Abstract

Nonlinear absorption and amplification of a probe laser beam can be controlled by adjustment of the intensity-modulation frequency and the wavelength of a pump laser beam. A demonstration of this effect in Er3+-doped fluoroindate glass is presented. The results show maximum amplification of the probe beam (∼12%) when a pump laser emitting 16 mW of power is modulated at ∼30 Hz. In the limit of low modulation frequencies, or cw pumping, induced absorption of the probe beam is the dominant nonlinear process.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. M. Gibbs, Optical Bistability: Controlling Light by Light (Academic, New York, 1985).
  2. G. P. Agrawal, Nonlinear Fiber Optics (Academic, New York, 1995).
  3. A. Miller, D. A. B. Miller, and S. D. Smith, “Dynamic nonlinear optical processes in semiconductors,” Adv. Phys. 30, 697–800 (1981).
    [CrossRef]
  4. H. J. Eichler, P. Günther, and D. W. Pohl, Laser Induced Dynamic Gratings, Vol. 50 of Springer Series in Optical Sciences (Springer-Verlag, Berlin, 1986).
    [CrossRef]
  5. A. Brignon and J. P. Huignard, “Continuous-wave operation of saturable-gain degenerate four-wave mixing in a Nd:YVO4 amplifier,” Opt. Lett. 20, 2096–2098 (1995).
    [CrossRef] [PubMed]
  6. S. Matsuoka, N. Miyanaga, S. Amano, and M. Nakatsuka, “Frequency modulation controlled by cross-phase modulation in optical fiber,” Opt. Lett. 22, 25–27 (1997).
    [CrossRef] [PubMed]
  7. D. J. Hagan, Z. Wang, G. Stegeman, E. W. Van Stryland, M. Sheik-Bahae, and G. Assanto, “Phase-controlled transistor action by cascading of second-order nonlinearities in KTP,” Opt. Lett. 19, 1305–1307 (1994).
    [CrossRef] [PubMed]
  8. M. J. Damzen, K. J. Baldwin, and P. J. Soan, “Optical switching and high-resolution image transfer in a saturable dye spatial light modulator,” J. Opt. Soc. Am. B 11, 313–319 (1994).
    [CrossRef]
  9. A. Peda’el, R. Daisy, M. Horowitz, and B. Fischer, “Beam coupling-induced transparency in a bacteriorhodopsin-based saturable absorber,” Opt. Lett. 23, 1173–1175 (1998).
    [CrossRef]
  10. G. S. Maciel, C. B. de Araújo, Y. Messaddeq, and M. A. Aegerter, “Frequency upconversion in Er3+-doped fluoroindate glasses pumped at 1.48 μm,” Phys. Rev. B 55, 6335–6342 (1997).
    [CrossRef]
  11. L. de S. Menezes, C. B. de Araújo, G. S. Maciel, and Y. Messaddeq, “Continuous wave ultraviolet frequency upconversion due to triads of Nd3+ ions in fluoroindate glass,” Appl. Phys. Lett. 70, 683–635 (1997).
    [CrossRef]
  12. L. E. E. de Araújo, A. S. L. Gomes, C. B. de Araújo, Y. Messaddeq, A. Florez, and M. A. Aegerter, “Frequency upconversion of orange light into blue light in Pr3+ doped fluoroindate glasses,” Phys. Rev. B 50, 16219–16223 (1994).
    [CrossRef]
  13. E. M. Pacheco, C. B. de Araújo, and Y. Messaddeq, “Energy transfer between Pr3+ ions in a fluoroindate glass,” J. Non-Cryst. Solids 226, 265–272 (1998).
    [CrossRef]
  14. S. Kishimoto and K. Hirao, “Intense ultraviolet and blue upconversion fluorescence in Tm3+-doped fluoroindate glasses,” J. Appl. Phys. 80, 1965–1969 (1996).
    [CrossRef]
  15. G. S. Maciel, L. de S. Menezes, A. S. L. Gomes, C. B. de Araújo, Y. Messaddeq, and M. A. Aegerter, “Temperature sensor based on frequency upconversion in Er3+-doped fluoroindate glass,” IEEE Photonics Technol. Lett. 7, 1474–1476 (1995).
    [CrossRef]
  16. J. Azkargorta, I. Iparraguirre, R. Balda, J. Fernández, E. Dénoue, and J. L. Adam, “Spectroscopic and laser properties of Nd3+ in BIGaZLuTMn fluoride glass,” IEEE J. Quantum Electron. 30, 1862–1867 (1994).
    [CrossRef]
  17. R. M. Almeida, J. C. Pereira, Y. Messaddeq, and M. A. Aegerter, “Vibrational spectra and structure of fluoroindate glasses,” J. Non-Cryst. Solids 161, 105–108 (1993).
    [CrossRef]
  18. See, for example, M. J. Digonnet, ed., Rare-Earth Doped Fiber Lasers and Amplifiers (Marcel Dekker, New York, 1993), and references therein.
  19. X. Zou and T. Izumitami, “Spectroscopic properties and mechanism of excited state absorption and energy transfer upconversion for Er3+-doped glasses,” J. Non-Cryst. Solids 162, 68–80 (1993).
    [CrossRef]
  20. N. Rakov, C. B. de Araújo, Y. Messaddeq, and M. A. Aegerter, “Avalanche upconversion in Er3+-doped fluoroindate glass,” Appl. Phys. Lett. 70, 3084–3086 (1997).
    [CrossRef]
  21. C. B. de Araújo, G. S. Maciel, N. Rakov, and Y. Messaddeq, “Giant nonlinear absorption in Er3+-doped fluoroindate glass,” J. Non-Cryst. Solids 247, 209–214 (1999).
    [CrossRef]
  22. T. Catunda, L. A. O. Nunes, A. Florez, Y. Messaddeq, and M. A. Aegerter, “Spectroscopic properties and upconversion mechanisms in Er3+-doped fluoroindate glasses,” Phys. Rev. B 53, 6065–6070 (1996).
    [CrossRef]
  23. L. W. Tutt and T. F. Boggess, “A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials,” Prog. Quantum Electron. 17, 299–338 (1993).
    [CrossRef]
  24. G. S. Maciel, “Nonlinear spectroscopy of fluoroindate glasses and polymers,” Ph.D. dissertation (Universidade Federal de Pernambuco, Recifer, Brazil, 1999).

