasers,” Chaos Solitons Fractals 4, 1575–1596 (1994).
[CrossRef]

Mar, A.

K. L. Lear, A. Mar, K. D. Choquette, S. P. Kilcoyne, R. P. Schneider, and K. M. Geib, “High frequency modulation of oxide-confined vertical cavity surface emitting lasers,” Electron. Lett. 32, 457–458 (1996).
[CrossRef]

Martin Regalado, J.

J. Martin Regalado, J. L. A. Chilla, J. J. Rocca, and P. Brusenbach, “Polarization switching in vertical-cavity surface emitting lasers observed at constant active region temperature,” Appl. Phys. Lett. 70, 3350–3352 (1997).
[CrossRef]

McInerney, J. G.

Y. G. Zhao and J. G. McInerney, “Transverse mode control of vertical cavity surface emitting lasers,” IEEE J. Quantum Electron. 32, 1950–1958 (1996).
[CrossRef]

H. Li, T. H. Lucas, J. G. McInerney, and R. A. Morgan, “Transverse modes and patterns of electrically pumped vertical cavity surface emitting semiconductor lasers,” Chaos Solitons Fractals 4, 1619–1636 (1994).
[CrossRef]

Menoni, C. S.

M. Giudici, J. R. Tredicce, G. Vaschenko, J. Rocca, and C. S. Menoni, “Spatio-temporal dynamics in vertical cavity surface emitting lasers excited by fast electrical pulses,” Opt. Commun. 158, 313–321 (1998).
[CrossRef]

Morgan, R. A.

H. Li, T. H. Lucas, J. G. McInerney, and R. A. Morgan, “Transverse modes and patterns of electrically pumped vertical cavity surface emitting semiconductor lasers,” Chaos Solitons Fractals 4, 1619–1636 (1994).
[CrossRef]

D. Vakhshoori, J. D. Wynn, G. J. Zydzik, R. E. Leibenguth, M. T. Asom, K. Kojima, and R. A. Morgan, “Top-surface emitting lasers with 1.9 V threshold voltage and the effect of spatial hole burning on their transverse mode operation and efficiencies,” Appl. Phys. Lett. 62, 1448–1450 (1993).
[CrossRef]

R. A. Morgan, G. D. Guth, M. W. Focht, M. T. Asom, K. Kojima, L. E. Rogers, and S. E. Callis, “Transverse mode control of vertical-cavity top-surface emitting lasers,” IEEE Photon. Technol. Lett. 4, 374–376 (1993).
[CrossRef]

Mori, K.

M. Ogura, S. Fuiji, T. Okada, M. Mori, K. Mori, T. Asaka, and H. Iwano, “Transverse mode characteristics of a DBR surface emitting laser with buried heterostructure,” Jpn. J. Appl. Phys. 30, 3879–3882 (1991).
[CrossRef]

Mori, M.

M. Ogura, S. Fuiji, T. Okada, M. Mori, K. Mori, T. Asaka, and H. Iwano, “Transverse mode characteristics of a DBR surface emitting laser with buried heterostructure,” Jpn. J. Appl. Phys. 30, 3879–3882 (1991).
[CrossRef]

Morozov, V.

O. Buccafusca, J. L. A. Chilla, J. J. Rocca, S. Feld, C. Wilmsen, V. Morozov, and R. Leibenguth, “Transverse mode dynamics in vertical cavity surface emitting lasers excited by fast electrical pulses,” Appl. Phys. Lett. 68, 590–592 (1996).
[CrossRef]

Mukaihara, T.

T. Mukaihara, N. Ohnoki, Y. Hayashi, N. Hatori, F. Koyama, and K. Iga, “Polarization control of vertical-cavity surface-emitting lasers using a birefringent metal/dielectric polarizer loaded on top distributed-Bragg-reflector,” IEEE J. Sel. Top. Quantum Electron. 1, 667–673 (1995).
[CrossRef]

Nabiev, R. F.

Y. A. Wu, G. S. Li, R. F. Nabiev, K. D. Choquette, C. Caneau, and C. J. Chang Hasnain, “Single mode, passive antiguide vertical cavity surface emitting laser,” IEEE J. Sel. Top. Quantum Electron. 1, 629–637 (1995).
[CrossRef]

Nakano, K.

Nelson, T. R.

F. B. de Colstoun, G. Khitrova, A. V. Fedorov, T. R. Nelson, C. Lowry, T. M. Brennan, B. G. Hammons, and P. Maker, “Transverse modes, vortices, and vertical cavity surface emitting lasers,” Chaos Solitons Fractals 4, 1575–1596 (1994).
[CrossRef]

Nicholson, J. A.

