Abstract

We combine the results of full many-body band-structure calculations of the semiconductor optical response and a full space–time-resolved laser propagation model. Two quantum-well structures are chosen, one showing a sharp increase of the linewidth enhancement factor with density; the other, a clamping of this factor with increasing density. The average far-field broadening of two weakly turbulent broad-area high-power semiconductor lasers is shown to be quite different for the two structures.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. R. Marciante and G. P. Agrawal, “Nonlinear mechanisms of filamentation in broad area semiconductor lasers,” IEEE J. Quantum Electron. 32, 590–596 (1996).
    [CrossRef]
  2. G. Levy and A. A. Hardy, “Chaotic effects in flared lasers: a numerical analysis,” IEEE J. Quantum Electron. 33, 26–32 (1997); “Control and suppression of chaos in flared lasers: a numerical analysis,” IEEE J. Quantum Electron. 34, 1–6 (1998).
    [CrossRef]
  3. H. Adachihara, O. Hess, R. A. Indik, and J. V. Moloney, “Semiconductor laser array dynamics: numerical simulations on multistripe index-guided lasers,” J. Opt. Soc. Am. B 10, 496–506 (1993).
    [CrossRef]
  4. W. W. Chow, S. W. Koch, and M. Sargent III, Semiconductor Laser Physics (Springer-Verlag, New York, 1994).
  5. S. Hughes, A. Knorr, S. W. Koch, R. Binder, R. A. Indik, and J. V. Moloney, “The influence of electron–hole scattering on the gain spectra and saturation behavior of highly excited semiconductors,” Solid State Commun. 100, 555–559 (1996).
    [CrossRef]
  6. A. Girndt, F. Jahnke, A. Knorr, S. W. Koch, and W. W. Chow, “Multi-band Bloch equations and gain spectra of highly excited II–VI semiconductor quantum wells,” Phys. Status Solidi B 202, 725–739 (1997).
    [CrossRef]
  7. C. Ellmers, M. Hoffman, W. W. Ruhle, A. Girndt, F. Jahnke, W. W. Chow, A. Knorr, S. W. Koch, C. Hanke, L. Korte, and C. Hoyler, “Gain spectra of an (InGa) as single quantum well laser diode,” Phys. Status Solidi B 206, 407–412 (1998).
    [CrossRef]
  8. W. W. Chow, P. M. Smowton, P. Blood, A. Girndt, F. Jahnke, and S. W. Kock, “Comparison of experimental and theoretical GaInP quantum well gain spectra,” Appl. Phys. Lett. 71, 157–159 (1997).
    [CrossRef]
  9. C. Z. Ning, W. W. Chow, D. J. Bossert, R. A. Indik, and J. V. Moloney, “Influences of unconfined states on the optical properties of quantum well structures,” J. Sel. Top. Quantum Electron. 3, 129–135 (1997).
    [CrossRef]
  10. J. Hader, D. Bossert, J. Stohs, W. W. Chow, S. W. Koch, and J. V. Moloney, “Clamping of the linewidth enhancement factor in narrow quantum-well semiconductor lasers,” Appl. Phys. Lett. 74, 2277–2279 (1999).
    [CrossRef]
  11. J. Hader, J. V. Moloney, and S. W. Koch, “Microscopic theory of gain, absorption and refractive index in semiconductor materials: influence of conduction band non-parabolicity and Coulomb-induced intersubband coupling,” IEEE J. Quantum Electron. (to be published).
  12. J. V. Moloney, R. A. Indik, and C. Z. Ning, “Full space–time simulation of high-brightness semiconductor lasers,” IEEE Photon. Technol. Lett. 9, 731–733 (1997), and references therein.
    [CrossRef]
  13. C. Z. Ning, R. A. Indik, and J. V. Moloney, “Effective Bloch equations for semiconductor lasers and amplifiers,” IEEE J. Quantum Electron. 33, 1543–1550 (1997).
    [CrossRef]
  14. J. V. Moloney, A. Egan, C. Z. Ning, and R. A. Indik, “Spontaneous spatiotemporal instabilities in current modulated master-oscillator power-amplifier lasers,” IEEE Photon. Technol. Lett. 10, 1229–1231 (1998).
    [CrossRef]
  15. A. Mar, G. A. Vawter, S. W. Koch, W. W. Chow, R. A. Indik, and J. V. Moloney, “High peak power gain-switched flared waveguide lasers,” presented at the Conference on Lasers and Electro-Optics (CLEO/US), Baltimore, Maryland, May 23–28, 1999.
  16. P. O’Brien, C. Moorhouse, J. Braddell, and J. G. McInerney, “Imaging of curved facet unstable resonator semiconductor lasers,” Electron. Lett. 34, 561–562 (1998).
    [CrossRef]
  17. D. J. Bossert and D. Gallant, “Gain, refractive index, and alpha-parameter in InGaAs–GaAs SQW broad-area lasers,” IEEE Photon. Technol. Lett. 8, 322–324 (1996).
    [CrossRef]
  18. P. K. Jakobsen, J. V. Moloney, A. C. Newell, and R. A. Indik, “Space–time dynamics of wide gain section lasers,” Phys. Rev. A 45, 8129–8137 (1992).
    [CrossRef] [PubMed]
  19. D. Hochheiser, J. V. Moloney, and J. Lega, “Controlling optical turbulence,” Phys. Rev. A 55, R4011–R4014 (1997).
    [CrossRef]
  20. D. Bossert, Air Force Research Laboratory, Kirtland AFB, N. Mex. 87117–5776 (personal communication, 1996).
  21. P. M. W. Skovgaard, J. G. McInerney, J. V. Moloney, R. A. Indik, and C. Z. Ning, “Suppression of transverse and longitudinal instabilities in high power MFA-MOPA semiconductor devices,” in Conference on Lasers and Electro-Optics (CLEO), Vol. 6 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), p. 244.
  22. T. Roessler, R. A. Indik, G. K. Harkness, J. V. Moloney, and C. Z. Ning, “Modeling the interplay of thermal effects and transverse mode behavior in native-oxide-confined vertical-cavity surface emitting lasers,” Phys. Rev. A 58, 3279–3292 (1998).
    [CrossRef]

