Abstract

The optical properties of KLa(MoO4)2 crystals doped with Nd3+ are investigated at temperatures in the range 10–300 K. The spontaneous transition probabilities, the branching ratios, and the radiative lifetime are calculated in the framework of the Judd–Ofelt theory and compared with the experimental results for the  4F3/2 emitting level. Moreover, the observed splittings of the multiplets are reliably reproduced by a crystal-field calculation. The structural disorder of this crystal causes a substantial broadening of the emission bands. This fact and the high emission cross-section values obtained for the emission from the  4F3/2 multiplet indicate KLM:Nd as a possible active medium for tunable laser operation.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. A. Kaminskii, Laser Crystals (Springer-Verlag, Berlin, 1981).
  2. A. A. Kaminski, “Today and tomorrow of laser-crystal physics,” Phys. Status Solidi A 148, 9–79 (1995).
    [CrossRef]
  3. E. Cavalli, C. Meschini, A. Toncelli, M. Tonelli, and M. Bettinelli, “Optical spectroscopy of Tm3+ doped in KLa(MoO4)2 crystals,” J. Phys. Chem. Solids 58, 587–595 (1997).
    [CrossRef]
  4. A. A. Kaminskii, P. V. Klevtsov, L. Li, A. A. Pavlyuk, and S. E. Sarkisov, “Stimulated emission of radiation by crystals of KLa(MoO4)2 with Nd3+ ions,” Izv. Akad. Nauk SSSR, Neorg. Mater. 9, 2059–2061 (1973).
  5. B. M. Wanklin and F. R. Wondre, “Flux growth of crystals of RKMo2O6, R2MoO6 and R6MoO12 in the system R2O3-K2O-MoO3,” J. Cryst. Growth 43, 93–110 (1978).
    [CrossRef]
  6. R. W. G. Wyckoff, Crystal Structures, 2nd ed. (Interscience, New York, 1965), Vol. 3.
  7. A. A. Kaminskii, Crystalline Lasers: Physical Processes and Operating Schemes (CRC Press, Boca Raton, Fla., 1996).
  8. M. V. Eremin and A. A. Kornienko, “The superposition model in crystal field theory,” Phys. Status Solidi B 79, 775–785 (1977).
    [CrossRef]
  9. S. B. Stevens, C. A. Morrison, T. H. Allik, A. L. Rheingold, and B. S. Haggerty, “NaLa(MoO4)2 as a laser host material,” Phys. Rev. B 43, 7386–7394 (1991).
    [CrossRef]
  10. R. D. Peacock, “The intensities of lanthanide f↔f transitions,” Struct. Bonding (Berlin) 22, 83–122 (1975).
    [CrossRef]
  11. C. Brecher, L. A. Riseberg, and M. J. Weber, “Line-narrowed fluorescence spectra and site-dependent transition probabilities of Nd3+ in oxide and fluoride glasses,” Phys. Rev. B 18, 5799–5811 (1978).
    [CrossRef]
  12. M. Wacthler, A. Speghini, K. Gatterer, H. P. Fritzer, D. Ajò, and M. Bettinelli, “Optical properties of rare earth ions in lead germanates glasses,” J. Am. Ceram. Soc. 81, 2045–2052 (1998).
    [CrossRef]
  13. F. Hanson, D. Dick, H. R. Verdun, and M. Kokta, “Optical properties and lasing of Nd:SrGdGa3O7,” J. Opt. Soc. Am. B 8, 1668–1673 (1991).
    [CrossRef]
  14. D. K. Sardar and S. C. Stubblefield, “Spectroscopic characterization of Nd3+:BAMGAR crystal,” Phys. Status Solidi A 152, 549–554 (1995).
    [CrossRef]
  15. R. Burlot, R. Moncorgè, H. Manaa, G. Boulon, Y. Guyot, J. Garcia Solè, and D. Cochet-Muchy, “Spectroscopic investigation of Nd3+ ion in LiNbO3, MgO:LiNbO3, and LiTaO3 single crystals relevant for laser applications,” Opt. Mater. 6, 313–330 (1996).
    [CrossRef]
  16. E. Sorokin, M. H. Ober, I. Sorokina, E. Wintner, and A. J. Schmidt, “Femtosecond solid-state lasers using Nd3+-doped mixed scandium garnets,” J. Opt. Soc. Am. B 10, 1436–1442 (1993).
    [CrossRef]
  17. M. H. Randles, J. E. Creamer, R. F. Belt, and L. Esterowitz, “Disordered oxide crystals as hosts for diode-pumped lasers,” in Advanced Solid-State Lasers, L. Chase and A. A. Pinto, eds., Vol. 13 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1992), pp. 318–321.
  18. G. Huber, Institut für Laser-Physik, Universität Hamburg, Jungiusstrasse 11, D-20355 Hamburg, Germany (personal communication, 1995).
  19. G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962).
    [CrossRef]
  20. B. R. Judd, “Optical absorption intensity of rare earth ion,” Phys. Rev. 127, 750–761 (1962).
    [CrossRef]
  21. A. A. Kaminskii, P. V. Klevtsov, and A. A. Pavlyuk, “Stimulated emission from KY(MoO4)2-Nd3+ crystal laser,” Phys. Status Solidi A 1, K91–K94 (1970).
    [CrossRef]
  22. B. F. Aull and H. P. Jessen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross section,” IEEE J. Quantum Electron. 18, 925–930 (1982).
    [CrossRef]
  23. S. Singh, R. G. Smith, and L. G. Van Uitert, “Stimulated emission cross section and fluorescent quantum efficiency of Nd3+ in yttrium aluminum garnet at room temperature,” Phys. Rev. B 10, 2566–2572 (1974).
    [CrossRef]

