Abstract

The noise characteristics of four-wave mixing between short optical pulses in semiconductor optical amplifiers are investigated, with the effects of fast gain saturation taken into account. An approximate simplified expression for the power spectral density of the amplified spontaneous emission noise under the injection of a sequence of short optical pulses is derived, in which the spatial dependence of the inversion factor is included. The dependence of the signal-to-noise ratio of the output four-wave mixing signal on the input pump and signal powers is also investigated.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. C. Tatham, G. Sherlock, and L. D. Westbrook, “20-nm optical wavelength conversion using nondegenerate four-wave mixing,” IEEE Photon. Technol. Lett. 5, 1303–1306 (1993).
    [CrossRef]
  2. A. Ellis, M. Tatham, D. Davies, D. Nesset, D. Moodie, and G. Sherlock, “40 Gbit/s transmission over 202 km of standard fiber using midspan spectral inversion,” Electron. Lett. 31, 299–301 (1995).
    [CrossRef]
  3. S. Kawanishi, T. Morioka, O. Kamatani, H. Takara, J. M. Jacob, and M. Saruwatari, “100 Gbit/s all-optical demultiplexing using four-wave mixing in a travelling wave laser diode amplifier,” Electron. Lett. 30, 981–982 (1994).
    [CrossRef]
  4. S. Diez, C. Schmidt, R. Ludwig, H. G. Weber, K. Obermann, S. Kindt, I. Koltchanov, and K. Petermann, “Four-wave mixing in semiconductor optical amplifiers for frequency conversion and fast optical switching,” IEEE J. Sel. Top. Quantum Electron. 3, 1131–1145 (1997).
    [CrossRef]
  5. M. Shtaif and G. Eisenstein, “Analytical solution of wave mixing between short optical pulses in a semiconductor optical amplifier,” Appl. Phys. Lett. 66, 1458–1460 (1995).
    [CrossRef]
  6. C. Xie and P. Ye, “Four-wave mixing between short optical pulses in semiconductor optical amplifiers with the consideration of fast gain saturation,” IEEE Photon. Technol. Lett. 11, 560–562 (1999).
    [CrossRef]
  7. A. Mecozzi and J. Mørk, “Saturation effects in nondegenerate four-wave mixing between short optical pulses in semiconductor Laser Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3, 1190–1207 (1997).
    [CrossRef]
  8. A. D’Ottavi, E. Iannone, A. Mecozzi, S. Scotti, P. Spano, R. Dall’Ara, J. Eckner, and G. Guekos, “Efficiency and noise performance of wavelength converters based on FWM in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 7, 357–359 (1995).
    [CrossRef]
  9. K. Obermann, I. Koltchanov, K. Petermann, S. Diez, R. Ludwig, and H. G. Weber, “Noise analysis of frequency converters utilizing semiconductor-laser amplifiers,” IEEE J. Quantum Electron. 33, 81–88 (1997).
    [CrossRef]
  10. M. Shtaif and G. Eisenstein, “Noise characteristics of nonlinear semiconductor optical amplifiers in the Gaussian limit,” IEEE J. Quantum Electron. 32, 1801–1809 (1996).
    [CrossRef]
  11. M. Shtaif and G. Eisenstein, “Calculation of bit error rates in all-optical signal processing applications exploiting nondegenerate four-wave mixing in semiconductor optical amplifiers,” J. Lightwave Technol. 14, 2069–2077 (1996).
    [CrossRef]
  12. M. A. Summerfield and R. S. Tucker, “Optimization of pump and signal powers for wavelength converters based on FWM in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 8, 1316–1318 (1996).
    [CrossRef]
  13. A. Mecozzi and J. Mørk, “Saturation induced by picosecond pulses in semiconductor optical amplifiers,” J. Opt. Soc. Am. B 14, 761–770 (1997).
    [CrossRef]

1999

C. Xie and P. Ye, “Four-wave mixing between short optical pulses in semiconductor optical amplifiers with the consideration of fast gain saturation,” IEEE Photon. Technol. Lett. 11, 560–562 (1999).
[CrossRef]

1997

A. Mecozzi and J. Mørk, “Saturation effects in nondegenerate four-wave mixing between short optical pulses in semiconductor Laser Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3, 1190–1207 (1997).
[CrossRef]

A. Mecozzi and J. Mørk, “Saturation induced by picosecond pulses in semiconductor optical amplifiers,” J. Opt. Soc. Am. B 14, 761–770 (1997).
[CrossRef]

S. Diez, C. Schmidt, R. Ludwig, H. G. Weber, K. Obermann, S. Kindt, I. Koltchanov, and K. Petermann, “Four-wave mixing in semiconductor optical amplifiers for frequency conversion and fast optical switching,” IEEE J. Sel. Top. Quantum Electron. 3, 1131–1145 (1997).
[CrossRef]

K. Obermann, I. Koltchanov, K. Petermann, S. Diez, R. Ludwig, and H. G. Weber, “Noise analysis of frequency converters utilizing semiconductor-laser amplifiers,” IEEE J. Quantum Electron. 33, 81–88 (1997).
[CrossRef]

1996

M. Shtaif and G. Eisenstein, “Noise characteristics of nonlinear semiconductor optical amplifiers in the Gaussian limit,” IEEE J. Quantum Electron. 32, 1801–1809 (1996).
[CrossRef]

M. Shtaif and G. Eisenstein, “Calculation of bit error rates in all-optical signal processing applications exploiting nondegenerate four-wave mixing in semiconductor optical amplifiers,” J. Lightwave Technol. 14, 2069–2077 (1996).
[CrossRef]

