Abstract

The scattering of a surface plasmon polariton in a semiconductor slab by rapid plasma creation in the slab is explored. As a result of the scattering, the initial surface wave breaks up into two frequency-upshifted surface waves propagating in opposite directions along the slab and generates a static magnetic field and a dc inside the slab and transient radiation that escapes the slab. A part of the initial energy can also be trapped inside the slab owing to total internal reflection and forms frequency-upshifted guided modes of the slab. The scattering of a surface wave by a rapidly created plasma allows the analysis of basic processes that occur in nonstationary media in the presence of boundaries. The practical applications include the control of propagation of guided radiation in integrated optics devices, coupling the radiation out of waveguides, and ultrafast transient spectroscopy of an electron–hole plasma in semiconductors.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (29)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription