Abstract

We report new measurements of the two-photon absorption rate in the BX(0, 0) band of CO, as determined from absorption spectra obtained with Fourier-transform-limited pulses of well-characterized spatial profile. By comparing measured absorption spectra of the CO Q branch near 230 nm with a nonlinear model for the pulse attenuation, we derive the spectrally integrated cross section σ0(2). The space- and time-dependent model considers two-photon absorption followed by one-photon photoionization of the excited state. The Q-branch spectral profile is simulated with previously measured coefficients of collisional broadening and shift. Remarkably, for modest irradiances of 80–350 MW/cm2 at the focus, attenuations of 10% and greater at the Q-branch peak were observed in a single pass through neat CO at pressures of 12–33 kPa. Our result for the spectrally integrated cross section, averaged over five experiments, is σ0(2)=(1.5+0.7/-0.2)×10-35 cm4.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. W. Loge, J. J. Tiee, and F. B. Wampler, “Multiphoton induced fluorescence and ionization of carbon monoxide (B 1Σ+),” J. Chem. Phys. 79, 196–202 (1983).
    [CrossRef]
  2. M. S. Aldén, S. Wallin, and W. Wendt, “Applications of two-photon absorption for detection of CO in combustion gases,” Appl. Phys. B 33, 205–208 (1984).
    [CrossRef]
  3. J. Haumann, J. M. Seitzman, and R. K. Hanson, “Two-photon digital imaging of CO in combustion flows using planar laser-induced fluorescence,” Opt. Lett. 11, 776–778 (1986).
    [CrossRef] [PubMed]
  4. J. M. Seitzman, J. Haumann, and R. K. Hanson, “Quantitative two-photon LIF imaging of carbon monoxide in combustion gases,” Appl. Opt. 26, 2892–2899 (1987).
    [CrossRef] [PubMed]
  5. D. A. Everest, C. R. Shaddix, and K. C. Smyth, “Quantitative two-photon laser-induced fluorescence imaging of CO in flickering CH4/air diffusion flames,” in Twenty-Sixth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1996), pp. 1161–1169.
  6. N. Georgiev and M. Aldén, “Two-dimensional imaging of flame species using two-photon laser-induced fluorescence,” Appl. Spectrosc. 51, 1229–1237 (1997).
    [CrossRef]
  7. P. J. H. Tjossem and K. C. Smyth, “Multiphoton excitation spectroscopy of the B 1Σ+ and C 1Σ+ Rydberg states of CO,” J. Chem. Phys. 91, 2041–2047 (1989).
    [CrossRef]
  8. J. S. Bernstein, A. Fein, J. B. Choi, T. A. Cool, R. C. Sausa, S. L. Howard, R. J. Locke, and A. W. Miziolek, “Laser-based flame species profile measurements: a comparison with flame model predictions,” Combust. Flame 92, 85–105 (1993).
    [CrossRef]
  9. M. D. Di Rosa and R. L. Farrow, “Cross sections of photoionization and ac Stark shift measured from Doppler-free B←X(0, 0) excitation spectra of CO,” J. Opt. Soc. Am. B 16, 861–870 (1999).
    [CrossRef]
  10. J. P. Looney, J. E. Harrington, K. C. Smyth, T. R. O’Brian, and T. B. Lucatorto, “Measurement of CO pressures in the ultrahigh vacuum regime using resonance-enhanced multiphoton ionization time-of-flight mass spectroscopy,” J. Vac. Sci. Technol. A 11, 3111–3120 (1993).
    [CrossRef]
  11. W. R. Ferrell, C. H. Chen, M. G. Payne, and R. D. Willis, “Two-resonance step ionization spectroscopy of CO,” Chem. Phys. Lett. 97, 460–466 (1983).
    [CrossRef]
  12. H. Bergström, H. Lundberg, and A. Persson, “Investigations of stimulated emission on B–A lines in CO,” Z. Phys. D 21, 323–327 (1991).
    [CrossRef]
  13. J. J. Tiee, C. R. Quick, Jr., G. W. Loge, and F. B. Wampler, “Two-photon pumped CO B–A laser,” J. Appl. Phys. 63, 288–290 (1988).
    [CrossRef]
  14. R. F. Saxon and J. Eichler, “Theoretical calculation of two-photon absorption cross sections in atomic oxygen,” Phys. Rev. A 34, 199–206 (1986).
    [CrossRef] [PubMed]
  15. R. Loudon, The Quantum Theory of Light, 2nd ed. (Clarendon, Oxford, 1983), pp. 344–347.
  16. K.-M. Chen and E. S. Yeung, “Rovibronic two-photon transitions of symmetric top molecules,” J. Chem. Phys. 69, 43–52 (1978).
    [CrossRef]
  17. P. J. H. Tjossem and K. C. Smyth, “Multiphoton excitation spectroscopy of the B and C Rydberg states of CO,” J. Chem. Phys. 91, 2041–2048 (1989).
    [CrossRef]
  18. M. Drabbels, W. L. Meerts, and J. J. ter Meulen, “Determination of electric dipole moments and transition probabilities of low-lying singlet states of CO,” J. Chem. Phys. 99, 2352–2358 (1993).
    [CrossRef]
  19. J. A. Coxon and P. G. Hajigeorgiou, “Born–Oppenheimer breakdown in the ground state of carbon monoxide: a direct reduction of spectroscopic line positions to analytical radial Hamiltonian operators,” Can. J. Phys. 70, 40–54 (1992).
    [CrossRef]
  20. T. D. Varberg and K. M. Evenson, “Accurate far-infrared rotational frequencies of carbon monoxide,” Astrophys. J. 385, 763–765 (1992).
    [CrossRef]
  21. S. R. Drayson, “Rapid computation of the Voigt profile,” J. Quant. Spectrosc. Radiat. Transfer 16, 611–614 (1976).
    [CrossRef]
  22. R. E. Imhof, F. H. Read, and S. T. Beckett, “Determination of the transition moment of the B 1Σ+–X 1Σ+ transition in CO,” J. Phys. B 5, 896–902 (1972).
    [CrossRef]
  23. D. J. Hart and O. L. Bourne, “High-resolution coherent VUV spectroscopy of NO [C2Π(1)~B2Π(10), B2Π(11) and CO[B 1Σ+(0)],” Chem. Phys. 133, 103–112 (1989).
    [CrossRef]
  24. S. Agrup and M. Aldén, “Measurement of the collision-quenched lifetime of CO molecules in a flame at atmospheric pressure,” Chem. Phys. Lett. 189, 211–216 (1992).
    [CrossRef]
  25. U. Westblom, S. Agrup, M. Aldén, H. M. Hertz, and J. E. M. Goldsmith, “Properties of laser-induced stimulated emission for diagnostic purposes,” Appl. Phys. B 50, 487–497 (1990).
    [CrossRef]
  26. D. J. Bamford, A. P. Hickman, M. J. Dyer, and W. K. Bischel, “Comparative photon statistics of several ultraviolet laser systems determined by transient two-photon absorption,” J. Opt. Soc. Am. B 5, 1369–1378 (1988).
    [CrossRef]
  27. D. J. Bamford, L. E. Jusinski, and W. K. Bischel, “Absolute two-photon absorption and three-photon ionization cross sections of atomic oxygen,” Phys. Rev. A 34, 185–198 (1986).
    [CrossRef] [PubMed]