1999 (1)

C. B. de Araújo, G. S. Maciel, N. Rakov, and Y. Messaddeq, “Giant nonlinear absorption in Er3+-doped fluoroindate glass,” J. Non-Cryst. Solids 247, 209–214 (1999).
[CrossRef]

1998 (2)

E. M. Pacheco, C. B. de Araújo, and Y. Messaddeq, “Energy transfer between Pr3+ ions in a fluoroindate glass,” J. Non-Cryst. Solids 226, 265–272 (1998).
[CrossRef]

A. Peda’el, R. Daisy, M. Horowitz, and B. Fischer, “Beam coupling-induced transparency in a bacteriorhodopsin-based saturable absorber,” Opt. Lett. 23, 1173–1175 (1998).
[CrossRef]

1997 (4)

S. Matsuoka, N. Miyanaga, S. Amano, and M. Nakatsuka, “Frequency modulation controlled by cross-phase modulation in optical fiber,” Opt. Lett. 22, 25–27 (1997).
[CrossRef] [PubMed]

N. Rakov, C. B. de Araújo, Y. Messaddeq, and M. A. Aegerter, “Avalanche upconversion in Er3+-doped fluoroindate glass,” Appl. Phys. Lett. 70, 3084–3086 (1997).
[CrossRef]

G. S. Maciel, C. B. de Araújo, Y. Messaddeq, and M. A. Aegerter, “Frequency upconversion in Er3+-doped fluoroindate glasses pumped at 1.48 μm,” Phys. Rev. B 55, 6335–6342 (1997).
[CrossRef]

L. de S. Menezes, C. B. de Araújo, G. S. Maciel, and Y. Messaddeq, “Continuous wave ultraviolet frequency upconversion due to triads of Nd3+ ions in fluoroindate glass,” Appl. Phys. Lett. 70, 683–635 (1997).
[CrossRef]

1996 (2)

S. Kishimoto and K. Hirao, “Intense ultraviolet and blue upconversion fluorescence in Tm3+-doped fluoroindate glasses,” J. Appl. Phys. 80, 1965–1969 (1996).
[CrossRef]

T. Catunda, L. A. O. Nunes, A. Florez, Y. Messaddeq, and M. A. Aegerter, “Spectroscopic properties and upconversion mechanisms in Er3+-doped fluoroindate glasses,” Phys. Rev. B 53, 6065–6070 (1996).
[CrossRef]

1995 (2)

G. S. Maciel, L. de S. Menezes, A. S. L. Gomes, C. B. de Araújo, Y. Messaddeq, and M. A. Aegerter, “Temperature sensor based on frequency upconversion in Er3+-doped fluoroindate glass,” IEEE Photonics Technol. Lett. 7, 1474–1476 (1995).
[CrossRef]

A. Brignon and J. P. Huignard, “Continuous-wave operation of saturable-gain degenerate four-wave mixing in a Nd:YVO4 amplifier,” Opt. Lett. 20, 2096–2098 (1995).
[CrossRef] [PubMed]

1994 (4)

L. E. E. de Araújo, A. S. L. Gomes, C. B. de Araújo, Y. Messaddeq, A. Florez, and M. A. Aegerter, “Frequency upconversion of orange light into blue light in Pr3+ doped fluoroindate glasses,” Phys. Rev. B 50, 16219–16223 (1994).
[CrossRef]

M. J. Damzen, K. J. Baldwin, and P. J. Soan, “Optical switching and high-resolution image transfer in a saturable dye spatial light modulator,” J. Opt. Soc. Am. B 11, 313–319 (1994).
[CrossRef]

D. J. Hagan, Z. Wang, G. Stegeman, E. W. Van Stryland, M. Sheik-Bahae, and G. Assanto, “Phase-controlled transistor action by cascading of second-order nonlinearities in KTP,” Opt. Lett. 19, 1305–1307 (1994).
[CrossRef] [PubMed]

J. Azkargorta, I. Iparraguirre, R. Balda, J. Fernández, E. Dénoue, and J. L. Adam, “Spectroscopic and laser properties of Nd3+ in BIGaZLuTMn fluoride glass,” IEEE J. Quantum Electron. 30, 1862–1867 (1994).
[CrossRef]

1993 (3)

R. M. Almeida, J. C. Pereira, Y. Messaddeq, and M. A. Aegerter, “Vibrational spectra and structure of fluoroindate glasses,” J. Non-Cryst. Solids 161, 105–108 (1993).
[CrossRef]

X. Zou and T. Izumitami, “Spectroscopic properties and mechanism of excited state absorption and energy transfer upconversion for Er3+-doped glasses,” J. Non-Cryst. Solids 162, 68–80 (1993).
[CrossRef]

L. W. Tutt and T. F. Boggess, “A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials,” Prog. Quantum Electron. 17, 299–338 (1993).
[CrossRef]

1981 (1)

A. Miller, D. A. B. Miller, and S. D. Smith, “Dynamic nonlinear optical processes in semiconductors,” Adv. Phys. 30, 697–800 (1981).
[CrossRef]

Adam, J. L.

J. Azkargorta, I. Iparraguirre, R. Balda, J. Fernández, E. Dénoue, and J. L. Adam, “Spectroscopic and laser properties of Nd3+ in BIGaZLuTMn fluoride glass,” IEEE J. Quantum Electron. 30, 1862–1867 (1994).
[CrossRef]

Aegerter, M. A.

N. Rakov, C. B. de Araújo, Y. Messaddeq, and M. A. Aegerter, “Avalanche upconversion in Er3+-doped fluoroindate glass,” Appl. Phys. Lett. 70, 3084–3086 (1997).
[CrossRef]

G. S. Maciel, C. B. de Araújo, Y. Messaddeq, and M. A. Aegerter, “Frequency upconversion in Er3+-doped fluoroindate glasses pumped at 1.48 μm,” Phys. Rev. B 55, 6335–6342 (1997).
[CrossRef]

T. Catunda, L. A. O. Nunes, A. Florez, Y. Messaddeq, and M. A. Aegerter, “Spectroscopic properties and upconversion mechanisms in Er3+-doped fluoroindate glasses,” Phys. Rev. B 53, 6065–6070 (1996).
[CrossRef]

