Abstract

Two-wave mixing in a He+-implanted waveguide fabricated with a BaTiO3 substrate is investigated at 514.5 nm. The study is conducted for several directions of the grating vector relative to the optical c axis. The maximum gain of 58 cm-1 is far higher than the value of 15 cm-1 that is measurable in the same conditions in bulk samples. Taking into account the mode losses, we show that the experimental values for the gain are in good agreement with theory. The feasibility of photorefractive interactions between TE guided waves with different mode orders is demonstrated. The characteristics of the photorefractive effect in the waveguide are shown to be different from those in the bulk (opposite transfer direction, shorter response time), which suggests that the nature of the dominant charge carriers and the electro-optic properties are modified by the implantation.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Kip, R. Fink, T. Bartholomäus, and E. Krätzig, “Coupling of orthogonally polarized waves in LiNbO3 optical waveguides,” Opt. Commun. 95, 33–38 (1993).
    [CrossRef]
  2. M. Zha, D. Fluck, P. Günter, M. Fleuster, and Ch. Buchal, “Two-wave mixing in photorefractive ion-implanted KNbO3 planar waveguides at visible and near-infrared wavelengths,” Opt. Lett. 18, 577–579 (1993).
    [CrossRef]
  3. E. E. Robertson, R. W. Eason, M. Kaczmarek, P. J. Chandler, and X. Huang, “Ion-beam manipulation of the photorefractive properties of strontium barium niobate planar waveguides,” Opt. Lett. 21, 641–643 (1996).
    [CrossRef] [PubMed]
  4. K. E. Youden, S. W. James, R. W. Eason, P. J. Chandler, L. Zhang, and P. D. Townsend, “Photorefractive planar waveguides in BaTiO3 fabricated by ion-beam implantation,” Opt. Lett. 17, 1509–1511 (1992).
    [CrossRef]
  5. E. M. Conwell, “Modes in optical waveguides formed by diffusion,” Appl. Phys. Lett. 23, 328–329 (1973).
    [CrossRef]
  6. F. Rickermann, D. Kip, B. Gather, and E. Krätzig, “Characterization of photorefractive LiNbO3 waveguides fabricated by combined proton and copper exchange,” Phys. Status Solidi A 150, 763–772 (1995).
    [CrossRef]
  7. C. Urlacher, J. Dumas, J. Serughetti, J. Mugnier, and M. Munoz, “Planar ZrO2 waveguides prepared by the sol-gel process: structural and optical properties,” J. Sol-Gel Sci. Technol. 8, 999–1005 (1997).
  8. P. Moretti, P. Thevenard, G. Godefroy, R. Sommerfeldt, P. Hertel, and E. Krätzig, “Waveguides in barium titanate by helium implantation,” Phys. Status Solidi A 117, K85–K88 (1990); P. D. Townsend, P. J. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge U. Press, Cambridge, 1994).
    [CrossRef]
  9. F. Ito and K. Kitayama, “Photorefractive crystal waveguide with periodically reversed c axis for enhanced two-wave mixing,” Appl. Phys. Lett. 59, 1932–1934 (1991).
    [CrossRef]
  10. A. Dazzi, P. Mathey, P. Lompré, and P. Jullien, “Energy leaks through the optical barrier created by H+ implantation in BaTiO3 and LiNbO3 waveguides,” Opt. Commun. 149, 135–142 (1998).
    [CrossRef]
  11. P. K. Tien and R. Ulrich, “Theory of prism–film coupler and thin film light guides,” J. Opt. Soc. Am. 60, 1325–1337 (1970).
    [CrossRef]
  12. D. Fluck, R. Irmscher, Ch. Buchal, and P. Günter, “Tailoring of optical planar waveguides in KNbO3 by MeV He ion implantation,” Ferroelectrics 128, 79–84 (1992).
    [CrossRef]
  13. Y. Fainman, E. Klancnik, and S. H. Lee, “Optimal coherent image amplification by two-wave coupling in photorefractive BaTiO3,” Opt. Eng. (Bellingham) 25, 228–234 (1986).
    [CrossRef]
  14. P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley-Interscience, New York, 1993).
  15. P. Mathey, P. Jullien, B. Mazué, and D. Rytz, “Dynamics of novelty filtering and edge enhancement in cobalt-doped barium titanate,” J. Opt. Soc. Am. B 15, 1353–1361 (1998).
    [CrossRef]
  16. D. Z. Anderson, D. M. Lininger, and J. Feinberg, “Optical tracking novelty filter,” Opt. Lett. 12, 123–125 (1987).
    [CrossRef] [PubMed]
  17. M. C. Gower, “Photoinduced voltage and frequency shifts in a self-pumped phase conjugating BaTiO3 crystal,” Opt. Lett. 11, 458–460 (1986).
    [CrossRef] [PubMed]