P. Dowd, P. J. Heard, J. A. Nicholson, L. Raddatz, I. H. White, R. V. Penty, J. C. C. Day, G. C. Allen, S. W. Corzine, and M. R. T. Tan, “Complete polarization control of GaAs gain guided top-surface emitting vertical cavity lasers,” Electron. Lett. 33, 1315–1317 (1997).
[CrossRef]

Nieuborg, N.

N. Nieuborg, K. Panajotov, A. Goulet, I. Veretennicoff, and H. Thienpont, “Data transparent reconfigurable optical interconnections based on polarization-switching VCSELs and polarization-selective diffractive optical elements,” IEEE Photon. Technol. Lett. 10, 973–975 (1998).
[CrossRef]

Ogura, M.

M. Ogura, S. Fuiji, T. Okada, M. Mori, K. Mori, T. Asaka, and H. Iwano, “Transverse mode characteristics of a DBR surface emitting laser with buried heterostructure,” Jpn. J. Appl. Phys. 30, 3879–3882 (1991).
[CrossRef]

Ohnoki, N.

T. Mukaihara, N. Ohnoki, Y. Hayashi, N. Hatori, F. Koyama, and K. Iga, “Polarization control of vertical-cavity surface-emitting lasers using a birefringent metal/dielectric polarizer loaded on top distributed-Bragg-reflector,” IEEE J. Sel. Top. Quantum Electron. 1, 667–673 (1995).
[CrossRef]

Okada, T.

M. Ogura, S. Fuiji, T. Okada, M. Mori, K. Mori, T. Asaka, and H. Iwano, “Transverse mode characteristics of a DBR surface emitting laser with buried heterostructure,” Jpn. J. Appl. Phys. 30, 3879–3882 (1991).
[CrossRef]

Orenstein, M.

Y. Satuby and M. Orenstein, “Small signal modulation of multitransverse modes vertical cavity surface emitting lasers,” IEEE Photon. Technol. Lett. 10, 757–759 (1998).
[CrossRef]

M. Orenstein, N. G. Stoffel, A. C. von Lehmen, J. P. Harbison, and L. T. Florez, “Efficient continuous wave operation of vertical-cavity surface emitting lasers using buried compensation layers to optimize current flow,” Appl. Phys. Lett. 59, 31–33 (1991).
[CrossRef]

Panajotov, K.

N. Nieuborg, K. Panajotov, A. Goulet, I. Veretennicoff, and H. Thienpont, “Data transparent reconfigurable optical interconnections based on polarization-switching VCSELs and polarization-selective diffractive optical elements,” IEEE Photon. Technol. Lett. 10, 973–975 (1998).
[CrossRef]

Penty, R. V.

P. Dowd, P. J. Heard, J. A. Nicholson, L. Raddatz, I. H. White, R. V. Penty, J. C. C. Day, G. C. Allen, S. W. Corzine, and M. R. T. Tan, “Complete polarization control of GaAs gain guided top-surface emitting vertical cavity lasers,” Electron. Lett. 33, 1315–1317 (1997).
[CrossRef]

Prati, F.

F. Prati, M. Travagnin, and L. A. Lugiato, “Logic gates and optical switching with vertical-cavity surface emitting lasers,” Phys. Rev. A 55, 690–700 (1997).
[CrossRef]

Raddatz, L.

P. Dowd, P. J. Heard, J. A. Nicholson, L. Raddatz, I. H. White, R. V. Penty, J. C. C. Day, G. C. Allen, S. W. Corzine, and M. R. T. Tan, “Complete polarization control of GaAs gain guided top-surface emitting vertical cavity lasers,” Electron. Lett. 33, 1315–1317 (1997).
[CrossRef]

Rees, P.

F. P. Logue, P. Rees, J. F. Heffernan, C. Jordan, J. F. Donegan, J. Hegarty, F. Hiei, S. Taniguchi, T. Hino, K. Nakano, and A. Ishibashi, “Optical gain in (Zn, Cd)Se–Zn(S, Se) quantum wells,” J. Opt. Soc. Am. B 15, 1295–1303 (1998).
[CrossRef]

F. P. Logue, P. Rees, J. F. Heffernan, C. Jordan, J. F. Donegan, J. Hegarty, F. Hiei, and A. Ishibashi, “Effect of Coulomb enhancement on optical gain in (Zn, Cd)Se/ZnSe multiple quantum wells,” Phys. Rev. B 54, 16417–16420 (1996).
[CrossRef]

P. Rees, J. F. Heffernan, F. P. Logue, J. F. Donegan, C. Jordan, J. Hegarty, F. Hiei, and A. Ishibashi, “High temperature gain measurements in optically pumped ZnCdSe–ZnSe quantum wells,” IEE Proc. Optoelectron. 143, 110–112 (1996).
[CrossRef]

Richie, D. A.