1999 (1)

J. Hader, D. Bossert, J. Stohs, W. W. Chow, S. W. Koch, and J. V. Moloney, “Clamping of the linewidth enhancement factor in narrow quantum-well semiconductor lasers,” Appl. Phys. Lett. 74, 2277–2279 (1999).
[CrossRef]

1998 (4)

T. Roessler, R. A. Indik, G. K. Harkness, J. V. Moloney, and C. Z. Ning, “Modeling the interplay of thermal effects and transverse mode behavior in native-oxide-confined vertical-cavity surface emitting lasers,” Phys. Rev. A 58, 3279–3292 (1998).
[CrossRef]

C. Ellmers, M. Hoffman, W. W. Ruhle, A. Girndt, F. Jahnke, W. W. Chow, A. Knorr, S. W. Koch, C. Hanke, L. Korte, and C. Hoyler, “Gain spectra of an (InGa) as single quantum well laser diode,” Phys. Status Solidi B 206, 407–412 (1998).
[CrossRef]

J. V. Moloney, A. Egan, C. Z. Ning, and R. A. Indik, “Spontaneous spatiotemporal instabilities in current modulated master-oscillator power-amplifier lasers,” IEEE Photon. Technol. Lett. 10, 1229–1231 (1998).
[CrossRef]

P. O’Brien, C. Moorhouse, J. Braddell, and J. G. McInerney, “Imaging of curved facet unstable resonator semiconductor lasers,” Electron. Lett. 34, 561–562 (1998).
[CrossRef]

1997 (6)

W. W. Chow, P. M. Smowton, P. Blood, A. Girndt, F. Jahnke, and S. W. Kock, “Comparison of experimental and theoretical GaInP quantum well gain spectra,” Appl. Phys. Lett. 71, 157–159 (1997).
[CrossRef]

C. Z. Ning, W. W. Chow, D. J. Bossert, R. A. Indik, and J. V. Moloney, “Influences of unconfined states on the optical properties of quantum well structures,” J. Sel. Top. Quantum Electron. 3, 129–135 (1997).
[CrossRef]

A. Girndt, F. Jahnke, A. Knorr, S. W. Koch, and W. W. Chow, “Multi-band Bloch equations and gain spectra of highly excited II–VI semiconductor quantum wells,” Phys. Status Solidi B 202, 725–739 (1997).
[CrossRef]

J. V. Moloney, R. A. Indik, and C. Z. Ning, “Full space–time simulation of high-brightness semiconductor lasers,” IEEE Photon. Technol. Lett. 9, 731–733 (1997), and references therein.
[CrossRef]

C. Z. Ning, R. A. Indik, and J. V. Moloney, “Effective Bloch equations for semiconductor lasers and amplifiers,” IEEE J. Quantum Electron. 33, 1543–1550 (1997).
[CrossRef]

D. Hochheiser, J. V. Moloney, and J. Lega, “Controlling optical turbulence,” Phys. Rev. A 55, R4011–R4014 (1997).
[CrossRef]

1996 (3)

J. R. Marciante and G. P. Agrawal, “Nonlinear mechanisms of filamentation in broad area semiconductor lasers,” IEEE J. Quantum Electron. 32, 590–596 (1996).
[CrossRef]

S. Hughes, A. Knorr, S. W. Koch, R. Binder, R. A. Indik, and J. V. Moloney, “The influence of electron–hole scattering on the gain spectra and saturation behavior of highly excited semiconductors,” Solid State Commun. 100, 555–559 (1996).
[CrossRef]

D. J. Bossert and D. Gallant, “Gain, refractive index, and alpha-parameter in InGaAs–GaAs SQW broad-area lasers,” IEEE Photon. Technol. Lett. 8, 322–324 (1996).
[CrossRef]

1993 (1)

1992 (1)

P. K. Jakobsen, J. V. Moloney, A. C. Newell, and R. A. Indik, “Space–time dynamics of wide gain section lasers,” Phys. Rev. A 45, 8129–8137 (1992).
[CrossRef] [PubMed]

Adachihara, H.