1998 (1)

M. Wacthler, A. Speghini, K. Gatterer, H. P. Fritzer, D. Ajò, and M. Bettinelli, “Optical properties of rare earth ions in lead germanates glasses,” J. Am. Ceram. Soc. 81, 2045–2052 (1998).
[CrossRef]

1997 (1)

E. Cavalli, C. Meschini, A. Toncelli, M. Tonelli, and M. Bettinelli, “Optical spectroscopy of Tm3+ doped in KLa(MoO4)2 crystals,” J. Phys. Chem. Solids 58, 587–595 (1997).
[CrossRef]

1996 (1)

R. Burlot, R. Moncorgè, H. Manaa, G. Boulon, Y. Guyot, J. Garcia Solè, and D. Cochet-Muchy, “Spectroscopic investigation of Nd3+ ion in LiNbO3, MgO:LiNbO3, and LiTaO3 single crystals relevant for laser applications,” Opt. Mater. 6, 313–330 (1996).
[CrossRef]

1995 (2)

D. K. Sardar and S. C. Stubblefield, “Spectroscopic characterization of Nd3+:BAMGAR crystal,” Phys. Status Solidi A 152, 549–554 (1995).
[CrossRef]

A. A. Kaminski, “Today and tomorrow of laser-crystal physics,” Phys. Status Solidi A 148, 9–79 (1995).
[CrossRef]

1993 (1)

1991 (2)

F. Hanson, D. Dick, H. R. Verdun, and M. Kokta, “Optical properties and lasing of Nd:SrGdGa3O7,” J. Opt. Soc. Am. B 8, 1668–1673 (1991).
[CrossRef]

S. B. Stevens, C. A. Morrison, T. H. Allik, A. L. Rheingold, and B. S. Haggerty, “NaLa(MoO4)2 as a laser host material,” Phys. Rev. B 43, 7386–7394 (1991).
[CrossRef]

1982 (1)

B. F. Aull and H. P. Jessen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross section,” IEEE J. Quantum Electron. 18, 925–930 (1982).
[CrossRef]

1978 (2)

C. Brecher, L. A. Riseberg, and M. J. Weber, “Line-narrowed fluorescence spectra and site-dependent transition probabilities of Nd3+ in oxide and fluoride glasses,” Phys. Rev. B 18, 5799–5811 (1978).
[CrossRef]

B. M. Wanklin and F. R. Wondre, “Flux growth of crystals of RKMo2O6, R2MoO6 and R6MoO12 in the system R2O3-K2O-MoO3,” J. Cryst. Growth 43, 93–110 (1978).
[CrossRef]

1977 (1)

M. V. Eremin and A. A. Kornienko, “The superposition model in crystal field theory,” Phys. Status Solidi B 79, 775–785 (1977).
[CrossRef]

1975 (1)

R. D. Peacock, “The intensities of lanthanide f↔f transitions,” Struct. Bonding (Berlin) 22, 83–122 (1975).
[CrossRef]

1974 (1)

S. Singh, R. G. Smith, and L. G. Van Uitert, “Stimulated emission cross section and fluorescent quantum efficiency of Nd3+ in yttrium aluminum garnet at room temperature,” Phys. Rev. B 10, 2566–2572 (1974).
[CrossRef]

1973 (1)

A. A. Kaminskii, P. V. Klevtsov, L. Li, A. A. Pavlyuk, and S. E. Sarkisov, “Stimulated emission of radiation by crystals of KLa(MoO4)2 with Nd3+ ions,” Izv. Akad. Nauk SSSR, Neorg. Mater. 9, 2059–2061 (1973).