D. A. Richie, T. Zhang, K. D. Choquette, R. E. Leibenguth, J. C. Zachman, and N. Tabatabaie, “Chaotic dynamics of mode competition in a vertical-cavity surface emitting laser diode under DC excitation,” IEEE J. Quantum Electron. 30, 2500–2506 (1994).
[CrossRef]

Rocca, J.

M. Giudici, J. R. Tredicce, G. Vaschenko, J. Rocca, and C. S. Menoni, “Spatio-temporal dynamics in vertical cavity surface emitting lasers excited by fast electrical pulses,” Opt. Commun. 158, 313–321 (1998).
[CrossRef]

Rocca, J. J.

J. Martin Regalado, J. L. A. Chilla, J. J. Rocca, and P. Brusenbach, “Polarization switching in vertical-cavity surface emitting lasers observed at constant active region temperature,” Appl. Phys. Lett. 70, 3350–3352 (1997).
[CrossRef]

O. Buccafusca, J. L. A. Chilla, J. J. Rocca, S. Feld, C. Wilmsen, V. Morozov, and R. Leibenguth, “Transverse mode dynamics in vertical cavity surface emitting lasers excited by fast electrical pulses,” Appl. Phys. Lett. 68, 590–592 (1996).
[CrossRef]

Rogers, L. E.

R. A. Morgan, G. D. Guth, M. W. Focht, M. T. Asom, K. Kojima, L. E. Rogers, and S. E. Callis, “Transverse mode control of vertical-cavity top-surface emitting lasers,” IEEE Photon. Technol. Lett. 4, 374–376 (1993).
[CrossRef]

Sarma, J.

A. Valle, J. Sarma, and K. A. Shore, “Spatial holeburning effects on the dynamics of vertical cavity surface-emitting laser diodes,” IEEE J. Quantum Electron. 31, 1423–1431 (1995).
[CrossRef]

C. H. Chong and J. Sarma, “Lasing mode selection in vertical cavity surface emitting laser diodes,” IEEE Photon. Technol. Lett. 5, 761–763 (1993).
[CrossRef]

Satuby, Y.

Y. Satuby and M. Orenstein, “Small signal modulation of multitransverse modes vertical cavity surface emitting lasers,” IEEE Photon. Technol. Lett. 10, 757–759 (1998).
[CrossRef]

Schneider, R. P.

K. L. Lear, A. Mar, K. D. Choquette, S. P. Kilcoyne, R. P. Schneider, and K. M. Geib, “High frequency modulation of oxide-confined vertical cavity surface emitting lasers,” Electron. Lett. 32, 457–458 (1996).
[CrossRef]

Shore, K. A.

J. Dellunde, A. Valle, and K. A. Shore, “Transverse-mode selection in external-cavity vertical-cavity surface-emitting laser diodes,” J. Opt. Soc. Am. B 13, 2477–2483 (1996).
[CrossRef]

A. Valle, J. Sarma, and K. A. Shore, “Spatial holeburning effects on the dynamics of vertical cavity surface-emitting laser diodes,” IEEE J. Quantum Electron. 31, 1423–1431 (1995).
[CrossRef]

Smith, J. S.

G. C. Wilson, D. M. Kuchta, J. D. Walker, and J. S. Smith, “Spatial hole burning and self-focusing in vertical cavity surface emitting laser diodes,” Appl. Phys. Lett. 64, 542–544 (1994).
[CrossRef]

M. A. Hadley, G. C. Wilson, K. Y. Lau, and J. S. Smith, “High single transverse mode output from external cavity surface emitting laser diodes,” Appl. Phys. Lett. 63, 1607–1609 (1993).
[CrossRef]

Stoffel, N. G.

C. J. Chang-Hasnain, J. P. Harbison, G. Hasnain, A. C. von Lehmen, L. T. Florez, and N. G. Stoffel, “Dynamic, polarization and transverse mode characteristics of VCSELs,” IEEE J. Quantum Electron. 27, 1402–1409 (1991).
[CrossRef]

M. Orenstein, N. G. Stoffel, A. C. von Lehmen, J. P. Harbison, and L. T. Florez, “Efficient continuous wave operation of vertical-cavity surface emitting lasers using buried compensation layers to optimize current flow,” Appl. Phys. Lett. 59, 31–33 (1991).
[CrossRef]

Tabatabaie, N.

D. A. Richie, T. Zhang, K. D. Choquette, R. E. Leibenguth, J. C. Zachman, and N. Tabatabaie, “Chaotic dynamics of mode competition in a vertical-cavity surface emitting laser diode under DC excitation,” IEEE J. Quantum Electron. 30, 2500–2506 (1994).
[CrossRef]

Tan, M. R. T.