Agrawal, G. P.

J. R. Marciante and G. P. Agrawal, “Nonlinear mechanisms of filamentation in broad area semiconductor lasers,” IEEE J. Quantum Electron. 32, 590–596 (1996).
[CrossRef]

Binder, R.

S. Hughes, A. Knorr, S. W. Koch, R. Binder, R. A. Indik, and J. V. Moloney, “The influence of electron–hole scattering on the gain spectra and saturation behavior of highly excited semiconductors,” Solid State Commun. 100, 555–559 (1996).
[CrossRef]

Blood, P.

W. W. Chow, P. M. Smowton, P. Blood, A. Girndt, F. Jahnke, and S. W. Kock, “Comparison of experimental and theoretical GaInP quantum well gain spectra,” Appl. Phys. Lett. 71, 157–159 (1997).
[CrossRef]

Bossert, D.

J. Hader, D. Bossert, J. Stohs, W. W. Chow, S. W. Koch, and J. V. Moloney, “Clamping of the linewidth enhancement factor in narrow quantum-well semiconductor lasers,” Appl. Phys. Lett. 74, 2277–2279 (1999).
[CrossRef]

Bossert, D. J.

C. Z. Ning, W. W. Chow, D. J. Bossert, R. A. Indik, and J. V. Moloney, “Influences of unconfined states on the optical properties of quantum well structures,” J. Sel. Top. Quantum Electron. 3, 129–135 (1997).
[CrossRef]

D. J. Bossert and D. Gallant, “Gain, refractive index, and alpha-parameter in InGaAs–GaAs SQW broad-area lasers,” IEEE Photon. Technol. Lett. 8, 322–324 (1996).
[CrossRef]

Braddell, J.

P. O’Brien, C. Moorhouse, J. Braddell, and J. G. McInerney, “Imaging of curved facet unstable resonator semiconductor lasers,” Electron. Lett. 34, 561–562 (1998).
[CrossRef]

Chow, W. W.

J. Hader, D. Bossert, J. Stohs, W. W. Chow, S. W. Koch, and J. V. Moloney, “Clamping of the linewidth enhancement factor in narrow quantum-well semiconductor lasers,” Appl. Phys. Lett. 74, 2277–2279 (1999).
[CrossRef]

C. Ellmers, M. Hoffman, W. W. Ruhle, A. Girndt, F. Jahnke, W. W. Chow, A. Knorr, S. W. Koch, C. Hanke, L. Korte, and C. Hoyler, “Gain spectra of an (InGa) as single quantum well laser diode,” Phys. Status Solidi B 206, 407–412 (1998).
[CrossRef]

A. Girndt, F. Jahnke, A. Knorr, S. W. Koch, and W. W. Chow, “Multi-band Bloch equations and gain spectra of highly excited II–VI semiconductor quantum wells,” Phys. Status Solidi B 202, 725–739 (1997).
[CrossRef]

W. W. Chow, P. M. Smowton, P. Blood, A. Girndt, F. Jahnke, and S. W. Kock, “Comparison of experimental and theoretical GaInP quantum well gain spectra,” Appl. Phys. Lett. 71, 157–159 (1997).
[CrossRef]

C. Z. Ning, W. W. Chow, D. J. Bossert, R. A. Indik, and J. V. Moloney, “Influences of unconfined states on the optical properties of quantum well structures,” J. Sel. Top. Quantum Electron. 3, 129–135 (1997).
[CrossRef]

Egan, A.

J. V. Moloney, A. Egan, C. Z. Ning, and R. A. Indik, “Spontaneous spatiotemporal instabilities in current modulated master-oscillator power-amplifier lasers,” IEEE Photon. Technol. Lett. 10, 1229–1231 (1998).
[CrossRef]

Ellmers, C.

C. Ellmers, M. Hoffman, W. W. Ruhle, A. Girndt, F. Jahnke, W. W. Chow, A. Knorr, S. W. Koch, C. Hanke, L. Korte, and C. Hoyler, “Gain spectra of an (InGa) as single quantum well laser diode,” Phys. Status Solidi B 206, 407–412 (1998).
[CrossRef]

Gallant, D.

D. J. Bossert and D. Gallant, “Gain, refractive index, and alpha-parameter in InGaAs–GaAs SQW broad-area lasers,” IEEE Photon. Technol. Lett. 8, 322–324 (1996).
[CrossRef]

Girndt, A.