G. S. Maciel, L. de S. Menezes, A. S. L. Gomes, C. B. de Araújo, Y. Messaddeq, and M. A. Aegerter, “Temperature sensor based on frequency upconversion in Er3+-doped fluoroindate glass,” IEEE Photonics Technol. Lett. 7, 1474–1476 (1995).
[CrossRef]

L. E. E. de Araújo, A. S. L. Gomes, C. B. de Araújo, Y. Messaddeq, A. Florez, and M. A. Aegerter, “Frequency upconversion of orange light into blue light in Pr3+ doped fluoroindate glasses,” Phys. Rev. B 50, 16219–16223 (1994).
[CrossRef]

R. M. Almeida, J. C. Pereira, Y. Messaddeq, and M. A. Aegerter, “Vibrational spectra and structure of fluoroindate glasses,” J. Non-Cryst. Solids 161, 105–108 (1993).
[CrossRef]

Almeida, R. M.

R. M. Almeida, J. C. Pereira, Y. Messaddeq, and M. A. Aegerter, “Vibrational spectra and structure of fluoroindate glasses,” J. Non-Cryst. Solids 161, 105–108 (1993).
[CrossRef]

Amano, S.

Assanto, G.

Azkargorta, J.

J. Azkargorta, I. Iparraguirre, R. Balda, J. Fernández, E. Dénoue, and J. L. Adam, “Spectroscopic and laser properties of Nd3+ in BIGaZLuTMn fluoride glass,” IEEE J. Quantum Electron. 30, 1862–1867 (1994).
[CrossRef]

Balda, R.

J. Azkargorta, I. Iparraguirre, R. Balda, J. Fernández, E. Dénoue, and J. L. Adam, “Spectroscopic and laser properties of Nd3+ in BIGaZLuTMn fluoride glass,” IEEE J. Quantum Electron. 30, 1862–1867 (1994).
[CrossRef]

Baldwin, K. J.

Boggess, T. F.

L. W. Tutt and T. F. Boggess, “A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials,” Prog. Quantum Electron. 17, 299–338 (1993).
[CrossRef]

Brignon, A.

Catunda, T.

T. Catunda, L. A. O. Nunes, A. Florez, Y. Messaddeq, and M. A. Aegerter, “Spectroscopic properties and upconversion mechanisms in Er3+-doped fluoroindate glasses,” Phys. Rev. B 53, 6065–6070 (1996).
[CrossRef]

Daisy, R.

Damzen, M. J.

de Araújo, C. B.

C. B. de Araújo, G. S. Maciel, N. Rakov, and Y. Messaddeq, “Giant nonlinear absorption in Er3+-doped fluoroindate glass,” J. Non-Cryst. Solids 247, 209–214 (1999).
[CrossRef]

E. M. Pacheco, C. B. de Araújo, and Y. Messaddeq, “Energy transfer between Pr3+ ions in a fluoroindate glass,” J. Non-Cryst. Solids 226, 265–272 (1998).
[CrossRef]

N. Rakov, C. B. de Araújo, Y. Messaddeq, and M. A. Aegerter, “Avalanche upconversion in Er3+-doped fluoroindate glass,” Appl. Phys. Lett. 70, 3084–3086 (1997).
[CrossRef]

G. S. Maciel, C. B. de Araújo, Y. Messaddeq, and M. A. Aegerter, “Frequency upconversion in Er3+-doped fluoroindate glasses pumped at 1.48 μm,” Phys. Rev. B 55, 6335–6342 (1997).
[CrossRef]

L. de S. Menezes, C. B. de Araújo, G. S. Maciel, and Y. Messaddeq, “Continuous wave ultraviolet frequency upconversion due to triads of Nd3+ ions in fluoroindate glass,” Appl. Phys. Lett. 70, 683–635 (1997).
[CrossRef]

G. S. Maciel, L. de S. Menezes, A. S. L. Gomes, C. B. de Araújo, Y. Messaddeq, and M. A. Aegerter, “Temperature sensor based on frequency upconversion in Er3+-doped fluoroindate glass,” IEEE Photonics Technol. Lett. 7, 1474–1476 (1995).
[CrossRef]

L. E. E. de Araújo, A. S. L. Gomes, C. B. de Araújo, Y. Messaddeq, A. Florez, and M. A. Aegerter, “Frequency upconversion of orange light into blue light in Pr3+ doped fluoroindate glasses,” Phys. Rev. B 50, 16219–16223 (1994).
[CrossRef]

de Araújo, L. E. E.