P. Dowd, P. J. Heard, J. A. Nicholson, L. Raddatz, I. H. White, R. V. Penty, J. C. C. Day, G. C. Allen, S. W. Corzine, and M. R. T. Tan, “Complete polarization control of GaAs gain guided top-surface emitting vertical cavity lasers,” Electron. Lett. 33, 1315–1317 (1997).
[CrossRef]

Taniguchi, S.

Thienpont, H.

N. Nieuborg, K. Panajotov, A. Goulet, I. Veretennicoff, and H. Thienpont, “Data transparent reconfigurable optical interconnections based on polarization-switching VCSELs and polarization-selective diffractive optical elements,” IEEE Photon. Technol. Lett. 10, 973–975 (1998).
[CrossRef]

Travagnin, M.

F. Prati, M. Travagnin, and L. A. Lugiato, “Logic gates and optical switching with vertical-cavity surface emitting lasers,” Phys. Rev. A 55, 690–700 (1997).
[CrossRef]

Tredicce, J. R.

M. Giudici, J. R. Tredicce, G. Vaschenko, J. Rocca, and C. S. Menoni, “Spatio-temporal dynamics in vertical cavity surface emitting lasers excited by fast electrical pulses,” Opt. Commun. 158, 313–321 (1998).
[CrossRef]

Vakhshoori, D.

D. Vakhshoori, J. D. Wynn, G. J. Zydzik, R. E. Leibenguth, M. T. Asom, K. Kojima, and R. A. Morgan, “Top-surface emitting lasers with 1.9 V threshold voltage and the effect of spatial hole burning on their transverse mode operation and efficiencies,” Appl. Phys. Lett. 62, 1448–1450 (1993).
[CrossRef]

Valle, A.

A. Valle, “High-frequency beam steering induced by switching of high-order transverse modes in vertical cavity surface emitting lasers,” Appl. Phys. Lett. 73, 1607–1609 (1998).
[CrossRef]

A. Valle, “Selection and modulation of high-order transverse modes in vertical cavity surface emitting lasers,” IEEE J. Quantum Electron. 34, 1924–1932 (1998).
[CrossRef]

J. Dellunde, A. Valle, and K. A. Shore, “Transverse-mode selection in external-cavity vertical-cavity surface-emitting laser diodes,” J. Opt. Soc. Am. B 13, 2477–2483 (1996).
[CrossRef]

A. Valle, J. Sarma, and K. A. Shore, “Spatial holeburning effects on the dynamics of vertical cavity surface-emitting laser diodes,” IEEE J. Quantum Electron. 31, 1423–1431 (1995).
[CrossRef]

Vaschenko, G.

M. Giudici, J. R. Tredicce, G. Vaschenko, J. Rocca, and C. S. Menoni, “Spatio-temporal dynamics in vertical cavity surface emitting lasers excited by fast electrical pulses,” Opt. Commun. 158, 313–321 (1998).
[CrossRef]

Veretennicoff, I.

N. Nieuborg, K. Panajotov, A. Goulet, I. Veretennicoff, and H. Thienpont, “Data transparent reconfigurable optical interconnections based on polarization-switching VCSELs and polarization-selective diffractive optical elements,” IEEE Photon. Technol. Lett. 10, 973–975 (1998).
[CrossRef]

von Lehmen, A. C.

C. J. Chang-Hasnain, J. P. Harbison, G. Hasnain, A. C. von Lehmen, L. T. Florez, and N. G. Stoffel, “Dynamic, polarization and transverse mode characteristics of VCSELs,” IEEE J. Quantum Electron. 27, 1402–1409 (1991).
[CrossRef]

M. Orenstein, N. G. Stoffel, A. C. von Lehmen, J. P. Harbison, and L. T. Florez, “Efficient continuous wave operation of vertical-cavity surface emitting lasers using buried compensation layers to optimize current flow,” Appl. Phys. Lett. 59, 31–33 (1991).
[CrossRef]

Walker, J. D.

G. C. Wilson, D. M. Kuchta, J. D. Walker, and J. S. Smith, “Spatial hole burning and self-focusing in vertical cavity surface emitting laser diodes,” Appl. Phys. Lett. 64, 542–544 (1994).
[CrossRef]

White, I. H.

P. Dowd, P. J. Heard, J. A. Nicholson, L. Raddatz, I. H. White, R. V. Penty, J. C. C. Day, G. C. Allen, S. W. Corzine, and M. R. T. Tan, “Complete polarization control of GaAs gain guided top-surface emitting vertical cavity lasers,” Electron. Lett. 33, 1315–1317 (1997).
[CrossRef]

Wilmsen, C.