C. Ellmers, M. Hoffman, W. W. Ruhle, A. Girndt, F. Jahnke, W. W. Chow, A. Knorr, S. W. Koch, C. Hanke, L. Korte, and C. Hoyler, “Gain spectra of an (InGa) as single quantum well laser diode,” Phys. Status Solidi B 206, 407–412 (1998).
[CrossRef]

W. W. Chow, P. M. Smowton, P. Blood, A. Girndt, F. Jahnke, and S. W. Kock, “Comparison of experimental and theoretical GaInP quantum well gain spectra,” Appl. Phys. Lett. 71, 157–159 (1997).
[CrossRef]

A. Girndt, F. Jahnke, A. Knorr, S. W. Koch, and W. W. Chow, “Multi-band Bloch equations and gain spectra of highly excited II–VI semiconductor quantum wells,” Phys. Status Solidi B 202, 725–739 (1997).
[CrossRef]

Hader, J.

J. Hader, D. Bossert, J. Stohs, W. W. Chow, S. W. Koch, and J. V. Moloney, “Clamping of the linewidth enhancement factor in narrow quantum-well semiconductor lasers,” Appl. Phys. Lett. 74, 2277–2279 (1999).
[CrossRef]

Hanke, C.

C. Ellmers, M. Hoffman, W. W. Ruhle, A. Girndt, F. Jahnke, W. W. Chow, A. Knorr, S. W. Koch, C. Hanke, L. Korte, and C. Hoyler, “Gain spectra of an (InGa) as single quantum well laser diode,” Phys. Status Solidi B 206, 407–412 (1998).
[CrossRef]

Harkness, G. K.

T. Roessler, R. A. Indik, G. K. Harkness, J. V. Moloney, and C. Z. Ning, “Modeling the interplay of thermal effects and transverse mode behavior in native-oxide-confined vertical-cavity surface emitting lasers,” Phys. Rev. A 58, 3279–3292 (1998).
[CrossRef]

Hess, O.

Hochheiser, D.

D. Hochheiser, J. V. Moloney, and J. Lega, “Controlling optical turbulence,” Phys. Rev. A 55, R4011–R4014 (1997).
[CrossRef]

Hoffman, M.

C. Ellmers, M. Hoffman, W. W. Ruhle, A. Girndt, F. Jahnke, W. W. Chow, A. Knorr, S. W. Koch, C. Hanke, L. Korte, and C. Hoyler, “Gain spectra of an (InGa) as single quantum well laser diode,” Phys. Status Solidi B 206, 407–412 (1998).
[CrossRef]

Hoyler, C.

C. Ellmers, M. Hoffman, W. W. Ruhle, A. Girndt, F. Jahnke, W. W. Chow, A. Knorr, S. W. Koch, C. Hanke, L. Korte, and C. Hoyler, “Gain spectra of an (InGa) as single quantum well laser diode,” Phys. Status Solidi B 206, 407–412 (1998).
[CrossRef]

Hughes, S.

S. Hughes, A. Knorr, S. W. Koch, R. Binder, R. A. Indik, and J. V. Moloney, “The influence of electron–hole scattering on the gain spectra and saturation behavior of highly excited semiconductors,” Solid State Commun. 100, 555–559 (1996).
[CrossRef]

Indik, R. A.

J. V. Moloney, A. Egan, C. Z. Ning, and R. A. Indik, “Spontaneous spatiotemporal instabilities in current modulated master-oscillator power-amplifier lasers,” IEEE Photon. Technol. Lett. 10, 1229–1231 (1998).
[CrossRef]

T. Roessler, R. A. Indik, G. K. Harkness, J. V. Moloney, and C. Z. Ning, “Modeling the interplay of thermal effects and transverse mode behavior in native-oxide-confined vertical-cavity surface emitting lasers,” Phys. Rev. A 58, 3279–3292 (1998).
[CrossRef]

C. Z. Ning, R. A. Indik, and J. V. Moloney, “Effective Bloch equations for semiconductor lasers and amplifiers,” IEEE J. Quantum Electron. 33, 1543–1550 (1997).
[CrossRef]

C. Z. Ning, W. W. Chow, D. J. Bossert, R. A. Indik, and J. V. Moloney, “Influences of unconfined states on the optical properties of quantum well structures,” J. Sel. Top. Quantum Electron. 3, 129–135 (1997).
[CrossRef]

J. V. Moloney, R. A. Indik, and C. Z. Ning, “Full space–time simulation of high-brightness semiconductor lasers,” IEEE Photon. Technol. Lett. 9, 731–733 (1997), and references therein.
[CrossRef]

S. Hughes, A. Knorr, S. W. Koch, R. Binder, R. A. Indik, and J. V. Moloney, “The influence of electron–hole scattering on the gain spectra and saturation behavior of highly excited semiconductors,” Solid State Commun. 100, 555–559 (1996).
[CrossRef]

H. Adachihara, O. Hess, R. A. Indik, and J. V. Moloney, “Semiconductor laser array dynamics: numerical simulations on multistripe index-guided lasers,” J. Opt. Soc. Am. B 10, 496–506 (1993).
[CrossRef]

P. K. Jakobsen, J. V. Moloney, A. C. Newell, and R. A. Indik, “Space–time dynamics of wide gain section lasers,” Phys. Rev. A 45, 8129–8137 (1992).
[CrossRef] [PubMed]

Jahnke, F.