L. E. E. de Araújo, A. S. L. Gomes, C. B. de Araújo, Y. Messaddeq, A. Florez, and M. A. Aegerter, “Frequency upconversion of orange light into blue light in Pr3+ doped fluoroindate glasses,” Phys. Rev. B 50, 16219–16223 (1994).
[CrossRef]

de S. Menezes, L.

L. de S. Menezes, C. B. de Araújo, G. S. Maciel, and Y. Messaddeq, “Continuous wave ultraviolet frequency upconversion due to triads of Nd3+ ions in fluoroindate glass,” Appl. Phys. Lett. 70, 683–635 (1997).
[CrossRef]

G. S. Maciel, L. de S. Menezes, A. S. L. Gomes, C. B. de Araújo, Y. Messaddeq, and M. A. Aegerter, “Temperature sensor based on frequency upconversion in Er3+-doped fluoroindate glass,” IEEE Photonics Technol. Lett. 7, 1474–1476 (1995).
[CrossRef]

Dénoue, E.

J. Azkargorta, I. Iparraguirre, R. Balda, J. Fernández, E. Dénoue, and J. L. Adam, “Spectroscopic and laser properties of Nd3+ in BIGaZLuTMn fluoride glass,” IEEE J. Quantum Electron. 30, 1862–1867 (1994).
[CrossRef]

Fernández, J.

J. Azkargorta, I. Iparraguirre, R. Balda, J. Fernández, E. Dénoue, and J. L. Adam, “Spectroscopic and laser properties of Nd3+ in BIGaZLuTMn fluoride glass,” IEEE J. Quantum Electron. 30, 1862–1867 (1994).
[CrossRef]

Fischer, B.

Florez, A.

T. Catunda, L. A. O. Nunes, A. Florez, Y. Messaddeq, and M. A. Aegerter, “Spectroscopic properties and upconversion mechanisms in Er3+-doped fluoroindate glasses,” Phys. Rev. B 53, 6065–6070 (1996).
[CrossRef]

L. E. E. de Araújo, A. S. L. Gomes, C. B. de Araújo, Y. Messaddeq, A. Florez, and M. A. Aegerter, “Frequency upconversion of orange light into blue light in Pr3+ doped fluoroindate glasses,” Phys. Rev. B 50, 16219–16223 (1994).
[CrossRef]

Gomes, A. S. L.

G. S. Maciel, L. de S. Menezes, A. S. L. Gomes, C. B. de Araújo, Y. Messaddeq, and M. A. Aegerter, “Temperature sensor based on frequency upconversion in Er3+-doped fluoroindate glass,” IEEE Photonics Technol. Lett. 7, 1474–1476 (1995).
[CrossRef]

L. E. E. de Araújo, A. S. L. Gomes, C. B. de Araújo, Y. Messaddeq, A. Florez, and M. A. Aegerter, “Frequency upconversion of orange light into blue light in Pr3+ doped fluoroindate glasses,” Phys. Rev. B 50, 16219–16223 (1994).
[CrossRef]

Hagan, D. J.

Hirao, K.

S. Kishimoto and K. Hirao, “Intense ultraviolet and blue upconversion fluorescence in Tm3+-doped fluoroindate glasses,” J. Appl. Phys. 80, 1965–1969 (1996).
[CrossRef]

Horowitz, M.

Huignard, J. P.

Iparraguirre, I.

J. Azkargorta, I. Iparraguirre, R. Balda, J. Fernández, E. Dénoue, and J. L. Adam, “Spectroscopic and laser properties of Nd3+ in BIGaZLuTMn fluoride glass,” IEEE J. Quantum Electron. 30, 1862–1867 (1994).
[CrossRef]

Izumitami, T.

X. Zou and T. Izumitami, “Spectroscopic properties and mechanism of excited state absorption and energy transfer upconversion for Er3+-doped glasses,” J. Non-Cryst. Solids 162, 68–80 (1993).
[CrossRef]

Kishimoto, S.