O. Buccafusca, J. L. A. Chilla, J. J. Rocca, S. Feld, C. Wilmsen, V. Morozov, and R. Leibenguth, “Transverse mode dynamics in vertical cavity surface emitting lasers excited by fast electrical pulses,” Appl. Phys. Lett. 68, 590–592 (1996).
[CrossRef]

Wilson, G. C.

G. C. Wilson, D. M. Kuchta, J. D. Walker, and J. S. Smith, “Spatial hole burning and self-focusing in vertical cavity surface emitting laser diodes,” Appl. Phys. Lett. 64, 542–544 (1994).
[CrossRef]

M. A. Hadley, G. C. Wilson, K. Y. Lau, and J. S. Smith, “High single transverse mode output from external cavity surface emitting laser diodes,” Appl. Phys. Lett. 63, 1607–1609 (1993).
[CrossRef]

Wu, M. C.

L. Fan, M. C. Wu, H. C. Lee, and P. Grodzinski, “Dynamic beam switching of vertical-cavity surface-emitting lasers with integrated optical beam routers,” IEEE Photon. Technol. Lett. 9, 505–507 (1997).
[CrossRef]

L. Fan, M. C. Wu, H. C. Lee, and P. Grodzinski, “Novel vertical-cavity surface-emitting lasers with integrated optical beam router,” Electron. Lett. 31, 729–730 (1995).
[CrossRef]

Wu, Y. A.

Y. A. Wu, G. S. Li, R. F. Nabiev, K. D. Choquette, C. Caneau, and C. J. Chang Hasnain, “Single mode, passive antiguide vertical cavity surface emitting laser,” IEEE J. Sel. Top. Quantum Electron. 1, 629–637 (1995).
[CrossRef]

Wynn, J. D.

D. Vakhshoori, J. D. Wynn, G. J. Zydzik, R. E. Leibenguth, M. T. Asom, K. Kojima, and R. A. Morgan, “Top-surface emitting lasers with 1.9 V threshold voltage and the effect of spatial hole burning on their transverse mode operation and efficiencies,” Appl. Phys. Lett. 62, 1448–1450 (1993).
[CrossRef]

Zachman, J. C.

D. A. Richie, T. Zhang, K. D. Choquette, R. E. Leibenguth, J. C. Zachman, and N. Tabatabaie, “Chaotic dynamics of mode competition in a vertical-cavity surface emitting laser diode under DC excitation,” IEEE J. Quantum Electron. 30, 2500–2506 (1994).
[CrossRef]

Zhang, T.

D. A. Richie, T. Zhang, K. D. Choquette, R. E. Leibenguth, J. C. Zachman, and N. Tabatabaie, “Chaotic dynamics of mode competition in a vertical-cavity surface emitting laser diode under DC excitation,” IEEE J. Quantum Electron. 30, 2500–2506 (1994).
[CrossRef]

Zhao, Y. G.

Y. G. Zhao and J. G. McInerney, “Transverse mode control of vertical cavity surface emitting lasers,” IEEE J. Quantum Electron. 32, 1950–1958 (1996).
[CrossRef]

Zydzik, G. J.

D. Vakhshoori, J. D. Wynn, G. J. Zydzik, R. E. Leibenguth, M. T. Asom, K. Kojima, and R. A. Morgan, “Top-surface emitting lasers with 1.9 V threshold voltage and the effect of spatial hole burning on their transverse mode operation and efficiencies,” Appl. Phys. Lett. 62, 1448–1450 (1993).
[CrossRef]

Appl. Phys. Lett.

D. Vakhshoori, J. D. Wynn, G. J. Zydzik, R. E. Leibenguth, M. T. Asom, K. Kojima, and R. A. Morgan, “Top-surface emitting lasers with 1.9 V threshold voltage and the effect of spatial hole burning on their transverse mode operation and efficiencies,” Appl. Phys. Lett. 62, 1448–1450 (1993).
[CrossRef]

O. Buccafusca, J. L. A. Chilla, J. J. Rocca, S. Feld, C. Wilmsen, V. Morozov, and R. Leibenguth, “Transverse mode dynamics in vertical cavity surface emitting lasers excited by fast electrical pulses,” Appl. Phys. Lett. 68, 590–592 (1996).
[CrossRef]

G. C. Wilson, D. M. Kuchta, J. D. Walker, and J. S. Smith, “Spatial hole burning and self-focusing in vertical cavity surface emitting laser diodes,” Appl. Phys. Lett. 64, 542–544 (1994).
[CrossRef]

M. A. Hadley, G. C. Wilson, K. Y. Lau, and J. S. Smith, “High single transverse mode output from external cavity surface emitting laser diodes,” Appl. Phys. Lett. 63, 1607–1609 (1993).
[CrossRef]