1999 (1)

1997 (1)

1993 (3)

J. S. Bernstein, A. Fein, J. B. Choi, T. A. Cool, R. C. Sausa, S. L. Howard, R. J. Locke, and A. W. Miziolek, “Laser-based flame species profile measurements: a comparison with flame model predictions,” Combust. Flame 92, 85–105 (1993).
[CrossRef]

M. Drabbels, W. L. Meerts, and J. J. ter Meulen, “Determination of electric dipole moments and transition probabilities of low-lying singlet states of CO,” J. Chem. Phys. 99, 2352–2358 (1993).
[CrossRef]

J. P. Looney, J. E. Harrington, K. C. Smyth, T. R. O’Brian, and T. B. Lucatorto, “Measurement of CO pressures in the ultrahigh vacuum regime using resonance-enhanced multiphoton ionization time-of-flight mass spectroscopy,” J. Vac. Sci. Technol. A 11, 3111–3120 (1993).
[CrossRef]

1992 (3)

S. Agrup and M. Aldén, “Measurement of the collision-quenched lifetime of CO molecules in a flame at atmospheric pressure,” Chem. Phys. Lett. 189, 211–216 (1992).
[CrossRef]

J. A. Coxon and P. G. Hajigeorgiou, “Born–Oppenheimer breakdown in the ground state of carbon monoxide: a direct reduction of spectroscopic line positions to analytical radial Hamiltonian operators,” Can. J. Phys. 70, 40–54 (1992).
[CrossRef]

T. D. Varberg and K. M. Evenson, “Accurate far-infrared rotational frequencies of carbon monoxide,” Astrophys. J. 385, 763–765 (1992).
[CrossRef]

1991 (1)

H. Bergström, H. Lundberg, and A. Persson, “Investigations of stimulated emission on B–A lines in CO,” Z. Phys. D 21, 323–327 (1991).
[CrossRef]

1990 (1)

U. Westblom, S. Agrup, M. Aldén, H. M. Hertz, and J. E. M. Goldsmith, “Properties of laser-induced stimulated emission for diagnostic purposes,” Appl. Phys. B 50, 487–497 (1990).
[CrossRef]

1989 (3)