1998

A. Dazzi, P. Mathey, P. Lompré, and P. Jullien, “Energy leaks through the optical barrier created by H+ implantation in BaTiO3 and LiNbO3 waveguides,” Opt. Commun. 149, 135–142 (1998).
[CrossRef]

P. Mathey, P. Jullien, B. Mazué, and D. Rytz, “Dynamics of novelty filtering and edge enhancement in cobalt-doped barium titanate,” J. Opt. Soc. Am. B 15, 1353–1361 (1998).
[CrossRef]

1997

C. Urlacher, J. Dumas, J. Serughetti, J. Mugnier, and M. Munoz, “Planar ZrO2 waveguides prepared by the sol-gel process: structural and optical properties,” J. Sol-Gel Sci. Technol. 8, 999–1005 (1997).

1996

1995

F. Rickermann, D. Kip, B. Gather, and E. Krätzig, “Characterization of photorefractive LiNbO3 waveguides fabricated by combined proton and copper exchange,” Phys. Status Solidi A 150, 763–772 (1995).
[CrossRef]

1993

M. Zha, D. Fluck, P. Günter, M. Fleuster, and Ch. Buchal, “Two-wave mixing in photorefractive ion-implanted KNbO3 planar waveguides at visible and near-infrared wavelengths,” Opt. Lett. 18, 577–579 (1993).
[CrossRef]

D. Kip, R. Fink, T. Bartholomäus, and E. Krätzig, “Coupling of orthogonally polarized waves in LiNbO3 optical waveguides,” Opt. Commun. 95, 33–38 (1993).
[CrossRef]

1992

D. Fluck, R. Irmscher, Ch. Buchal, and P. Günter, “Tailoring of optical planar waveguides in KNbO3 by MeV He ion implantation,” Ferroelectrics 128, 79–84 (1992).
[CrossRef]

K. E. Youden, S. W. James, R. W. Eason, P. J. Chandler, L. Zhang, and P. D. Townsend, “Photorefractive planar waveguides in BaTiO3 fabricated by ion-beam implantation,” Opt. Lett. 17, 1509–1511 (1992).
[CrossRef]

1991

F. Ito and K. Kitayama, “Photorefractive crystal waveguide with periodically reversed c axis for enhanced two-wave mixing,” Appl. Phys. Lett. 59, 1932–1934 (1991).
[CrossRef]

1987

1986

Y. Fainman, E. Klancnik, and S. H. Lee, “Optimal coherent image amplification by two-wave coupling in photorefractive BaTiO3,” Opt. Eng. (Bellingham) 25, 228–234 (1986).
[CrossRef]

M. C. Gower, “Photoinduced voltage and frequency shifts in a self-pumped phase conjugating BaTiO3 crystal,” Opt. Lett. 11, 458–460 (1986).
[CrossRef] [PubMed]

1973

E. M. Conwell, “Modes in optical waveguides formed by diffusion,” Appl. Phys. Lett. 23, 328–329 (1973).
[CrossRef]

1970

Anderson, D. Z.

Bartholomäus, T.

D. Kip, R. Fink, T. Bartholomäus, and E. Krätzig, “Coupling of orthogonally polarized waves in LiNbO3 optical waveguides,” Opt. Commun. 95, 33–38 (1993).
[CrossRef]

Buchal, Ch.

M. Zha, D. Fluck, P. Günter, M. Fleuster, and Ch. Buchal, “Two-wave mixing in photorefractive ion-implanted KNbO3 planar waveguides at visible and near-infrared wavelengths,” Opt. Lett. 18, 577–579 (1993).
[CrossRef]

D. Fluck, R. Irmscher, Ch. Buchal, and P. Günter, “Tailoring of optical planar waveguides in KNbO3 by MeV He ion implantation,” Ferroelectrics 128, 79–84 (1992).
[CrossRef]

Chandler, P. J.