1970 (1)

A. A. Kaminskii, P. V. Klevtsov, and A. A. Pavlyuk, “Stimulated emission from KY(MoO4)2-Nd3+ crystal laser,” Phys. Status Solidi A 1, K91–K94 (1970).
[CrossRef]

1962 (2)

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962).
[CrossRef]

B. R. Judd, “Optical absorption intensity of rare earth ion,” Phys. Rev. 127, 750–761 (1962).
[CrossRef]

Ajò, D.

M. Wacthler, A. Speghini, K. Gatterer, H. P. Fritzer, D. Ajò, and M. Bettinelli, “Optical properties of rare earth ions in lead germanates glasses,” J. Am. Ceram. Soc. 81, 2045–2052 (1998).
[CrossRef]

Allik, T. H.

S. B. Stevens, C. A. Morrison, T. H. Allik, A. L. Rheingold, and B. S. Haggerty, “NaLa(MoO4)2 as a laser host material,” Phys. Rev. B 43, 7386–7394 (1991).
[CrossRef]

Aull, B. F.

B. F. Aull and H. P. Jessen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross section,” IEEE J. Quantum Electron. 18, 925–930 (1982).
[CrossRef]

Bettinelli, M.

M. Wacthler, A. Speghini, K. Gatterer, H. P. Fritzer, D. Ajò, and M. Bettinelli, “Optical properties of rare earth ions in lead germanates glasses,” J. Am. Ceram. Soc. 81, 2045–2052 (1998).
[CrossRef]

E. Cavalli, C. Meschini, A. Toncelli, M. Tonelli, and M. Bettinelli, “Optical spectroscopy of Tm3+ doped in KLa(MoO4)2 crystals,” J. Phys. Chem. Solids 58, 587–595 (1997).
[CrossRef]

Boulon, G.

R. Burlot, R. Moncorgè, H. Manaa, G. Boulon, Y. Guyot, J. Garcia Solè, and D. Cochet-Muchy, “Spectroscopic investigation of Nd3+ ion in LiNbO3, MgO:LiNbO3, and LiTaO3 single crystals relevant for laser applications,” Opt. Mater. 6, 313–330 (1996).
[CrossRef]

Brecher, C.

C. Brecher, L. A. Riseberg, and M. J. Weber, “Line-narrowed fluorescence spectra and site-dependent transition probabilities of Nd3+ in oxide and fluoride glasses,” Phys. Rev. B 18, 5799–5811 (1978).
[CrossRef]

Burlot, R.

R. Burlot, R. Moncorgè, H. Manaa, G. Boulon, Y. Guyot, J. Garcia Solè, and D. Cochet-Muchy, “Spectroscopic investigation of Nd3+ ion in LiNbO3, MgO:LiNbO3, and LiTaO3 single crystals relevant for laser applications,” Opt. Mater. 6, 313–330 (1996).
[CrossRef]

Cavalli, E.

E. Cavalli, C. Meschini, A. Toncelli, M. Tonelli, and M. Bettinelli, “Optical spectroscopy of Tm3+ doped in KLa(MoO4)2 crystals,” J. Phys. Chem. Solids 58, 587–595 (1997).
[CrossRef]

Cochet-Muchy, D.

R. Burlot, R. Moncorgè, H. Manaa, G. Boulon, Y. Guyot, J. Garcia Solè, and D. Cochet-Muchy, “Spectroscopic investigation of Nd3+ ion in LiNbO3, MgO:LiNbO3, and LiTaO3 single crystals relevant for laser applications,” Opt. Mater. 6, 313–330 (1996).
[CrossRef]

Dick, D.

Eremin, M. V.

M. V. Eremin and A. A. Kornienko, “The superposition model in crystal field theory,” Phys. Status Solidi B 79, 775–785 (1977).
[CrossRef]

Fritzer, H. P.