P. J. H. Tjossem and K. C. Smyth, “Multiphoton excitation spectroscopy of the B 1Σ+ and C 1Σ+ Rydberg states of CO,” J. Chem. Phys. 91, 2041–2047 (1989).
[CrossRef]

P. J. H. Tjossem and K. C. Smyth, “Multiphoton excitation spectroscopy of the B and C Rydberg states of CO,” J. Chem. Phys. 91, 2041–2048 (1989).
[CrossRef]

D. J. Hart and O. L. Bourne, “High-resolution coherent VUV spectroscopy of NO [C2Π(1)~B2Π(10), B2Π(11) and CO[B 1Σ+(0)],” Chem. Phys. 133, 103–112 (1989).
[CrossRef]

1988 (2)

1987 (1)

1986 (3)

J. Haumann, J. M. Seitzman, and R. K. Hanson, “Two-photon digital imaging of CO in combustion flows using planar laser-induced fluorescence,” Opt. Lett. 11, 776–778 (1986).
[CrossRef] [PubMed]

D. J. Bamford, L. E. Jusinski, and W. K. Bischel, “Absolute two-photon absorption and three-photon ionization cross sections of atomic oxygen,” Phys. Rev. A 34, 185–198 (1986).
[CrossRef] [PubMed]

R. F. Saxon and J. Eichler, “Theoretical calculation of two-photon absorption cross sections in atomic oxygen,” Phys. Rev. A 34, 199–206 (1986).
[CrossRef] [PubMed]

1984 (1)

M. S. Aldén, S. Wallin, and W. Wendt, “Applications of two-photon absorption for detection of CO in combustion gases,” Appl. Phys. B 33, 205–208 (1984).
[CrossRef]

1983 (2)

G. W. Loge, J. J. Tiee, and F. B. Wampler, “Multiphoton induced fluorescence and ionization of carbon monoxide (B 1Σ+),” J. Chem. Phys. 79, 196–202 (1983).
[CrossRef]

W. R. Ferrell, C. H. Chen, M. G. Payne, and R. D. Willis, “Two-resonance step ionization spectroscopy of CO,” Chem. Phys. Lett. 97, 460–466 (1983).
[CrossRef]

1978 (1)

K.-M. Chen and E. S. Yeung, “Rovibronic two-photon transitions of symmetric top molecules,” J. Chem. Phys. 69, 43–52 (1978).
[CrossRef]

1976 (1)

S. R. Drayson, “Rapid computation of the Voigt profile,” J. Quant. Spectrosc. Radiat. Transfer 16, 611–614 (1976).
[CrossRef]

1972 (1)

R. E. Imhof, F. H. Read, and S. T. Beckett, “Determination of the transition moment of the B 1Σ+–X 1Σ+ transition in CO,” J. Phys. B 5, 896–902 (1972).
[CrossRef]

Agrup, S.

S. Agrup and M. Aldén, “Measurement of the collision-quenched lifetime of CO molecules in a flame at atmospheric pressure,” Chem. Phys. Lett. 189, 211–216 (1992).
[CrossRef]

U. Westblom, S. Agrup, M. Aldén, H. M. Hertz, and J. E. M. Goldsmith, “Properties of laser-induced stimulated emission for diagnostic purposes,” Appl. Phys. B 50, 487–497 (1990).
[CrossRef]

Aldén, M.

N. Georgiev and M. Aldén, “Two-dimensional imaging of flame species using two-photon laser-induced fluorescence,” Appl. Spectrosc. 51, 1229–1237 (1997).
[CrossRef]

S. Agrup and M. Aldén, “Measurement of the collision-quenched lifetime of CO molecules in a flame at atmospheric pressure,” Chem. Phys. Lett. 189, 211–216 (1992).
[CrossRef]

U. Westblom, S. Agrup, M. Aldén, H. M. Hertz, and J. E. M. Goldsmith, “Properties of laser-induced stimulated emission for diagnostic purposes,” Appl. Phys. B 50, 487–497 (1990).
[CrossRef]

Aldén, M. S.

M. S. Aldén, S. Wallin, and W. Wendt, “Applications of two-photon absorption for detection of CO in combustion gases,” Appl. Phys. B 33, 205–208 (1984).
[CrossRef]

Bamford, D. J.

D. J. Bamford, A. P. Hickman, M. J. Dyer, and W. K. Bischel, “Comparative photon statistics of several ultraviolet laser systems determined by transient two-photon absorption,” J. Opt. Soc. Am. B 5, 1369–1378 (1988).
[CrossRef]

D. J. Bamford, L. E. Jusinski, and W. K. Bischel, “Absolute two-photon absorption and three-photon ionization cross sections of atomic oxygen,” Phys. Rev. A 34, 185–198 (1986).
[CrossRef] [PubMed]

Beckett, S. T.