Conwell, E. M.

E. M. Conwell, “Modes in optical waveguides formed by diffusion,” Appl. Phys. Lett. 23, 328–329 (1973).
[CrossRef]

Dazzi, A.

A. Dazzi, P. Mathey, P. Lompré, and P. Jullien, “Energy leaks through the optical barrier created by H+ implantation in BaTiO3 and LiNbO3 waveguides,” Opt. Commun. 149, 135–142 (1998).
[CrossRef]

Dumas, J.

C. Urlacher, J. Dumas, J. Serughetti, J. Mugnier, and M. Munoz, “Planar ZrO2 waveguides prepared by the sol-gel process: structural and optical properties,” J. Sol-Gel Sci. Technol. 8, 999–1005 (1997).

Eason, R. W.

Fainman, Y.

Y. Fainman, E. Klancnik, and S. H. Lee, “Optimal coherent image amplification by two-wave coupling in photorefractive BaTiO3,” Opt. Eng. (Bellingham) 25, 228–234 (1986).
[CrossRef]

Feinberg, J.

Fink, R.

D. Kip, R. Fink, T. Bartholomäus, and E. Krätzig, “Coupling of orthogonally polarized waves in LiNbO3 optical waveguides,” Opt. Commun. 95, 33–38 (1993).
[CrossRef]

Fleuster, M.

Fluck, D.

M. Zha, D. Fluck, P. Günter, M. Fleuster, and Ch. Buchal, “Two-wave mixing in photorefractive ion-implanted KNbO3 planar waveguides at visible and near-infrared wavelengths,” Opt. Lett. 18, 577–579 (1993).
[CrossRef]

D. Fluck, R. Irmscher, Ch. Buchal, and P. Günter, “Tailoring of optical planar waveguides in KNbO3 by MeV He ion implantation,” Ferroelectrics 128, 79–84 (1992).
[CrossRef]

Gather, B.

F. Rickermann, D. Kip, B. Gather, and E. Krätzig, “Characterization of photorefractive LiNbO3 waveguides fabricated by combined proton and copper exchange,” Phys. Status Solidi A 150, 763–772 (1995).
[CrossRef]

Gower, M. C.

Günter, P.

M. Zha, D. Fluck, P. Günter, M. Fleuster, and Ch. Buchal, “Two-wave mixing in photorefractive ion-implanted KNbO3 planar waveguides at visible and near-infrared wavelengths,” Opt. Lett. 18, 577–579 (1993).
[CrossRef]

D. Fluck, R. Irmscher, Ch. Buchal, and P. Günter, “Tailoring of optical planar waveguides in KNbO3 by MeV He ion implantation,” Ferroelectrics 128, 79–84 (1992).
[CrossRef]

Huang, X.

Irmscher, R.

D. Fluck, R. Irmscher, Ch. Buchal, and P. Günter, “Tailoring of optical planar waveguides in KNbO3 by MeV He ion implantation,” Ferroelectrics 128, 79–84 (1992).
[CrossRef]

Ito, F.

F. Ito and K. Kitayama, “Photorefractive crystal waveguide with periodically reversed c axis for enhanced two-wave mixing,” Appl. Phys. Lett. 59, 1932–1934 (1991).
[CrossRef]

James, S. W.

Jullien, P.

A. Dazzi, P. Mathey, P. Lompré, and P. Jullien, “Energy leaks through the optical barrier created by H+ implantation in BaTiO3 and LiNbO3 waveguides,” Opt. Commun. 149, 135–142 (1998).
[CrossRef]

P. Mathey, P. Jullien, B. Mazué, and D. Rytz, “Dynamics of novelty filtering and edge enhancement in cobalt-doped barium titanate,” J. Opt. Soc. Am. B 15, 1353–1361 (1998).
[CrossRef]

Kaczmarek, M.

Kip, D.

F. Rickermann, D. Kip, B. Gather, and E. Krätzig, “Characterization of photorefractive LiNbO3 waveguides fabricated by combined proton and copper exchange,” Phys. Status Solidi A 150, 763–772 (1995).
[CrossRef]

D. Kip, R. Fink, T. Bartholomäus, and E. Krätzig, “Coupling of orthogonally polarized waves in LiNbO3 optical waveguides,” Opt. Commun. 95, 33–38 (1993).
[CrossRef]

Kitayama, K.