C. Ellmers, M. Hoffman, W. W. Ruhle, A. Girndt, F. Jahnke, W. W. Chow, A. Knorr, S. W. Koch, C. Hanke, L. Korte, and C. Hoyler, “Gain spectra of an (InGa) as single quantum well laser diode,” Phys. Status Solidi B 206, 407–412 (1998).
[CrossRef]

A. Girndt, F. Jahnke, A. Knorr, S. W. Koch, and W. W. Chow, “Multi-band Bloch equations and gain spectra of highly excited II–VI semiconductor quantum wells,” Phys. Status Solidi B 202, 725–739 (1997).
[CrossRef]

W. W. Chow, P. M. Smowton, P. Blood, A. Girndt, F. Jahnke, and S. W. Kock, “Comparison of experimental and theoretical GaInP quantum well gain spectra,” Appl. Phys. Lett. 71, 157–159 (1997).
[CrossRef]

Jakobsen, P. K.

P. K. Jakobsen, J. V. Moloney, A. C. Newell, and R. A. Indik, “Space–time dynamics of wide gain section lasers,” Phys. Rev. A 45, 8129–8137 (1992).
[CrossRef] [PubMed]

Knorr, A.

C. Ellmers, M. Hoffman, W. W. Ruhle, A. Girndt, F. Jahnke, W. W. Chow, A. Knorr, S. W. Koch, C. Hanke, L. Korte, and C. Hoyler, “Gain spectra of an (InGa) as single quantum well laser diode,” Phys. Status Solidi B 206, 407–412 (1998).
[CrossRef]

A. Girndt, F. Jahnke, A. Knorr, S. W. Koch, and W. W. Chow, “Multi-band Bloch equations and gain spectra of highly excited II–VI semiconductor quantum wells,” Phys. Status Solidi B 202, 725–739 (1997).
[CrossRef]

S. Hughes, A. Knorr, S. W. Koch, R. Binder, R. A. Indik, and J. V. Moloney, “The influence of electron–hole scattering on the gain spectra and saturation behavior of highly excited semiconductors,” Solid State Commun. 100, 555–559 (1996).
[CrossRef]

Koch, S. W.

J. Hader, D. Bossert, J. Stohs, W. W. Chow, S. W. Koch, and J. V. Moloney, “Clamping of the linewidth enhancement factor in narrow quantum-well semiconductor lasers,” Appl. Phys. Lett. 74, 2277–2279 (1999).
[CrossRef]

C. Ellmers, M. Hoffman, W. W. Ruhle, A. Girndt, F. Jahnke, W. W. Chow, A. Knorr, S. W. Koch, C. Hanke, L. Korte, and C. Hoyler, “Gain spectra of an (InGa) as single quantum well laser diode,” Phys. Status Solidi B 206, 407–412 (1998).
[CrossRef]

A. Girndt, F. Jahnke, A. Knorr, S. W. Koch, and W. W. Chow, “Multi-band Bloch equations and gain spectra of highly excited II–VI semiconductor quantum wells,” Phys. Status Solidi B 202, 725–739 (1997).
[CrossRef]

S. Hughes, A. Knorr, S. W. Koch, R. Binder, R. A. Indik, and J. V. Moloney, “The influence of electron–hole scattering on the gain spectra and saturation behavior of highly excited semiconductors,” Solid State Commun. 100, 555–559 (1996).
[CrossRef]

Kock, S. W.

W. W. Chow, P. M. Smowton, P. Blood, A. Girndt, F. Jahnke, and S. W. Kock, “Comparison of experimental and theoretical GaInP quantum well gain spectra,” Appl. Phys. Lett. 71, 157–159 (1997).
[CrossRef]

Korte, L.

C. Ellmers, M. Hoffman, W. W. Ruhle, A. Girndt, F. Jahnke, W. W. Chow, A. Knorr, S. W. Koch, C. Hanke, L. Korte, and C. Hoyler, “Gain spectra of an (InGa) as single quantum well laser diode,” Phys. Status Solidi B 206, 407–412 (1998).
[CrossRef]

Lega, J.

D. Hochheiser, J. V. Moloney, and J. Lega, “Controlling optical turbulence,” Phys. Rev. A 55, R4011–R4014 (1997).
[CrossRef]

Marciante, J. R.