R. E. Imhof, F. H. Read, and S. T. Beckett, “Determination of the transition moment of the B 1Σ+–X 1Σ+ transition in CO,” J. Phys. B 5, 896–902 (1972).
[CrossRef]

Bergström, H.

H. Bergström, H. Lundberg, and A. Persson, “Investigations of stimulated emission on B–A lines in CO,” Z. Phys. D 21, 323–327 (1991).
[CrossRef]

Bernstein, J. S.

J. S. Bernstein, A. Fein, J. B. Choi, T. A. Cool, R. C. Sausa, S. L. Howard, R. J. Locke, and A. W. Miziolek, “Laser-based flame species profile measurements: a comparison with flame model predictions,” Combust. Flame 92, 85–105 (1993).
[CrossRef]

Bischel, W. K.

D. J. Bamford, A. P. Hickman, M. J. Dyer, and W. K. Bischel, “Comparative photon statistics of several ultraviolet laser systems determined by transient two-photon absorption,” J. Opt. Soc. Am. B 5, 1369–1378 (1988).
[CrossRef]

D. J. Bamford, L. E. Jusinski, and W. K. Bischel, “Absolute two-photon absorption and three-photon ionization cross sections of atomic oxygen,” Phys. Rev. A 34, 185–198 (1986).
[CrossRef] [PubMed]

Bourne, O. L.

D. J. Hart and O. L. Bourne, “High-resolution coherent VUV spectroscopy of NO [C2Π(1)~B2Π(10), B2Π(11) and CO[B 1Σ+(0)],” Chem. Phys. 133, 103–112 (1989).
[CrossRef]

Chen, C. H.

W. R. Ferrell, C. H. Chen, M. G. Payne, and R. D. Willis, “Two-resonance step ionization spectroscopy of CO,” Chem. Phys. Lett. 97, 460–466 (1983).
[CrossRef]

Chen, K.-M.

K.-M. Chen and E. S. Yeung, “Rovibronic two-photon transitions of symmetric top molecules,” J. Chem. Phys. 69, 43–52 (1978).
[CrossRef]

Choi, J. B.

J. S. Bernstein, A. Fein, J. B. Choi, T. A. Cool, R. C. Sausa, S. L. Howard, R. J. Locke, and A. W. Miziolek, “Laser-based flame species profile measurements: a comparison with flame model predictions,” Combust. Flame 92, 85–105 (1993).
[CrossRef]

Cool, T. A.

J. S. Bernstein, A. Fein, J. B. Choi, T. A. Cool, R. C. Sausa, S. L. Howard, R. J. Locke, and A. W. Miziolek, “Laser-based flame species profile measurements: a comparison with flame model predictions,” Combust. Flame 92, 85–105 (1993).
[CrossRef]

Coxon, J. A.

J. A. Coxon and P. G. Hajigeorgiou, “Born–Oppenheimer breakdown in the ground state of carbon monoxide: a direct reduction of spectroscopic line positions to analytical radial Hamiltonian operators,” Can. J. Phys. 70, 40–54 (1992).
[CrossRef]

Di Rosa, M. D.

Drabbels, M.

M. Drabbels, W. L. Meerts, and J. J. ter Meulen, “Determination of electric dipole moments and transition probabilities of low-lying singlet states of CO,” J. Chem. Phys. 99, 2352–2358 (1993).
[CrossRef]

Drayson, S. R.

S. R. Drayson, “Rapid computation of the Voigt profile,” J. Quant. Spectrosc. Radiat. Transfer 16, 611–614 (1976).
[CrossRef]

Dyer, M. J.

Eichler, J.

R. F. Saxon and J. Eichler, “Theoretical calculation of two-photon absorption cross sections in atomic oxygen,” Phys. Rev. A 34, 199–206 (1986).
[CrossRef] [PubMed]

Evenson, K. M.

T. D. Varberg and K. M. Evenson, “Accurate far-infrared rotational frequencies of carbon monoxide,” Astrophys. J. 385, 763–765 (1992).
[CrossRef]

Farrow, R. L.

Fein, A.

J. S. Bernstein, A. Fein, J. B. Choi, T. A. Cool, R. C. Sausa, S. L. Howard, R. J. Locke, and A. W. Miziolek, “Laser-based flame species profile measurements: a comparison with flame model predictions,” Combust. Flame 92, 85–105 (1993).
[CrossRef]

Ferrell, W. R.

W. R. Ferrell, C. H. Chen, M. G. Payne, and R. D. Willis, “Two-resonance step ionization spectroscopy of CO,” Chem. Phys. Lett. 97, 460–466 (1983).
[CrossRef]

Georgiev, N.

Goldsmith, J. E. M.

U. Westblom, S. Agrup, M. Aldén, H. M. Hertz, and J. E. M. Goldsmith, “Properties of laser-induced stimulated emission for diagnostic purposes,” Appl. Phys. B 50, 487–497 (1990).
[CrossRef]

Hajigeorgiou, P. G.