K. D. Choquette, K. L. Lear, R. E. Leibenguth, and M. T. Asom, “Polarization modulation of cruciform VCSELs,” Appl. Phys. Lett. 64, 2767–2769 (1994).
[CrossRef]

A. Valle, “High-frequency beam steering induced by switching of high-order transverse modes in vertical cavity surface emitting lasers,” Appl. Phys. Lett. 73, 1607–1609 (1998).
[CrossRef]

J. Martin Regalado, J. L. A. Chilla, J. J. Rocca, and P. Brusenbach, “Polarization switching in vertical-cavity surface emitting lasers observed at constant active region temperature,” Appl. Phys. Lett. 70, 3350–3352 (1997).
[CrossRef]

M. Orenstein, N. G. Stoffel, A. C. von Lehmen, J. P. Harbison, and L. T. Florez, “Efficient continuous wave operation of vertical-cavity surface emitting lasers using buried compensation layers to optimize current flow,” Appl. Phys. Lett. 59, 31–33 (1991).
[CrossRef]

Chaos Solitons Fractals

H. Li, T. H. Lucas, J. G. McInerney, and R. A. Morgan, “Transverse modes and patterns of electrically pumped vertical cavity surface emitting semiconductor lasers,” Chaos Solitons Fractals 4, 1619–1636 (1994).
[CrossRef]

F. B. de Colstoun, G. Khitrova, A. V. Fedorov, T. R. Nelson, C. Lowry, T. M. Brennan, B. G. Hammons, and P. Maker, “Transverse modes, vortices, and vertical cavity surface emitting lasers,” Chaos Solitons Fractals 4, 1575–1596 (1994).
[CrossRef]

Electron. Lett.

K. L. Lear, A. Mar, K. D. Choquette, S. P. Kilcoyne, R. P. Schneider, and K. M. Geib, “High frequency modulation of oxide-confined vertical cavity surface emitting lasers,” Electron. Lett. 32, 457–458 (1996).
[CrossRef]

L. Fan, M. C. Wu, H. C. Lee, and P. Grodzinski, “Novel vertical-cavity surface-emitting lasers with integrated optical beam router,” Electron. Lett. 31, 729–730 (1995).
[CrossRef]

P. Dowd, P. J. Heard, J. A. Nicholson, L. Raddatz, I. H. White, R. V. Penty, J. C. C. Day, G. C. Allen, S. W. Corzine, and M. R. T. Tan, “Complete polarization control of GaAs gain guided top-surface emitting vertical cavity lasers,” Electron. Lett. 33, 1315–1317 (1997).
[CrossRef]

K. D. Choquette, G. R. Hadley, H. Q. Hou, K. M. Geib, and B. E. Hammons, “Leaky mode vertical cavity lasers using cavity resonance modification,” Electron. Lett. 34, 991–993 (1998).
[CrossRef]

IEE Proc. Optoelectron.

P. Rees, J. F. Heffernan, F. P. Logue, J. F. Donegan, C. Jordan, J. Hegarty, F. Hiei, and A. Ishibashi, “High temperature gain measurements in optically pumped ZnCdSe–ZnSe quantum wells,” IEE Proc. Optoelectron. 143, 110–112 (1996).
[CrossRef]

IEEE J. Quantum Electron.

Y. G. Zhao and J. G. McInerney, “Transverse mode control of vertical cavity surface emitting lasers,” IEEE J. Quantum Electron. 32, 1950–1958 (1996).
[CrossRef]

A. Valle, “Selection and modulation of high-order transverse modes in vertical cavity surface emitting lasers,” IEEE J. Quantum Electron. 34, 1924–1932 (1998).
[CrossRef]

C. J. Chang-Hasnain, J. P. Harbison, G. Hasnain, A. C. von Lehmen, L. T. Florez, and N. G. Stoffel, “Dynamic, polarization and transverse mode characteristics of VCSELs,” IEEE J. Quantum Electron. 27, 1402–1409 (1991).
[CrossRef]

D. A. Richie, T. Zhang, K. D. Choquette, R. E. Leibenguth, J. C. Zachman, and N. Tabatabaie, “Chaotic dynamics of mode competition in a vertical-cavity surface emitting laser diode under DC excitation,” IEEE J. Quantum Electron. 30, 2500–2506 (1994).
[CrossRef]

A. Valle, J. Sarma, and K. A. Shore, “Spatial holeburning effects on the dynamics of vertical cavity surface-emitting laser diodes,” IEEE J. Quantum Electron. 31, 1423–1431 (1995).
[CrossRef]