J. R. Marciante and G. P. Agrawal, “Nonlinear mechanisms of filamentation in broad area semiconductor lasers,” IEEE J. Quantum Electron. 32, 590–596 (1996).
[CrossRef]

McInerney, J. G.

P. O’Brien, C. Moorhouse, J. Braddell, and J. G. McInerney, “Imaging of curved facet unstable resonator semiconductor lasers,” Electron. Lett. 34, 561–562 (1998).
[CrossRef]

Moloney, J. V.

J. Hader, D. Bossert, J. Stohs, W. W. Chow, S. W. Koch, and J. V. Moloney, “Clamping of the linewidth enhancement factor in narrow quantum-well semiconductor lasers,” Appl. Phys. Lett. 74, 2277–2279 (1999).
[CrossRef]

J. V. Moloney, A. Egan, C. Z. Ning, and R. A. Indik, “Spontaneous spatiotemporal instabilities in current modulated master-oscillator power-amplifier lasers,” IEEE Photon. Technol. Lett. 10, 1229–1231 (1998).
[CrossRef]

T. Roessler, R. A. Indik, G. K. Harkness, J. V. Moloney, and C. Z. Ning, “Modeling the interplay of thermal effects and transverse mode behavior in native-oxide-confined vertical-cavity surface emitting lasers,” Phys. Rev. A 58, 3279–3292 (1998).
[CrossRef]

C. Z. Ning, R. A. Indik, and J. V. Moloney, “Effective Bloch equations for semiconductor lasers and amplifiers,” IEEE J. Quantum Electron. 33, 1543–1550 (1997).
[CrossRef]

J. V. Moloney, R. A. Indik, and C. Z. Ning, “Full space–time simulation of high-brightness semiconductor lasers,” IEEE Photon. Technol. Lett. 9, 731–733 (1997), and references therein.
[CrossRef]

C. Z. Ning, W. W. Chow, D. J. Bossert, R. A. Indik, and J. V. Moloney, “Influences of unconfined states on the optical properties of quantum well structures,” J. Sel. Top. Quantum Electron. 3, 129–135 (1997).
[CrossRef]

D. Hochheiser, J. V. Moloney, and J. Lega, “Controlling optical turbulence,” Phys. Rev. A 55, R4011–R4014 (1997).
[CrossRef]

S. Hughes, A. Knorr, S. W. Koch, R. Binder, R. A. Indik, and J. V. Moloney, “The influence of electron–hole scattering on the gain spectra and saturation behavior of highly excited semiconductors,” Solid State Commun. 100, 555–559 (1996).
[CrossRef]

H. Adachihara, O. Hess, R. A. Indik, and J. V. Moloney, “Semiconductor laser array dynamics: numerical simulations on multistripe index-guided lasers,” J. Opt. Soc. Am. B 10, 496–506 (1993).
[CrossRef]

P. K. Jakobsen, J. V. Moloney, A. C. Newell, and R. A. Indik, “Space–time dynamics of wide gain section lasers,” Phys. Rev. A 45, 8129–8137 (1992).
[CrossRef] [PubMed]

Moorhouse, C.

P. O’Brien, C. Moorhouse, J. Braddell, and J. G. McInerney, “Imaging of curved facet unstable resonator semiconductor lasers,” Electron. Lett. 34, 561–562 (1998).
[CrossRef]

Newell, A. C.

P. K. Jakobsen, J. V. Moloney, A. C. Newell, and R. A. Indik, “Space–time dynamics of wide gain section lasers,” Phys. Rev. A 45, 8129–8137 (1992).
[CrossRef] [PubMed]

Ning, C. Z.

J. V. Moloney, A. Egan, C. Z. Ning, and R. A. Indik, “Spontaneous spatiotemporal instabilities in current modulated master-oscillator power-amplifier lasers,” IEEE Photon. Technol. Lett. 10, 1229–1231 (1998).
[CrossRef]

T. Roessler, R. A. Indik, G. K. Harkness, J. V. Moloney, and C. Z. Ning, “Modeling the interplay of thermal effects and transverse mode behavior in native-oxide-confined vertical-cavity surface emitting lasers,” Phys. Rev. A 58, 3279–3292 (1998).
[CrossRef]

C. Z. Ning, R. A. Indik, and J. V. Moloney, “Effective Bloch equations for semiconductor lasers and amplifiers,” IEEE J. Quantum Electron. 33, 1543–1550 (1997).
[CrossRef]

C. Z. Ning, W. W. Chow, D. J. Bossert, R. A. Indik, and J. V. Moloney, “Influences of unconfined states on the optical properties of quantum well structures,” J. Sel. Top. Quantum Electron. 3, 129–135 (1997).
[CrossRef]

J. V. Moloney, R. A. Indik, and C. Z. Ning, “Full space–time simulation of high-brightness semiconductor lasers,” IEEE Photon. Technol. Lett. 9, 731–733 (1997), and references therein.
[CrossRef]

O’Brien, P.