J. A. Coxon and P. G. Hajigeorgiou, “Born–Oppenheimer breakdown in the ground state of carbon monoxide: a direct reduction of spectroscopic line positions to analytical radial Hamiltonian operators,” Can. J. Phys. 70, 40–54 (1992).
[CrossRef]

Hanson, R. K.

Harrington, J. E.

J. P. Looney, J. E. Harrington, K. C. Smyth, T. R. O’Brian, and T. B. Lucatorto, “Measurement of CO pressures in the ultrahigh vacuum regime using resonance-enhanced multiphoton ionization time-of-flight mass spectroscopy,” J. Vac. Sci. Technol. A 11, 3111–3120 (1993).
[CrossRef]

Hart, D. J.

D. J. Hart and O. L. Bourne, “High-resolution coherent VUV spectroscopy of NO [C2Π(1)~B2Π(10), B2Π(11) and CO[B 1Σ+(0)],” Chem. Phys. 133, 103–112 (1989).
[CrossRef]

Haumann, J.

Hertz, H. M.

U. Westblom, S. Agrup, M. Aldén, H. M. Hertz, and J. E. M. Goldsmith, “Properties of laser-induced stimulated emission for diagnostic purposes,” Appl. Phys. B 50, 487–497 (1990).
[CrossRef]

Hickman, A. P.

Howard, S. L.

J. S. Bernstein, A. Fein, J. B. Choi, T. A. Cool, R. C. Sausa, S. L. Howard, R. J. Locke, and A. W. Miziolek, “Laser-based flame species profile measurements: a comparison with flame model predictions,” Combust. Flame 92, 85–105 (1993).
[CrossRef]

Imhof, R. E.

R. E. Imhof, F. H. Read, and S. T. Beckett, “Determination of the transition moment of the B 1Σ+–X 1Σ+ transition in CO,” J. Phys. B 5, 896–902 (1972).
[CrossRef]

Jusinski, L. E.

D. J. Bamford, L. E. Jusinski, and W. K. Bischel, “Absolute two-photon absorption and three-photon ionization cross sections of atomic oxygen,” Phys. Rev. A 34, 185–198 (1986).
[CrossRef] [PubMed]

Locke, R. J.

J. S. Bernstein, A. Fein, J. B. Choi, T. A. Cool, R. C. Sausa, S. L. Howard, R. J. Locke, and A. W. Miziolek, “Laser-based flame species profile measurements: a comparison with flame model predictions,” Combust. Flame 92, 85–105 (1993).
[CrossRef]

Loge, G. W.

J. J. Tiee, C. R. Quick, Jr., G. W. Loge, and F. B. Wampler, “Two-photon pumped CO B–A laser,” J. Appl. Phys. 63, 288–290 (1988).
[CrossRef]

G. W. Loge, J. J. Tiee, and F. B. Wampler, “Multiphoton induced fluorescence and ionization of carbon monoxide (B 1Σ+),” J. Chem. Phys. 79, 196–202 (1983).
[CrossRef]

Looney, J. P.

J. P. Looney, J. E. Harrington, K. C. Smyth, T. R. O’Brian, and T. B. Lucatorto, “Measurement of CO pressures in the ultrahigh vacuum regime using resonance-enhanced multiphoton ionization time-of-flight mass spectroscopy,” J. Vac. Sci. Technol. A 11, 3111–3120 (1993).
[CrossRef]

Lucatorto, T. B.

J. P. Looney, J. E. Harrington, K. C. Smyth, T. R. O’Brian, and T. B. Lucatorto, “Measurement of CO pressures in the ultrahigh vacuum regime using resonance-enhanced multiphoton ionization time-of-flight mass spectroscopy,” J. Vac. Sci. Technol. A 11, 3111–3120 (1993).
[CrossRef]

Lundberg, H.

H. Bergström, H. Lundberg, and A. Persson, “Investigations of stimulated emission on B–A lines in CO,” Z. Phys. D 21, 323–327 (1991).
[CrossRef]

Meerts, W. L.

M. Drabbels, W. L. Meerts, and J. J. ter Meulen, “Determination of electric dipole moments and transition probabilities of low-lying singlet states of CO,” J. Chem. Phys. 99, 2352–2358 (1993).
[CrossRef]

Miziolek, A. W.

J. S. Bernstein, A. Fein, J. B. Choi, T. A. Cool, R. C. Sausa, S. L. Howard, R. J. Locke, and A. W. Miziolek, “Laser-based flame species profile measurements: a comparison with flame model predictions,” Combust. Flame 92, 85–105 (1993).
[CrossRef]

O’Brian, T. R.