J. Y. Law and G. P. Agrawal, “Effects of spatial hole burning on gain switching in vertical cavity surface emitting lasers,” IEEE J. Quantum Electron. 33, 462–468 (1997).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

Y. A. Wu, G. S. Li, R. F. Nabiev, K. D. Choquette, C. Caneau, and C. J. Chang Hasnain, “Single mode, passive antiguide vertical cavity surface emitting laser,” IEEE J. Sel. Top. Quantum Electron. 1, 629–637 (1995).
[CrossRef]

J. Y. Law and G. P. Agrawal, “Effects of optical feedback on static and dynamic characteristics of VCSELs,” IEEE J. Sel. Top. Quantum Electron. 3, 353–358 (1997).
[CrossRef]

T. Mukaihara, N. Ohnoki, Y. Hayashi, N. Hatori, F. Koyama, and K. Iga, “Polarization control of vertical-cavity surface-emitting lasers using a birefringent metal/dielectric polarizer loaded on top distributed-Bragg-reflector,” IEEE J. Sel. Top. Quantum Electron. 1, 667–673 (1995).
[CrossRef]

IEEE Photon. Technol. Lett.

C. H. Chong and J. Sarma, “Lasing mode selection in vertical cavity surface emitting laser diodes,” IEEE Photon. Technol. Lett. 5, 761–763 (1993).
[CrossRef]

L. Fan, M. C. Wu, H. C. Lee, and P. Grodzinski, “Dynamic beam switching of vertical-cavity surface-emitting lasers with integrated optical beam routers,” IEEE Photon. Technol. Lett. 9, 505–507 (1997).
[CrossRef]

N. Nieuborg, K. Panajotov, A. Goulet, I. Veretennicoff, and H. Thienpont, “Data transparent reconfigurable optical interconnections based on polarization-switching VCSELs and polarization-selective diffractive optical elements,” IEEE Photon. Technol. Lett. 10, 973–975 (1998).
[CrossRef]

R. A. Morgan, G. D. Guth, M. W. Focht, M. T. Asom, K. Kojima, L. E. Rogers, and S. E. Callis, “Transverse mode control of vertical-cavity top-surface emitting lasers,” IEEE Photon. Technol. Lett. 4, 374–376 (1993).
[CrossRef]

Y. Satuby and M. Orenstein, “Small signal modulation of multitransverse modes vertical cavity surface emitting lasers,” IEEE Photon. Technol. Lett. 10, 757–759 (1998).
[CrossRef]

J. Opt. Soc. Am. B

Jpn. J. Appl. Phys.

M. Ogura, S. Fuiji, T. Okada, M. Mori, K. Mori, T. Asaka, and H. Iwano, “Transverse mode characteristics of a DBR surface emitting laser with buried heterostructure,” Jpn. J. Appl. Phys. 30, 3879–3882 (1991).
[CrossRef]

Opt. Commun.

M. Giudici, J. R. Tredicce, G. Vaschenko, J. Rocca, and C. S. Menoni, “Spatio-temporal dynamics in vertical cavity surface emitting lasers excited by fast electrical pulses,” Opt. Commun. 158, 313–321 (1998).
[CrossRef]

Phys. Rev. A

F. Prati, M. Travagnin, and L. A. Lugiato, “Logic gates and optical switching with vertical-cavity surface emitting lasers,” Phys. Rev. A 55, 690–700 (1997).
[CrossRef]

Phys. Rev. B

F. P. Logue, P. Rees, J. F. Heffernan, C. Jordan, J. F. Donegan, J. Hegarty, F. Hiei, and A. Ishibashi, “Effect of Coulomb enhancement on optical gain in (Zn, Cd)Se/ZnSe multiple quantum wells,” Phys. Rev. B 54, 16417–16420 (1996).
[CrossRef]

Other

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983).

W. W. Chow, S. W. Koch, and M. Sargent III, Semiconductor Laser Physics (Springer-Verlag, Berlin, 1994), p. 317.

R. Balasubramanyam and J. Sarma, “Influence of surface recombination and current profiles on VCSEL operation,” presented at the Conference on Semiconductor and Integrated Optoelectronics, Cardiff, Wales, UK, March 27–29, 1995, paper 57.

C. Mignosi, P. Dowd, L. Raddatz, I. H. White, M. C. Nowell, D. G. Cunningham, M. R. Tan, and S. Y. Wang, “Dynamics of mode partitioning in gain guided GaAs vertical cavity surface emitting lasers,” in Advances in Vertical Cavity Surface Emitting Lasers, C. Chang-Hasnain, ed., Vol. 15 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), pp. 77–82.