S. Kishimoto and K. Hirao, “Intense ultraviolet and blue upconversion fluorescence in Tm3+-doped fluoroindate glasses,” J. Appl. Phys. 80, 1965–1969 (1996).
[CrossRef]

Maciel, G. S.

C. B. de Araújo, G. S. Maciel, N. Rakov, and Y. Messaddeq, “Giant nonlinear absorption in Er3+-doped fluoroindate glass,” J. Non-Cryst. Solids 247, 209–214 (1999).
[CrossRef]

G. S. Maciel, C. B. de Araújo, Y. Messaddeq, and M. A. Aegerter, “Frequency upconversion in Er3+-doped fluoroindate glasses pumped at 1.48 μm,” Phys. Rev. B 55, 6335–6342 (1997).
[CrossRef]

L. de S. Menezes, C. B. de Araújo, G. S. Maciel, and Y. Messaddeq, “Continuous wave ultraviolet frequency upconversion due to triads of Nd3+ ions in fluoroindate glass,” Appl. Phys. Lett. 70, 683–635 (1997).
[CrossRef]

G. S. Maciel, L. de S. Menezes, A. S. L. Gomes, C. B. de Araújo, Y. Messaddeq, and M. A. Aegerter, “Temperature sensor based on frequency upconversion in Er3+-doped fluoroindate glass,” IEEE Photonics Technol. Lett. 7, 1474–1476 (1995).
[CrossRef]

Matsuoka, S.

Messaddeq, Y.

C. B. de Araújo, G. S. Maciel, N. Rakov, and Y. Messaddeq, “Giant nonlinear absorption in Er3+-doped fluoroindate glass,” J. Non-Cryst. Solids 247, 209–214 (1999).
[CrossRef]

E. M. Pacheco, C. B. de Araújo, and Y. Messaddeq, “Energy transfer between Pr3+ ions in a fluoroindate glass,” J. Non-Cryst. Solids 226, 265–272 (1998).
[CrossRef]

N. Rakov, C. B. de Araújo, Y. Messaddeq, and M. A. Aegerter, “Avalanche upconversion in Er3+-doped fluoroindate glass,” Appl. Phys. Lett. 70, 3084–3086 (1997).
[CrossRef]

G. S. Maciel, C. B. de Araújo, Y. Messaddeq, and M. A. Aegerter, “Frequency upconversion in Er3+-doped fluoroindate glasses pumped at 1.48 μm,” Phys. Rev. B 55, 6335–6342 (1997).
[CrossRef]

L. de S. Menezes, C. B. de Araújo, G. S. Maciel, and Y. Messaddeq, “Continuous wave ultraviolet frequency upconversion due to triads of Nd3+ ions in fluoroindate glass,” Appl. Phys. Lett. 70, 683–635 (1997).
[CrossRef]

T. Catunda, L. A. O. Nunes, A. Florez, Y. Messaddeq, and M. A. Aegerter, “Spectroscopic properties and upconversion mechanisms in Er3+-doped fluoroindate glasses,” Phys. Rev. B 53, 6065–6070 (1996).
[CrossRef]

G. S. Maciel, L. de S. Menezes, A. S. L. Gomes, C. B. de Araújo, Y. Messaddeq, and M. A. Aegerter, “Temperature sensor based on frequency upconversion in Er3+-doped fluoroindate glass,” IEEE Photonics Technol. Lett. 7, 1474–1476 (1995).
[CrossRef]

L. E. E. de Araújo, A. S. L. Gomes, C. B. de Araújo, Y. Messaddeq, A. Florez, and M. A. Aegerter, “Frequency upconversion of orange light into blue light in Pr3+ doped fluoroindate glasses,” Phys. Rev. B 50, 16219–16223 (1994).
[CrossRef]

R. M. Almeida, J. C. Pereira, Y. Messaddeq, and M. A. Aegerter, “Vibrational spectra and structure of fluoroindate glasses,” J. Non-Cryst. Solids 161, 105–108 (1993).
[CrossRef]

Miller, A.

A. Miller, D. A. B. Miller, and S. D. Smith, “Dynamic nonlinear optical processes in semiconductors,” Adv. Phys. 30, 697–800 (1981).
[CrossRef]

Miller, D. A. B.