J. P. Looney, J. E. Harrington, K. C. Smyth, T. R. O’Brian, and T. B. Lucatorto, “Measurement of CO pressures in the ultrahigh vacuum regime using resonance-enhanced multiphoton ionization time-of-flight mass spectroscopy,” J. Vac. Sci. Technol. A 11, 3111–3120 (1993).
[CrossRef]

Payne, M. G.

W. R. Ferrell, C. H. Chen, M. G. Payne, and R. D. Willis, “Two-resonance step ionization spectroscopy of CO,” Chem. Phys. Lett. 97, 460–466 (1983).
[CrossRef]

Persson, A.

H. Bergström, H. Lundberg, and A. Persson, “Investigations of stimulated emission on B–A lines in CO,” Z. Phys. D 21, 323–327 (1991).
[CrossRef]

Quick Jr., C. R.

J. J. Tiee, C. R. Quick, Jr., G. W. Loge, and F. B. Wampler, “Two-photon pumped CO B–A laser,” J. Appl. Phys. 63, 288–290 (1988).
[CrossRef]

Read, F. H.

R. E. Imhof, F. H. Read, and S. T. Beckett, “Determination of the transition moment of the B 1Σ+–X 1Σ+ transition in CO,” J. Phys. B 5, 896–902 (1972).
[CrossRef]

Sausa, R. C.

J. S. Bernstein, A. Fein, J. B. Choi, T. A. Cool, R. C. Sausa, S. L. Howard, R. J. Locke, and A. W. Miziolek, “Laser-based flame species profile measurements: a comparison with flame model predictions,” Combust. Flame 92, 85–105 (1993).
[CrossRef]

Saxon, R. F.

R. F. Saxon and J. Eichler, “Theoretical calculation of two-photon absorption cross sections in atomic oxygen,” Phys. Rev. A 34, 199–206 (1986).
[CrossRef] [PubMed]

Seitzman, J. M.

Smyth, K. C.

J. P. Looney, J. E. Harrington, K. C. Smyth, T. R. O’Brian, and T. B. Lucatorto, “Measurement of CO pressures in the ultrahigh vacuum regime using resonance-enhanced multiphoton ionization time-of-flight mass spectroscopy,” J. Vac. Sci. Technol. A 11, 3111–3120 (1993).
[CrossRef]

P. J. H. Tjossem and K. C. Smyth, “Multiphoton excitation spectroscopy of the B 1Σ+ and C 1Σ+ Rydberg states of CO,” J. Chem. Phys. 91, 2041–2047 (1989).
[CrossRef]

P. J. H. Tjossem and K. C. Smyth, “Multiphoton excitation spectroscopy of the B and C Rydberg states of CO,” J. Chem. Phys. 91, 2041–2048 (1989).
[CrossRef]

ter Meulen, J. J.

M. Drabbels, W. L. Meerts, and J. J. ter Meulen, “Determination of electric dipole moments and transition probabilities of low-lying singlet states of CO,” J. Chem. Phys. 99, 2352–2358 (1993).
[CrossRef]

Tiee, J. J.

J. J. Tiee, C. R. Quick, Jr., G. W. Loge, and F. B. Wampler, “Two-photon pumped CO B–A laser,” J. Appl. Phys. 63, 288–290 (1988).
[CrossRef]

G. W. Loge, J. J. Tiee, and F. B. Wampler, “Multiphoton induced fluorescence and ionization of carbon monoxide (B 1Σ+),” J. Chem. Phys. 79, 196–202 (1983).
[CrossRef]

Tjossem, P. J. H.

P. J. H. Tjossem and K. C. Smyth, “Multiphoton excitation spectroscopy of the B 1Σ+ and C 1Σ+ Rydberg states of CO,” J. Chem. Phys. 91, 2041–2047 (1989).
[CrossRef]

P. J. H. Tjossem and K. C. Smyth, “Multiphoton excitation spectroscopy of the B and C Rydberg states of CO,” J. Chem. Phys. 91, 2041–2048 (1989).
[CrossRef]

Varberg, T. D.

T. D. Varberg and K. M. Evenson, “Accurate far-infrared rotational frequencies of carbon monoxide,” Astrophys. J. 385, 763–765 (1992).
[CrossRef]

Wallin, S.

M. S. Aldén, S. Wallin, and W. Wendt, “Applications of two-photon absorption for detection of CO in combustion gases,” Appl. Phys. B 33, 205–208 (1984).
[CrossRef]

Wampler, F. B.

J. J. Tiee, C. R. Quick, Jr., G. W. Loge, and F. B. Wampler, “Two-photon pumped CO B–A laser,” J. Appl. Phys. 63, 288–290 (1988).
[CrossRef]

G. W. Loge, J. J. Tiee, and F. B. Wampler, “Multiphoton induced fluorescence and ionization of carbon monoxide (B 1Σ+),” J. Chem. Phys. 79, 196–202 (1983).
[CrossRef]

Wendt, W.