M. Wacthler, A. Speghini, K. Gatterer, H. P. Fritzer, D. Ajò, and M. Bettinelli, “Optical properties of rare earth ions in lead germanates glasses,” J. Am. Ceram. Soc. 81, 2045–2052 (1998).
[CrossRef]

Garcia Solè, J.

R. Burlot, R. Moncorgè, H. Manaa, G. Boulon, Y. Guyot, J. Garcia Solè, and D. Cochet-Muchy, “Spectroscopic investigation of Nd3+ ion in LiNbO3, MgO:LiNbO3, and LiTaO3 single crystals relevant for laser applications,” Opt. Mater. 6, 313–330 (1996).
[CrossRef]

Gatterer, K.

M. Wacthler, A. Speghini, K. Gatterer, H. P. Fritzer, D. Ajò, and M. Bettinelli, “Optical properties of rare earth ions in lead germanates glasses,” J. Am. Ceram. Soc. 81, 2045–2052 (1998).
[CrossRef]

Guyot, Y.

R. Burlot, R. Moncorgè, H. Manaa, G. Boulon, Y. Guyot, J. Garcia Solè, and D. Cochet-Muchy, “Spectroscopic investigation of Nd3+ ion in LiNbO3, MgO:LiNbO3, and LiTaO3 single crystals relevant for laser applications,” Opt. Mater. 6, 313–330 (1996).
[CrossRef]

Haggerty, B. S.

S. B. Stevens, C. A. Morrison, T. H. Allik, A. L. Rheingold, and B. S. Haggerty, “NaLa(MoO4)2 as a laser host material,” Phys. Rev. B 43, 7386–7394 (1991).
[CrossRef]

Hanson, F.

Jessen, H. P.

B. F. Aull and H. P. Jessen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross section,” IEEE J. Quantum Electron. 18, 925–930 (1982).
[CrossRef]

Judd, B. R.

B. R. Judd, “Optical absorption intensity of rare earth ion,” Phys. Rev. 127, 750–761 (1962).
[CrossRef]

Kaminski, A. A.

A. A. Kaminski, “Today and tomorrow of laser-crystal physics,” Phys. Status Solidi A 148, 9–79 (1995).
[CrossRef]

Kaminskii, A. A.

A. A. Kaminskii, P. V. Klevtsov, L. Li, A. A. Pavlyuk, and S. E. Sarkisov, “Stimulated emission of radiation by crystals of KLa(MoO4)2 with Nd3+ ions,” Izv. Akad. Nauk SSSR, Neorg. Mater. 9, 2059–2061 (1973).

A. A. Kaminskii, P. V. Klevtsov, and A. A. Pavlyuk, “Stimulated emission from KY(MoO4)2-Nd3+ crystal laser,” Phys. Status Solidi A 1, K91–K94 (1970).
[CrossRef]

Klevtsov, P. V.

A. A. Kaminskii, P. V. Klevtsov, L. Li, A. A. Pavlyuk, and S. E. Sarkisov, “Stimulated emission of radiation by crystals of KLa(MoO4)2 with Nd3+ ions,” Izv. Akad. Nauk SSSR, Neorg. Mater. 9, 2059–2061 (1973).

A. A. Kaminskii, P. V. Klevtsov, and A. A. Pavlyuk, “Stimulated emission from KY(MoO4)2-Nd3+ crystal laser,” Phys. Status Solidi A 1, K91–K94 (1970).
[CrossRef]

Kokta, M.

Kornienko, A. A.

M. V. Eremin and A. A. Kornienko, “The superposition model in crystal field theory,” Phys. Status Solidi B 79, 775–785 (1977).
[CrossRef]

Li, L.

A. A. Kaminskii, P. V. Klevtsov, L. Li, A. A. Pavlyuk, and S. E. Sarkisov, “Stimulated emission of radiation by crystals of KLa(MoO4)2 with Nd3+ ions,” Izv. Akad. Nauk SSSR, Neorg. Mater. 9, 2059–2061 (1973).

Manaa, H.

R. Burlot, R. Moncorgè, H. Manaa, G. Boulon, Y. Guyot, J. Garcia Solè, and D. Cochet-Muchy, “Spectroscopic investigation of Nd3+ ion in LiNbO3, MgO:LiNbO3, and LiTaO3 single crystals relevant for laser applications,” Opt. Mater. 6, 313–330 (1996).
[CrossRef]

Meschini, C.