P. O’Brien, C. Moorhouse, J. Braddell, and J. G. McInerney, “Imaging of curved facet unstable resonator semiconductor lasers,” Electron. Lett. 34, 561–562 (1998).
[CrossRef]

Roessler, T.

T. Roessler, R. A. Indik, G. K. Harkness, J. V. Moloney, and C. Z. Ning, “Modeling the interplay of thermal effects and transverse mode behavior in native-oxide-confined vertical-cavity surface emitting lasers,” Phys. Rev. A 58, 3279–3292 (1998).
[CrossRef]

Ruhle, W. W.

C. Ellmers, M. Hoffman, W. W. Ruhle, A. Girndt, F. Jahnke, W. W. Chow, A. Knorr, S. W. Koch, C. Hanke, L. Korte, and C. Hoyler, “Gain spectra of an (InGa) as single quantum well laser diode,” Phys. Status Solidi B 206, 407–412 (1998).
[CrossRef]

Smowton, P. M.

W. W. Chow, P. M. Smowton, P. Blood, A. Girndt, F. Jahnke, and S. W. Kock, “Comparison of experimental and theoretical GaInP quantum well gain spectra,” Appl. Phys. Lett. 71, 157–159 (1997).
[CrossRef]

Stohs, J.

J. Hader, D. Bossert, J. Stohs, W. W. Chow, S. W. Koch, and J. V. Moloney, “Clamping of the linewidth enhancement factor in narrow quantum-well semiconductor lasers,” Appl. Phys. Lett. 74, 2277–2279 (1999).
[CrossRef]

Appl. Phys. Lett. (2)

W. W. Chow, P. M. Smowton, P. Blood, A. Girndt, F. Jahnke, and S. W. Kock, “Comparison of experimental and theoretical GaInP quantum well gain spectra,” Appl. Phys. Lett. 71, 157–159 (1997).
[CrossRef]

J. Hader, D. Bossert, J. Stohs, W. W. Chow, S. W. Koch, and J. V. Moloney, “Clamping of the linewidth enhancement factor in narrow quantum-well semiconductor lasers,” Appl. Phys. Lett. 74, 2277–2279 (1999).
[CrossRef]

Electron. Lett. (1)

P. O’Brien, C. Moorhouse, J. Braddell, and J. G. McInerney, “Imaging of curved facet unstable resonator semiconductor lasers,” Electron. Lett. 34, 561–562 (1998).
[CrossRef]

IEEE J. Quantum Electron. (2)

C. Z. Ning, R. A. Indik, and J. V. Moloney, “Effective Bloch equations for semiconductor lasers and amplifiers,” IEEE J. Quantum Electron. 33, 1543–1550 (1997).
[CrossRef]

J. R. Marciante and G. P. Agrawal, “Nonlinear mechanisms of filamentation in broad area semiconductor lasers,” IEEE J. Quantum Electron. 32, 590–596 (1996).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

J. V. Moloney, A. Egan, C. Z. Ning, and R. A. Indik, “Spontaneous spatiotemporal instabilities in current modulated master-oscillator power-amplifier lasers,” IEEE Photon. Technol. Lett. 10, 1229–1231 (1998).
[CrossRef]

J. V. Moloney, R. A. Indik, and C. Z. Ning, “Full space–time simulation of high-brightness semiconductor lasers,” IEEE Photon. Technol. Lett. 9, 731–733 (1997), and references therein.
[CrossRef]

D. J. Bossert and D. Gallant, “Gain, refractive index, and alpha-parameter in InGaAs–GaAs SQW broad-area lasers,” IEEE Photon. Technol. Lett. 8, 322–324 (1996).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Sel. Top. Quantum Electron. (1)

C. Z. Ning, W. W. Chow, D. J. Bossert, R. A. Indik, and J. V. Moloney, “Influences of unconfined states on the optical properties of quantum well structures,” J. Sel. Top. Quantum Electron. 3, 129–135 (1997).
[CrossRef]

Phys. Rev. A (3)

P. K. Jakobsen, J. V. Moloney, A. C. Newell, and R. A. Indik, “Space–time dynamics of wide gain section lasers,” Phys. Rev. A 45, 8129–8137 (1992).
[CrossRef] [PubMed]

D. Hochheiser, J. V. Moloney, and J. Lega, “Controlling optical turbulence,” Phys. Rev. A 55, R4011–R4014 (1997).
[CrossRef]

T. Roessler, R. A. Indik, G. K. Harkness, J. V. Moloney, and C. Z. Ning, “Modeling the interplay of thermal effects and transverse mode behavior in native-oxide-confined vertical-cavity surface emitting lasers,” Phys. Rev. A 58, 3279–3292 (1998).
[CrossRef]

Phys. Status Solidi B (2)