A. Miller, D. A. B. Miller, and S. D. Smith, “Dynamic nonlinear optical processes in semiconductors,” Adv. Phys. 30, 697–800 (1981).
[CrossRef]

Miyanaga, N.

Nakatsuka, M.

Nunes, L. A. O.

T. Catunda, L. A. O. Nunes, A. Florez, Y. Messaddeq, and M. A. Aegerter, “Spectroscopic properties and upconversion mechanisms in Er3+-doped fluoroindate glasses,” Phys. Rev. B 53, 6065–6070 (1996).
[CrossRef]

Pacheco, E. M.

E. M. Pacheco, C. B. de Araújo, and Y. Messaddeq, “Energy transfer between Pr3+ ions in a fluoroindate glass,” J. Non-Cryst. Solids 226, 265–272 (1998).
[CrossRef]

Peda’el, A.

Pereira, J. C.

R. M. Almeida, J. C. Pereira, Y. Messaddeq, and M. A. Aegerter, “Vibrational spectra and structure of fluoroindate glasses,” J. Non-Cryst. Solids 161, 105–108 (1993).
[CrossRef]

Rakov, N.

C. B. de Araújo, G. S. Maciel, N. Rakov, and Y. Messaddeq, “Giant nonlinear absorption in Er3+-doped fluoroindate glass,” J. Non-Cryst. Solids 247, 209–214 (1999).
[CrossRef]

N. Rakov, C. B. de Araújo, Y. Messaddeq, and M. A. Aegerter, “Avalanche upconversion in Er3+-doped fluoroindate glass,” Appl. Phys. Lett. 70, 3084–3086 (1997).
[CrossRef]

Sheik-Bahae, M.

Smith, S. D.

A. Miller, D. A. B. Miller, and S. D. Smith, “Dynamic nonlinear optical processes in semiconductors,” Adv. Phys. 30, 697–800 (1981).
[CrossRef]

Soan, P. J.

Stegeman, G.

Tutt, L. W.

L. W. Tutt and T. F. Boggess, “A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials,” Prog. Quantum Electron. 17, 299–338 (1993).
[CrossRef]

Van Stryland, E. W.

Wang, Z.

Zou, X.

X. Zou and T. Izumitami, “Spectroscopic properties and mechanism of excited state absorption and energy transfer upconversion for Er3+-doped glasses,” J. Non-Cryst. Solids 162, 68–80 (1993).
[CrossRef]

Adv. Phys. (1)

A. Miller, D. A. B. Miller, and S. D. Smith, “Dynamic nonlinear optical processes in semiconductors,” Adv. Phys. 30, 697–800 (1981).
[CrossRef]

Appl. Phys. Lett. (2)

L. de S. Menezes, C. B. de Araújo, G. S. Maciel, and Y. Messaddeq, “Continuous wave ultraviolet frequency upconversion due to triads of Nd3+ ions in fluoroindate glass,” Appl. Phys. Lett. 70, 683–635 (1997).
[CrossRef]

N. Rakov, C. B. de Araújo, Y. Messaddeq, and M. A. Aegerter, “Avalanche upconversion in Er3+-doped fluoroindate glass,” Appl. Phys. Lett. 70, 3084–3086 (1997).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. Azkargorta, I. Iparraguirre, R. Balda, J. Fernández, E. Dénoue, and J. L. Adam, “Spectroscopic and laser properties of Nd3+ in BIGaZLuTMn fluoride glass,” IEEE J. Quantum Electron. 30, 1862–1867 (1994).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

G. S. Maciel, L. de S. Menezes, A. S. L. Gomes, C. B. de Araújo, Y. Messaddeq, and M. A. Aegerter, “Temperature sensor based on frequency upconversion in Er3+-doped fluoroindate glass,” IEEE Photonics Technol. Lett. 7, 1474–1476 (1995).
[CrossRef]

J. Appl. Phys. (1)

S. Kishimoto and K. Hirao, “Intense ultraviolet and blue upconversion fluorescence in Tm3+-doped fluoroindate glasses,” J. Appl. Phys. 80, 1965–1969 (1996).
[CrossRef]

J. Non-Cryst. Solids (4)

R. M. Almeida, J. C. Pereira, Y. Messaddeq, and M. A. Aegerter, “Vibrational spectra and structure of fluoroindate glasses,” J. Non-Cryst. Solids 161, 105–108 (1993).
[CrossRef]