M. S. Aldén, S. Wallin, and W. Wendt, “Applications of two-photon absorption for detection of CO in combustion gases,” Appl. Phys. B 33, 205–208 (1984).
[CrossRef]

Westblom, U.

U. Westblom, S. Agrup, M. Aldén, H. M. Hertz, and J. E. M. Goldsmith, “Properties of laser-induced stimulated emission for diagnostic purposes,” Appl. Phys. B 50, 487–497 (1990).
[CrossRef]

Willis, R. D.

W. R. Ferrell, C. H. Chen, M. G. Payne, and R. D. Willis, “Two-resonance step ionization spectroscopy of CO,” Chem. Phys. Lett. 97, 460–466 (1983).
[CrossRef]

Yeung, E. S.

K.-M. Chen and E. S. Yeung, “Rovibronic two-photon transitions of symmetric top molecules,” J. Chem. Phys. 69, 43–52 (1978).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (2)

U. Westblom, S. Agrup, M. Aldén, H. M. Hertz, and J. E. M. Goldsmith, “Properties of laser-induced stimulated emission for diagnostic purposes,” Appl. Phys. B 50, 487–497 (1990).
[CrossRef]

M. S. Aldén, S. Wallin, and W. Wendt, “Applications of two-photon absorption for detection of CO in combustion gases,” Appl. Phys. B 33, 205–208 (1984).
[CrossRef]

Appl. Spectrosc. (1)

Astrophys. J. (1)

T. D. Varberg and K. M. Evenson, “Accurate far-infrared rotational frequencies of carbon monoxide,” Astrophys. J. 385, 763–765 (1992).
[CrossRef]

Can. J. Phys. (1)

J. A. Coxon and P. G. Hajigeorgiou, “Born–Oppenheimer breakdown in the ground state of carbon monoxide: a direct reduction of spectroscopic line positions to analytical radial Hamiltonian operators,” Can. J. Phys. 70, 40–54 (1992).
[CrossRef]

Chem. Phys. (1)

D. J. Hart and O. L. Bourne, “High-resolution coherent VUV spectroscopy of NO [C2Π(1)~B2Π(10), B2Π(11) and CO[B 1Σ+(0)],” Chem. Phys. 133, 103–112 (1989).
[CrossRef]

Chem. Phys. Lett. (2)

S. Agrup and M. Aldén, “Measurement of the collision-quenched lifetime of CO molecules in a flame at atmospheric pressure,” Chem. Phys. Lett. 189, 211–216 (1992).
[CrossRef]

W. R. Ferrell, C. H. Chen, M. G. Payne, and R. D. Willis, “Two-resonance step ionization spectroscopy of CO,” Chem. Phys. Lett. 97, 460–466 (1983).
[CrossRef]

Combust. Flame (1)

J. S. Bernstein, A. Fein, J. B. Choi, T. A. Cool, R. C. Sausa, S. L. Howard, R. J. Locke, and A. W. Miziolek, “Laser-based flame species profile measurements: a comparison with flame model predictions,” Combust. Flame 92, 85–105 (1993).
[CrossRef]

J. Appl. Phys. (1)

J. J. Tiee, C. R. Quick, Jr., G. W. Loge, and F. B. Wampler, “Two-photon pumped CO B–A laser,” J. Appl. Phys. 63, 288–290 (1988).
[CrossRef]

J. Chem. Phys. (5)

K.-M. Chen and E. S. Yeung, “Rovibronic two-photon transitions of symmetric top molecules,” J. Chem. Phys. 69, 43–52 (1978).
[CrossRef]

P. J. H. Tjossem and K. C. Smyth, “Multiphoton excitation spectroscopy of the B and C Rydberg states of CO,” J. Chem. Phys. 91, 2041–2048 (1989).
[CrossRef]

M. Drabbels, W. L. Meerts, and J. J. ter Meulen, “Determination of electric dipole moments and transition probabilities of low-lying singlet states of CO,” J. Chem. Phys. 99, 2352–2358 (1993).
[CrossRef]

G. W. Loge, J. J. Tiee, and F. B. Wampler, “Multiphoton induced fluorescence and ionization of carbon monoxide (B 1Σ+),” J. Chem. Phys. 79, 196–202 (1983).
[CrossRef]

P. J. H. Tjossem and K. C. Smyth, “Multiphoton excitation spectroscopy of the B 1Σ+ and C 1Σ+ Rydberg states of CO,” J. Chem. Phys. 91, 2041–2047 (1989).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Phys. B (1)

R. E. Imhof, F. H. Read, and S. T. Beckett, “Determination of the transition moment of the B 1Σ+–X 1Σ+ transition in CO,” J. Phys. B 5, 896–902 (1972).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (1)

S. R. Drayson, “Rapid computation of the Voigt profile,” J. Quant. Spectrosc. Radiat. Transfer 16, 611–614 (1976).
[CrossRef]