A. Girndt, F. Jahnke, A. Knorr, S. W. Koch, and W. W. Chow, “Multi-band Bloch equations and gain spectra of highly excited II–VI semiconductor quantum wells,” Phys. Status Solidi B 202, 725–739 (1997).
[CrossRef]

C. Ellmers, M. Hoffman, W. W. Ruhle, A. Girndt, F. Jahnke, W. W. Chow, A. Knorr, S. W. Koch, C. Hanke, L. Korte, and C. Hoyler, “Gain spectra of an (InGa) as single quantum well laser diode,” Phys. Status Solidi B 206, 407–412 (1998).
[CrossRef]

Solid State Commun. (1)

S. Hughes, A. Knorr, S. W. Koch, R. Binder, R. A. Indik, and J. V. Moloney, “The influence of electron–hole scattering on the gain spectra and saturation behavior of highly excited semiconductors,” Solid State Commun. 100, 555–559 (1996).
[CrossRef]

Other (6)

W. W. Chow, S. W. Koch, and M. Sargent III, Semiconductor Laser Physics (Springer-Verlag, New York, 1994).

J. Hader, J. V. Moloney, and S. W. Koch, “Microscopic theory of gain, absorption and refractive index in semiconductor materials: influence of conduction band non-parabolicity and Coulomb-induced intersubband coupling,” IEEE J. Quantum Electron. (to be published).

A. Mar, G. A. Vawter, S. W. Koch, W. W. Chow, R. A. Indik, and J. V. Moloney, “High peak power gain-switched flared waveguide lasers,” presented at the Conference on Lasers and Electro-Optics (CLEO/US), Baltimore, Maryland, May 23–28, 1999.

D. Bossert, Air Force Research Laboratory, Kirtland AFB, N. Mex. 87117–5776 (personal communication, 1996).

P. M. W. Skovgaard, J. G. McInerney, J. V. Moloney, R. A. Indik, and C. Z. Ning, “Suppression of transverse and longitudinal instabilities in high power MFA-MOPA semiconductor devices,” in Conference on Lasers and Electro-Optics (CLEO), Vol. 6 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), p. 244.

G. Levy and A. A. Hardy, “Chaotic effects in flared lasers: a numerical analysis,” IEEE J. Quantum Electron. 33, 26–32 (1997); “Control and suppression of chaos in flared lasers: a numerical analysis,” IEEE J. Quantum Electron. 34, 1–6 (1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Graphs of the calculated out-of-plane (left) and in-plane (right) band structure for a 10-nm (top) and a 5-nm (bottom) In0.2Ga0.8As QW structure. The QW and GRINSCH barriers are shown in the pictures.

Fig. 2
Fig. 2

Microscopically computed gain and refractive-index spectra for the 5-nm QW structure whose band structure is shown in Fig. 1. The carrier densities for which the spectra are shown, starting from bottom to top, are (0.5, 1.0, 1.5,  2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0)×1012 cm-2.

Fig. 3
Fig. 3

Microscopically computed gain and refractive-index spectra for the 10-nm QW structure whose band structure is shown in Fig. 1. The carrier densities for which the spectra are shown, starting from bottom to top, are (0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0)×1012 cm-2.

Fig. 4
Fig. 4

Detector-averaged total output power of the 5-nm QW broad-area laser. Detector response time is 17 ps.

Fig. 5
Fig. 5

Detector-averaged total output power of the 10-nm QW broad-area laser. Detector response time is 17 ps.

Fig. 6
Fig. 6

Snapshot of the carrier-density distribution within the 5-nm (left) and the 10-nm (right) QW 100 µm×500 µm broad-area lasers.

Fig. 7
Fig. 7

Nonlinear dispersion curves for the 5-nm (left) and the 10-nm (right) QW devices. Only 5 longitudinal modes out of ∼20 prominent modes are displayed for clarity.

Fig. 8
Fig. 8

Comparison of the time-averaged far fields for the 10-nm (dashed curve) and the 5-nm (solid curve) QW broad-area lasers.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

ddtPj1i1,k=1ii2j2(Ej1j2,khδi1i2+Ei1i2,keδj1j2)Pj2i2,k+(1-fi1,ke-fj1,kh)Ui1j1,k+ddtPj1,i1,kcorr
Ei1i2,ke=εi1,keδi1i2-i3,qVk-qi1i3i2i3fi3,qe,
Ej1j2,kh=εj1,khδj1j2-j3,qVk-qj2j3j1j3fj3,qh,
Ui1j1,k=-μi1j1,kE(t)-i2j2,qVk-qi1j2j1j2Pj2i2,q.
±E±z+ngcE±t
=i2K2E±x2+iK20b(P0±+P±),
dP±(t)dt={-Γ(N)+i[δ0-δ(N)]}P±(t)-i0bA(N)E±(t),
dNdt=DN 2Nx2-γ1N+Ied+i4[(P0++P+)*E+-(P0++P+)E+*]+i4[(P0-+P-)*E--(P0-+P-)E-*],

Metrics