E. Cavalli, C. Meschini, A. Toncelli, M. Tonelli, and M. Bettinelli, “Optical spectroscopy of Tm3+ doped in KLa(MoO4)2 crystals,” J. Phys. Chem. Solids 58, 587–595 (1997).
[CrossRef]

Moncorgè, R.

R. Burlot, R. Moncorgè, H. Manaa, G. Boulon, Y. Guyot, J. Garcia Solè, and D. Cochet-Muchy, “Spectroscopic investigation of Nd3+ ion in LiNbO3, MgO:LiNbO3, and LiTaO3 single crystals relevant for laser applications,” Opt. Mater. 6, 313–330 (1996).
[CrossRef]

Morrison, C. A.

S. B. Stevens, C. A. Morrison, T. H. Allik, A. L. Rheingold, and B. S. Haggerty, “NaLa(MoO4)2 as a laser host material,” Phys. Rev. B 43, 7386–7394 (1991).
[CrossRef]

Ober, M. H.

Ofelt, G. S.

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962).
[CrossRef]

Pavlyuk, A. A.

A. A. Kaminskii, P. V. Klevtsov, L. Li, A. A. Pavlyuk, and S. E. Sarkisov, “Stimulated emission of radiation by crystals of KLa(MoO4)2 with Nd3+ ions,” Izv. Akad. Nauk SSSR, Neorg. Mater. 9, 2059–2061 (1973).

A. A. Kaminskii, P. V. Klevtsov, and A. A. Pavlyuk, “Stimulated emission from KY(MoO4)2-Nd3+ crystal laser,” Phys. Status Solidi A 1, K91–K94 (1970).
[CrossRef]

Peacock, R. D.

R. D. Peacock, “The intensities of lanthanide f↔f transitions,” Struct. Bonding (Berlin) 22, 83–122 (1975).
[CrossRef]

Rheingold, A. L.

S. B. Stevens, C. A. Morrison, T. H. Allik, A. L. Rheingold, and B. S. Haggerty, “NaLa(MoO4)2 as a laser host material,” Phys. Rev. B 43, 7386–7394 (1991).
[CrossRef]

Riseberg, L. A.

C. Brecher, L. A. Riseberg, and M. J. Weber, “Line-narrowed fluorescence spectra and site-dependent transition probabilities of Nd3+ in oxide and fluoride glasses,” Phys. Rev. B 18, 5799–5811 (1978).
[CrossRef]

Sardar, D. K.

D. K. Sardar and S. C. Stubblefield, “Spectroscopic characterization of Nd3+:BAMGAR crystal,” Phys. Status Solidi A 152, 549–554 (1995).
[CrossRef]

Sarkisov, S. E.

A. A. Kaminskii, P. V. Klevtsov, L. Li, A. A. Pavlyuk, and S. E. Sarkisov, “Stimulated emission of radiation by crystals of KLa(MoO4)2 with Nd3+ ions,” Izv. Akad. Nauk SSSR, Neorg. Mater. 9, 2059–2061 (1973).

Schmidt, A. J.

Singh, S.

S. Singh, R. G. Smith, and L. G. Van Uitert, “Stimulated emission cross section and fluorescent quantum efficiency of Nd3+ in yttrium aluminum garnet at room temperature,” Phys. Rev. B 10, 2566–2572 (1974).
[CrossRef]

Smith, R. G.

S. Singh, R. G. Smith, and L. G. Van Uitert, “Stimulated emission cross section and fluorescent quantum efficiency of Nd3+ in yttrium aluminum garnet at room temperature,” Phys. Rev. B 10, 2566–2572 (1974).
[CrossRef]

Sorokin, E.

Sorokina, I.

Speghini, A.

M. Wacthler, A. Speghini, K. Gatterer, H. P. Fritzer, D. Ajò, and M. Bettinelli, “Optical properties of rare earth ions in lead germanates glasses,” J. Am. Ceram. Soc. 81, 2045–2052 (1998).
[CrossRef]

Stevens, S. B.

S. B. Stevens, C. A. Morrison, T. H. Allik, A. L. Rheingold, and B. S. Haggerty, “NaLa(MoO4)2 as a laser host material,” Phys. Rev. B 43, 7386–7394 (1991).
[CrossRef]

Stubblefield, S. C.