J. Vac. Sci. Technol. A (1)

J. P. Looney, J. E. Harrington, K. C. Smyth, T. R. O’Brian, and T. B. Lucatorto, “Measurement of CO pressures in the ultrahigh vacuum regime using resonance-enhanced multiphoton ionization time-of-flight mass spectroscopy,” J. Vac. Sci. Technol. A 11, 3111–3120 (1993).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. A (2)

D. J. Bamford, L. E. Jusinski, and W. K. Bischel, “Absolute two-photon absorption and three-photon ionization cross sections of atomic oxygen,” Phys. Rev. A 34, 185–198 (1986).
[CrossRef] [PubMed]

R. F. Saxon and J. Eichler, “Theoretical calculation of two-photon absorption cross sections in atomic oxygen,” Phys. Rev. A 34, 199–206 (1986).
[CrossRef] [PubMed]

Z. Phys. D (1)

H. Bergström, H. Lundberg, and A. Persson, “Investigations of stimulated emission on B–A lines in CO,” Z. Phys. D 21, 323–327 (1991).
[CrossRef]

Other (2)

R. Loudon, The Quantum Theory of Light, 2nd ed. (Clarendon, Oxford, 1983), pp. 344–347.

D. A. Everest, C. R. Shaddix, and K. C. Smyth, “Quantitative two-photon laser-induced fluorescence imaging of CO in flickering CH4/air diffusion flames,” in Twenty-Sixth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1996), pp. 1161–1169.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Energy diagram with process relevant to CO detection through two-photon excitation of BX.

Fig. 2
Fig. 2

Configuration for measuring single-pass, two-photon absorption spectra. Signals Si and St are proportional to the incident (Ei) and the transmitted (Et) pulse energies, respectively.

Fig. 3
Fig. 3

Measured two-photon absorption spectra, displayed by the reciprocal difference 1/Et-1/Ei as proportional to σˆ(2) (see text). Conditions were 294 K and 130 Torr (17 kPa) CO, with excitation pulses of ∼80 µJ/pulse and 6.9-ns width focused to 68 µm. Top, comparison of the data (crosses) with the best-fit simulation (solid curve), produced for σ0(2)=1.0×10-35 cm4. Bottom, residual of the fit.

Fig. 4
Fig. 4

Variation of the peak two-photon rate coefficient of CO BX(0, 0) with pressure and laser spectral width (FWHM Gaussian) at 295 K. Curves are generated from Eq. (5) with σ0(2)=1.5×10-35 cm4 and with Doppler and collision broadening (CO environment) taken into account.

Fig. 5
Fig. 5

Variation of peak two-photon rate coefficient of CO BX(0, 0) with temperature and laser spectral width (FWHM Gaussian) at 1 atm. Curves are generated from Eq. (5) with σ0(2)=1.5×10-35 cm4 and with Doppler and collision broadening (N2 environment) taken into account.

Tables (1)

Tables Icon

Table 1 Conditions and Measured Two-Photon Cross Sections of Five Separate Trials, Including Final (Trial-Averaged) Cross Section

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

W=σˆ(2)(I˜)2,
I˜=I/ωc,
α=σˆ(2)/ωc,
W=αI2/ωc.
σˆ(2)(2ωc)=σˆ(2)(Ωc)=σ0(2)G(2) J FJ J SJJ(2)×-ϕJJ(ξ-ΩJJ)g(ξ-Ωc)dξ,
JSJJ(2)=1,
-+ ϕ(Ω)dΩ=1.
g(Ω)=-+ g(ξ)g(Ω-ξ)dξ,
-+ g(ω)dω=1.
(I˜/z)loss=-nσˆ(2)(I˜)22+σiI˜σiI˜+Q,
I˜(r, z, t)=(4 ln 2/π)3/2×(E/ω)exp{-4 ln 2[(r/D)2+(t/τ)2]}τD2,
D(z)=D0[1+(z/zR)2]1/2,
zR=(π/2 ln 2)[D02/λ],
dE/dz=-+0(I˜/z)loss2πrdrdt,
dE/dz=-nσˆ(2)I˜2E3-R+R2(2π)-1/2×0 ln 1+22Rexp(-T2)dT,
T=(4 ln 2)1/2(t/τ),
I˜2=(2 ln 2/π)3/2 E/ωcτD2,
R=QσiI˜2.
(I˜2)2=(1/E)-+0(I˜)22πrdrdt2,
dE/dz=-2R3R=0[nσˆ(2)I˜2]E.
1/Et-1/Ei=2R3R=0[nσˆ(2)/ωc]×(τD02)-1(2 ln2/π)3/22zR tan-1(2L/2zR),
W¯=[σˆ(2)/G(2)]G(2)(I˜2)2,

Metrics