E. M. Pacheco, C. B. de Araújo, and Y. Messaddeq, “Energy transfer between Pr3+ ions in a fluoroindate glass,” J. Non-Cryst. Solids 226, 265–272 (1998).
[CrossRef]

C. B. de Araújo, G. S. Maciel, N. Rakov, and Y. Messaddeq, “Giant nonlinear absorption in Er3+-doped fluoroindate glass,” J. Non-Cryst. Solids 247, 209–214 (1999).
[CrossRef]

X. Zou and T. Izumitami, “Spectroscopic properties and mechanism of excited state absorption and energy transfer upconversion for Er3+-doped glasses,” J. Non-Cryst. Solids 162, 68–80 (1993).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (4)

Phys. Rev. B (3)

T. Catunda, L. A. O. Nunes, A. Florez, Y. Messaddeq, and M. A. Aegerter, “Spectroscopic properties and upconversion mechanisms in Er3+-doped fluoroindate glasses,” Phys. Rev. B 53, 6065–6070 (1996).
[CrossRef]

G. S. Maciel, C. B. de Araújo, Y. Messaddeq, and M. A. Aegerter, “Frequency upconversion in Er3+-doped fluoroindate glasses pumped at 1.48 μm,” Phys. Rev. B 55, 6335–6342 (1997).
[CrossRef]

L. E. E. de Araújo, A. S. L. Gomes, C. B. de Araújo, Y. Messaddeq, A. Florez, and M. A. Aegerter, “Frequency upconversion of orange light into blue light in Pr3+ doped fluoroindate glasses,” Phys. Rev. B 50, 16219–16223 (1994).
[CrossRef]

Prog. Quantum Electron. (1)

L. W. Tutt and T. F. Boggess, “A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials,” Prog. Quantum Electron. 17, 299–338 (1993).
[CrossRef]

Other (5)

G. S. Maciel, “Nonlinear spectroscopy of fluoroindate glasses and polymers,” Ph.D. dissertation (Universidade Federal de Pernambuco, Recifer, Brazil, 1999).

H. M. Gibbs, Optical Bistability: Controlling Light by Light (Academic, New York, 1985).

G. P. Agrawal, Nonlinear Fiber Optics (Academic, New York, 1995).

See, for example, M. J. Digonnet, ed., Rare-Earth Doped Fiber Lasers and Amplifiers (Marcel Dekker, New York, 1993), and references therein.

H. J. Eichler, P. Günther, and D. W. Pohl, Laser Induced Dynamic Gratings, Vol. 50 of Springer Series in Optical Sciences (Springer-Verlag, Berlin, 1986).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Absorption spectrum. Thickness of the sample, 2.5 mm. The two peaks marked with * at 255 and 275 nm are due to Gd3+ present in the glass matrix.

Fig. 2
Fig. 2

Energy levels of Er3+ and the proposed excitation scheme. The pump laser is set on resonance with the transition  4I15/24F9/2 at 650 nm, and the probe beam, at 633 nm, is on resonance with the transition  4I13/24F5/2. The numbers in parentheses are the lifetimes of the relevant levels.

Fig. 3
Fig. 3

OIM signal detected as a function of pump laser power at 650 nm. The intensity of the pump beam is modulated at f=34 Hz. The solid curve is an exponential curve that represents the best fit with experimental data.

Fig. 4
Fig. 4

OIM signal as a function of the modulation frequency of the pump beam (pump power, ∼16 mW). The solid curve is the best fit of an empirical curve with the experimental data.

Fig. 5
Fig. 5

Transmitted probe beam intensity (filled squares) as a function of the pump beam wavelength for a cw pumping regime and OIM signal (open squares) as a function of the pump beam wavelength for a pumping modulation frequency of 34 Hz (pump power, ∼16 mW). Dashed curves are guides to the eye.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

dI1(z)dz=-α1I1(z)+βI22(z)I1(z),
I1(d)=(1-R)2 exp(-α1d)I1(0)exp{β(1-R)2I22(0)×[1-exp(-2α2d)]/2α2},
I10(d)=(1-R)2 exp(-α1d)I1(0).

Metrics