D. K. Sardar and S. C. Stubblefield, “Spectroscopic characterization of Nd3+:BAMGAR crystal,” Phys. Status Solidi A 152, 549–554 (1995).
[CrossRef]

Toncelli, A.

E. Cavalli, C. Meschini, A. Toncelli, M. Tonelli, and M. Bettinelli, “Optical spectroscopy of Tm3+ doped in KLa(MoO4)2 crystals,” J. Phys. Chem. Solids 58, 587–595 (1997).
[CrossRef]

Tonelli, M.

E. Cavalli, C. Meschini, A. Toncelli, M. Tonelli, and M. Bettinelli, “Optical spectroscopy of Tm3+ doped in KLa(MoO4)2 crystals,” J. Phys. Chem. Solids 58, 587–595 (1997).
[CrossRef]

Van Uitert, L. G.

S. Singh, R. G. Smith, and L. G. Van Uitert, “Stimulated emission cross section and fluorescent quantum efficiency of Nd3+ in yttrium aluminum garnet at room temperature,” Phys. Rev. B 10, 2566–2572 (1974).
[CrossRef]

Verdun, H. R.

Wacthler, M.

M. Wacthler, A. Speghini, K. Gatterer, H. P. Fritzer, D. Ajò, and M. Bettinelli, “Optical properties of rare earth ions in lead germanates glasses,” J. Am. Ceram. Soc. 81, 2045–2052 (1998).
[CrossRef]

Wanklin, B. M.

B. M. Wanklin and F. R. Wondre, “Flux growth of crystals of RKMo2O6, R2MoO6 and R6MoO12 in the system R2O3-K2O-MoO3,” J. Cryst. Growth 43, 93–110 (1978).
[CrossRef]

Weber, M. J.

C. Brecher, L. A. Riseberg, and M. J. Weber, “Line-narrowed fluorescence spectra and site-dependent transition probabilities of Nd3+ in oxide and fluoride glasses,” Phys. Rev. B 18, 5799–5811 (1978).
[CrossRef]

Wintner, E.

Wondre, F. R.

B. M. Wanklin and F. R. Wondre, “Flux growth of crystals of RKMo2O6, R2MoO6 and R6MoO12 in the system R2O3-K2O-MoO3,” J. Cryst. Growth 43, 93–110 (1978).
[CrossRef]

IEEE J. Quantum Electron. (1)

B. F. Aull and H. P. Jessen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross section,” IEEE J. Quantum Electron. 18, 925–930 (1982).
[CrossRef]

Izv. Akad. Nauk SSSR, Neorg. Mater. (1)

A. A. Kaminskii, P. V. Klevtsov, L. Li, A. A. Pavlyuk, and S. E. Sarkisov, “Stimulated emission of radiation by crystals of KLa(MoO4)2 with Nd3+ ions,” Izv. Akad. Nauk SSSR, Neorg. Mater. 9, 2059–2061 (1973).

J. Am. Ceram. Soc. (1)

M. Wacthler, A. Speghini, K. Gatterer, H. P. Fritzer, D. Ajò, and M. Bettinelli, “Optical properties of rare earth ions in lead germanates glasses,” J. Am. Ceram. Soc. 81, 2045–2052 (1998).
[CrossRef]

J. Chem. Phys. (1)

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962).
[CrossRef]

J. Cryst. Growth (1)

B. M. Wanklin and F. R. Wondre, “Flux growth of crystals of RKMo2O6, R2MoO6 and R6MoO12 in the system R2O3-K2O-MoO3,” J. Cryst. Growth 43, 93–110 (1978).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Phys. Chem. Solids (1)

E. Cavalli, C. Meschini, A. Toncelli, M. Tonelli, and M. Bettinelli, “Optical spectroscopy of Tm3+ doped in KLa(MoO4)2 crystals,” J. Phys. Chem. Solids 58, 587–595 (1997).
[CrossRef]

Opt. Mater. (1)

R. Burlot, R. Moncorgè, H. Manaa, G. Boulon, Y. Guyot, J. Garcia Solè, and D. Cochet-Muchy, “Spectroscopic investigation of Nd3+ ion in LiNbO3, MgO:LiNbO3, and LiTaO3 single crystals relevant for laser applications,” Opt. Mater. 6, 313–330 (1996).
[CrossRef]

Phys. Rev. (1)

B. R. Judd, “Optical absorption intensity of rare earth ion,” Phys. Rev. 127, 750–761 (1962).
[CrossRef]

Phys. Rev. B (3)