F. Ito and K. Kitayama, “Photorefractive crystal waveguide with periodically reversed c axis for enhanced two-wave mixing,” Appl. Phys. Lett. 59, 1932–1934 (1991).
[CrossRef]

Klancnik, E.

Y. Fainman, E. Klancnik, and S. H. Lee, “Optimal coherent image amplification by two-wave coupling in photorefractive BaTiO3,” Opt. Eng. (Bellingham) 25, 228–234 (1986).
[CrossRef]

Krätzig, E.

F. Rickermann, D. Kip, B. Gather, and E. Krätzig, “Characterization of photorefractive LiNbO3 waveguides fabricated by combined proton and copper exchange,” Phys. Status Solidi A 150, 763–772 (1995).
[CrossRef]

D. Kip, R. Fink, T. Bartholomäus, and E. Krätzig, “Coupling of orthogonally polarized waves in LiNbO3 optical waveguides,” Opt. Commun. 95, 33–38 (1993).
[CrossRef]

Lee, S. H.

Y. Fainman, E. Klancnik, and S. H. Lee, “Optimal coherent image amplification by two-wave coupling in photorefractive BaTiO3,” Opt. Eng. (Bellingham) 25, 228–234 (1986).
[CrossRef]

Lininger, D. M.

Lompré, P.

A. Dazzi, P. Mathey, P. Lompré, and P. Jullien, “Energy leaks through the optical barrier created by H+ implantation in BaTiO3 and LiNbO3 waveguides,” Opt. Commun. 149, 135–142 (1998).
[CrossRef]

Mathey, P.

A. Dazzi, P. Mathey, P. Lompré, and P. Jullien, “Energy leaks through the optical barrier created by H+ implantation in BaTiO3 and LiNbO3 waveguides,” Opt. Commun. 149, 135–142 (1998).
[CrossRef]

P. Mathey, P. Jullien, B. Mazué, and D. Rytz, “Dynamics of novelty filtering and edge enhancement in cobalt-doped barium titanate,” J. Opt. Soc. Am. B 15, 1353–1361 (1998).
[CrossRef]

Mazué, B.

Mugnier, J.

C. Urlacher, J. Dumas, J. Serughetti, J. Mugnier, and M. Munoz, “Planar ZrO2 waveguides prepared by the sol-gel process: structural and optical properties,” J. Sol-Gel Sci. Technol. 8, 999–1005 (1997).

Munoz, M.

C. Urlacher, J. Dumas, J. Serughetti, J. Mugnier, and M. Munoz, “Planar ZrO2 waveguides prepared by the sol-gel process: structural and optical properties,” J. Sol-Gel Sci. Technol. 8, 999–1005 (1997).

Rickermann, F.

F. Rickermann, D. Kip, B. Gather, and E. Krätzig, “Characterization of photorefractive LiNbO3 waveguides fabricated by combined proton and copper exchange,” Phys. Status Solidi A 150, 763–772 (1995).
[CrossRef]

Robertson, E. E.

Rytz, D.

Serughetti, J.

C. Urlacher, J. Dumas, J. Serughetti, J. Mugnier, and M. Munoz, “Planar ZrO2 waveguides prepared by the sol-gel process: structural and optical properties,” J. Sol-Gel Sci. Technol. 8, 999–1005 (1997).

Tien, P. K.

Townsend, P. D.

Ulrich, R.

Urlacher, C.

C. Urlacher, J. Dumas, J. Serughetti, J. Mugnier, and M. Munoz, “Planar ZrO2 waveguides prepared by the sol-gel process: structural and optical properties,” J. Sol-Gel Sci. Technol. 8, 999–1005 (1997).

Youden, K. E.

Zha, M.

Zhang, L.

Appl. Phys. Lett.

E. M. Conwell, “Modes in optical waveguides formed by diffusion,” Appl. Phys. Lett. 23, 328–329 (1973).
[CrossRef]

F. Ito and K. Kitayama, “Photorefractive crystal waveguide with periodically reversed c axis for enhanced two-wave mixing,” Appl. Phys. Lett. 59, 1932–1934 (1991).
[CrossRef]

Ferroelectrics

D. Fluck, R. Irmscher, Ch. Buchal, and P. Günter, “Tailoring of optical planar waveguides in KNbO3 by MeV He ion implantation,” Ferroelectrics 128, 79–84 (1992).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. B

J. Sol-Gel Sci. Technol.

C. Urlacher, J. Dumas, J. Serughetti, J. Mugnier, and M. Munoz, “Planar ZrO2 waveguides prepared by the sol-gel process: structural and optical properties,” J. Sol-Gel Sci. Technol. 8, 999–1005 (1997).