L. M. F. Chirovsky, R. E. Leibenguth, W. S. Hobson, S. P. Hui, G. J. Zydzik, B. J. Tseng, J. D. Wynn, J. Lopata, and L. A. D’Asaro, “Vertical-cavity surface emitting lasers with ion-implanted current apertures and index guiding,” in Conference on Lasers and Electro-Optics (CLEO), Vol. 6 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), paper CPD14.

T. E. Sale, Vertical Cavity Surface Emitting Lasers (Research Studies, Taunton, UK, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Normalized transverse-mode intensity profiles. Refractive-index steps are 0.01 and 0.1 in parts (a) and (b), respectively.

Fig. 2
Fig. 2

(a) Near-field distributions of LP11c (left-hand) and LP11s (right-hand) modes. (b) Far-field distributions of LP11c (left-hand) and LP11s (right-hand) modes. (c) Current distributions that excite the LP11c and the LP11s modes are plotted in the left-hand and the right-hand parts, respectively.

Fig. 3
Fig. 3

Material gain as a function of wavelength for four different carrier densities. Results for temperatures of 292 and 314 K are plotted with thick and thin curves, respectively.

Fig. 4
Fig. 4

Light-current curves (top) and modal gain versus current curves (bottom) for different refractive-index steps: 0.01 (left) and 0.1 (right). The following modes are plotted: LP01 (thick dashed curve), LP02 (thin solid curve), LP11c and LP11s (thin dotted curve), LP12c and LP12s (thin short-dashed curve) LP21c and LP21s (thin long-dashed curve), LP31c and LP31s (thin long–short-dashed), and total (thick solid curve). A cavity length of L=0.972 µm that corresponds to transverse-mode wavelengths ∼0.85 µm (near the gain peak) and a substrate temperature of 292 K have been considered.

Fig. 5
Fig. 5

(a) Multi-transverse-mode light-current characteristics for a single contact favoring the LP11c mode. (b) Steady-state modal gain versus injection current density. The operation wavelength is ∼0.85 µm, the cavity length is L=0.972 µm, the refractive-index step is 0.01, and the substrate temperature is 292 K.

Fig. 6
Fig. 6

Dynamical evolution of (a) power and of (b) modal gain for an alternated two-contact modulation at a 10-GHz pulse-repetition frequency. Transverse-mode wavelengths are ∼0.85 µm (near the gain peak). The injected current is also plotted with thinner lines in the middle of the figure. The parameters are L=0.972 µm, Δn=0.01, Tact=315 K, rin=0.5 µm, rout=3 µm.

Fig. 7
Fig. 7

Dynamical evolution of (a) power and of (b) modal gain for an alternated two-contact modulation at a 10-GHz pulse-repetition frequency. Transverse-mode wavelengths are ∼0.87 µm (at the right of the gain peak). The injected current is also plotted with thinner lines in the middle of the figure. The parameters are L=0.995 µm, Δn=0.01, Tact=315 K, rin=0.5 µm, rout=3 µm.

Fig. 8
Fig. 8

Dynamical evolution of (a) power and of (b) modal gain for an alternated two-contact modulation at a 10-GHz pulse-repetition frequency. Transverse-mode wavelengths are ∼0.83 µm (at the left of the gain peak). The injected current is also plotted with thinner lines in the middle of the figure. The parameters are L=0.95 µm, Δn=0.01, Tact=315 K, rin=0.5 µm, rout=3 µm.

Fig. 9
Fig. 9

Dynamical evolution of (a)–(c) power and of (d)–(f) modal gain for an alternated two-contact modulation at a 10-GHz pulse-repetition frequency for a 0.1 refractive-index step. Transverse-mode wavelengths are ∼0.85 µm (near the gain peak). The parameters are L=0.972 µm, Tact=315 K, rin=0.5 µm, rout=3 µm.

Tables (1)

Tables Icon

Table 1 Device and Material Parameters

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

ψmn(r)=Jm(umnr/a)Jm(umn)ifra,
ψmn(r)=Km(wmnr/a)Km(wmn)otherwise.
E(r, ϕ, t)=12m,n,iψmni(r, ϕ)Emni(t)×exp(-jωmnt)+c.c.,
dImnidt=vgΓgmni-1τp,mniImni+βdNw0a02πNrdrdϕ2τn+2βdNw0a02πNrdrdϕτnImni1/2ξmni,
gmni
=002π|ψmni(r, ϕ)|2g[N(r, ϕ, t), λmn, Tact]rdrdϕ002π|ψmni(r, ϕ)|2rdrdϕ,
N(r, ϕ, t)t
=D1rrr Nr+Dr22Nϕ2-Nτn+j(r, ϕ, t)edNw-na0n|ψ0n(r)|2g0n|E0n|2+m=1,3i=c,s2amn|ψmni(r, ϕ)|2gmni|Emni|2,

Metrics