S. Singh, R. G. Smith, and L. G. Van Uitert, “Stimulated emission cross section and fluorescent quantum efficiency of Nd3+ in yttrium aluminum garnet at room temperature,” Phys. Rev. B 10, 2566–2572 (1974).
[CrossRef]

C. Brecher, L. A. Riseberg, and M. J. Weber, “Line-narrowed fluorescence spectra and site-dependent transition probabilities of Nd3+ in oxide and fluoride glasses,” Phys. Rev. B 18, 5799–5811 (1978).
[CrossRef]

S. B. Stevens, C. A. Morrison, T. H. Allik, A. L. Rheingold, and B. S. Haggerty, “NaLa(MoO4)2 as a laser host material,” Phys. Rev. B 43, 7386–7394 (1991).
[CrossRef]

Phys. Status Solidi A (3)

D. K. Sardar and S. C. Stubblefield, “Spectroscopic characterization of Nd3+:BAMGAR crystal,” Phys. Status Solidi A 152, 549–554 (1995).
[CrossRef]

A. A. Kaminski, “Today and tomorrow of laser-crystal physics,” Phys. Status Solidi A 148, 9–79 (1995).
[CrossRef]

A. A. Kaminskii, P. V. Klevtsov, and A. A. Pavlyuk, “Stimulated emission from KY(MoO4)2-Nd3+ crystal laser,” Phys. Status Solidi A 1, K91–K94 (1970).
[CrossRef]

Phys. Status Solidi B (1)

M. V. Eremin and A. A. Kornienko, “The superposition model in crystal field theory,” Phys. Status Solidi B 79, 775–785 (1977).
[CrossRef]

Struct. Bonding (Berlin) (1)

R. D. Peacock, “The intensities of lanthanide f↔f transitions,” Struct. Bonding (Berlin) 22, 83–122 (1975).
[CrossRef]

Other (5)

M. H. Randles, J. E. Creamer, R. F. Belt, and L. Esterowitz, “Disordered oxide crystals as hosts for diode-pumped lasers,” in Advanced Solid-State Lasers, L. Chase and A. A. Pinto, eds., Vol. 13 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1992), pp. 318–321.

G. Huber, Institut für Laser-Physik, Universität Hamburg, Jungiusstrasse 11, D-20355 Hamburg, Germany (personal communication, 1995).

A. A. Kaminskii, Laser Crystals (Springer-Verlag, Berlin, 1981).

R. W. G. Wyckoff, Crystal Structures, 2nd ed. (Interscience, New York, 1965), Vol. 3.

A. A. Kaminskii, Crystalline Lasers: Physical Processes and Operating Schemes (CRC Press, Boca Raton, Fla., 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Absorption spectra of KLM:Nd (π polarization), at 10-K and 300-K crystal temperature.

Fig. 2
Fig. 2

Polarized absorption spectra of KLM:Nd in the 800-nm region.

Fig. 3
Fig. 3

Polarized 10-K fluorescence spectra of KLM:Nd, λexc=804 nm.

Fig. 4
Fig. 4

Temperature dependence of the lifetime for the emission from the  4F3/2 state.

Fig. 5
Fig. 5

Polarized emission cross sections (σe) for the three fluorescence bands at room temperature.

Tables (6)

Tables Icon

Table 1 Experimental Conditions for the Inductively Coupled Plasma Mass Spectrometry Analysisa

Tables Icon

Table 2 Energy Levels Observed for Nd3+ in KLM

Tables Icon

Table 3 Comparison among the FWHM’s of the  4I9/24F5/2+2H9/2 Absorption Transition of Various Crystals

Tables Icon

Table 4 Experimental and Calculated Oscillator Strengths (P) of Nd3+ in KLMa

Tables Icon

Table 5 Calculated Spontaneous-Emission Probabilities A, Radiative Branching Ratios β, and Radiative Lifetime τ of  4F3/2 Nd3+ Multiplet in KLM

Tables Icon

Table 6 Experimental Branching Ratio β and Polarized Emission Cross Sections σe for the Transition Originating from  4F3/2

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Hcf=k,q,iBqk(Cqk)i,
Hcf=B02C02+B04C04+B44[C44+C-44]+B06C06+B46[C46+C-46].
B02=610,B04=-378,B44=785,
B06=-259,B46=827+i48

Metrics