Opt. Commun.

A. Dazzi, P. Mathey, P. Lompré, and P. Jullien, “Energy leaks through the optical barrier created by H+ implantation in BaTiO3 and LiNbO3 waveguides,” Opt. Commun. 149, 135–142 (1998).
[CrossRef]

D. Kip, R. Fink, T. Bartholomäus, and E. Krätzig, “Coupling of orthogonally polarized waves in LiNbO3 optical waveguides,” Opt. Commun. 95, 33–38 (1993).
[CrossRef]

Opt. Eng. (Bellingham)

Y. Fainman, E. Klancnik, and S. H. Lee, “Optimal coherent image amplification by two-wave coupling in photorefractive BaTiO3,” Opt. Eng. (Bellingham) 25, 228–234 (1986).
[CrossRef]

Opt. Lett.

Phys. Status Solidi A

F. Rickermann, D. Kip, B. Gather, and E. Krätzig, “Characterization of photorefractive LiNbO3 waveguides fabricated by combined proton and copper exchange,” Phys. Status Solidi A 150, 763–772 (1995).
[CrossRef]

Other

P. Moretti, P. Thevenard, G. Godefroy, R. Sommerfeldt, P. Hertel, and E. Krätzig, “Waveguides in barium titanate by helium implantation,” Phys. Status Solidi A 117, K85–K88 (1990); P. D. Townsend, P. J. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge U. Press, Cambridge, 1994).
[CrossRef]

P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley-Interscience, New York, 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

m-Line spectra at λ=514.5 nm. The waves are TE modes (extraordinarily polarized), and the propagation direction is perpendicular to the c axis. The input angle is the incident angle of light onto the coupling prism. (a) BaTiO3 substrate twice implanted with He+ at energies of 2 and 1.9 MeV, each with a dose of 1016 ions/cm2. (b) After the preceding waveguide coupling surface has been polished. (c) A BaTiO3 substrate three times implanted with He+ ions at energies of 2, 1.9, and 1.8 MeV, each at a dose of 2×1015 ions/cm2.

Fig. 2
Fig. 2

Top view of the relative arrangement of the waveguide and the input prism that injects two modes [beam (1) and beam (2)]. c is the optical axis of the guide, n is the normal of the entrance face of the prism, ±θ are incident angles of beams (1) and (2) to the prism.

Fig. 3
Fig. 3

Loss of the TE0 mode versus angle α. The operating wavelength is λ=514.5 nm.

Fig. 4
Fig. 4

Representation of the prism setup involving one input prism and an output prism. The two rutile prisms have the same angle.

Fig. 5
Fig. 5

Effective gain Γeff versus angle α at λ=514.5 nm. The pump–probe ratio is r=500, and 2θ=34°. The lines that join the experimental points are guides for the eye.

Fig. 6
Fig. 6

Normalized gain curves versus angle α. Dashed curve, the theoretical gain in a bulk BaTiO3 sample. The straight lines that join the experimental points are guides for the eye.

Fig. 7
Fig. 7

Effective gain (filled diamond) and depletion efficiency (filled square) versus pump–probe ratio r. The straight lines that join the experimental points are guides for the eye.

Fig. 8
Fig. 8

Response time τ versus the intensity of light inside the waveguide (filled diamond) and inside the bulk crystal (filled square). The straight lines are numerical adjustments of the experimental data according to power laws I-x.

Tables (1)

Tables Icon

Table 1 Effective Gains Obtained by Mixing TE Modes with the Same and Different Orders

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

γ=OutputprobeintensitywithpumpONOutputprobeintensitywithpumpOFF.
γ=1+r1+r exp(-ΓLeff),
γ=exp(ΓLeff),
Γ=2πnλEsc reffcos ϕ.
γ=exp(Γeff L0),
γi=exp[Γeff (t1+t2+di)],
Γeff=1(di-di+1)lnγiγi+1.
η=100×I-IpIp0,
σph=eff 0Iτ,

Metrics