M. A. Summerfield and R. S. Tucker, “Optimization of pump and signal powers for wavelength converters based on FWM in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 8, 1316–1318 (1996).
[CrossRef]

1995

M. Shtaif and G. Eisenstein, “Analytical solution of wave mixing between short optical pulses in a semiconductor optical amplifier,” Appl. Phys. Lett. 66, 1458–1460 (1995).
[CrossRef]

A. Ellis, M. Tatham, D. Davies, D. Nesset, D. Moodie, and G. Sherlock, “40 Gbit/s transmission over 202 km of standard fiber using midspan spectral inversion,” Electron. Lett. 31, 299–301 (1995).
[CrossRef]

A. D’Ottavi, E. Iannone, A. Mecozzi, S. Scotti, P. Spano, R. Dall’Ara, J. Eckner, and G. Guekos, “Efficiency and noise performance of wavelength converters based on FWM in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 7, 357–359 (1995).
[CrossRef]

1994

S. Kawanishi, T. Morioka, O. Kamatani, H. Takara, J. M. Jacob, and M. Saruwatari, “100 Gbit/s all-optical demultiplexing using four-wave mixing in a travelling wave laser diode amplifier,” Electron. Lett. 30, 981–982 (1994).
[CrossRef]

1993

M. C. Tatham, G. Sherlock, and L. D. Westbrook, “20-nm optical wavelength conversion using nondegenerate four-wave mixing,” IEEE Photon. Technol. Lett. 5, 1303–1306 (1993).
[CrossRef]

D’Ottavi, A.

A. D’Ottavi, E. Iannone, A. Mecozzi, S. Scotti, P. Spano, R. Dall’Ara, J. Eckner, and G. Guekos, “Efficiency and noise performance of wavelength converters based on FWM in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 7, 357–359 (1995).
[CrossRef]

Dall’Ara, R.

A. D’Ottavi, E. Iannone, A. Mecozzi, S. Scotti, P. Spano, R. Dall’Ara, J. Eckner, and G. Guekos, “Efficiency and noise performance of wavelength converters based on FWM in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 7, 357–359 (1995).
[CrossRef]

Davies, D.

A. Ellis, M. Tatham, D. Davies, D. Nesset, D. Moodie, and G. Sherlock, “40 Gbit/s transmission over 202 km of standard fiber using midspan spectral inversion,” Electron. Lett. 31, 299–301 (1995).
[CrossRef]

Diez, S.

S. Diez, C. Schmidt, R. Ludwig, H. G. Weber, K. Obermann, S. Kindt, I. Koltchanov, and K. Petermann, “Four-wave mixing in semiconductor optical amplifiers for frequency conversion and fast optical switching,” IEEE J. Sel. Top. Quantum Electron. 3, 1131–1145 (1997).
[CrossRef]

K. Obermann, I. Koltchanov, K. Petermann, S. Diez, R. Ludwig, and H. G. Weber, “Noise analysis of frequency converters utilizing semiconductor-laser amplifiers,” IEEE J. Quantum Electron. 33, 81–88 (1997).
[CrossRef]

Eckner, J.

A. D’Ottavi, E. Iannone, A. Mecozzi, S. Scotti, P. Spano, R. Dall’Ara, J. Eckner, and G. Guekos, “Efficiency and noise performance of wavelength converters based on FWM in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 7, 357–359 (1995).
[CrossRef]

Eisenstein, G.

M. Shtaif and G. Eisenstein, “Noise characteristics of nonlinear semiconductor optical amplifiers in the Gaussian limit,” IEEE J. Quantum Electron. 32, 1801–1809 (1996).
[CrossRef]

M. Shtaif and G. Eisenstein, “Calculation of bit error rates in all-optical signal processing applications exploiting nondegenerate four-wave mixing in semiconductor optical amplifiers,” J. Lightwave Technol. 14, 2069–2077 (1996).
[CrossRef]

M. Shtaif and G. Eisenstein, “Analytical solution of wave mixing between short optical pulses in a semiconductor optical amplifier,” Appl. Phys. Lett. 66, 1458–1460 (1995).
[CrossRef]

Ellis, A.

A. Ellis, M. Tatham, D. Davies, D. Nesset, D. Moodie, and G. Sherlock, “40 Gbit/s transmission over 202 km of standard fiber using midspan spectral inversion,” Electron. Lett. 31, 299–301 (1995).
[CrossRef]

Guekos, G.

A. D’Ottavi, E. Iannone, A. Mecozzi, S. Scotti, P. Spano, R. Dall’Ara, J. Eckner, and G. Guekos, “Efficiency and noise performance of wavelength converters based on FWM in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 7, 357–359 (1995).
[CrossRef]

Iannone, E.

A. D’Ottavi, E. Iannone, A. Mecozzi, S. Scotti, P. Spano, R. Dall’Ara, J. Eckner, and G. Guekos, “Efficiency and noise performance of wavelength converters based on FWM in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 7, 357–359 (1995).
[CrossRef]

Jacob, J. M.

S. Kawanishi, T. Morioka, O. Kamatani, H. Takara, J. M. Jacob, and M. Saruwatari, “100 Gbit/s all-optical demultiplexing using four-wave mixing in a travelling wave laser diode amplifier,” Electron. Lett. 30, 981–982 (1994).
[CrossRef]

Kamatani, O.

S. Kawanishi, T. Morioka, O. Kamatani, H. Takara, J. M. Jacob, and M. Saruwatari, “100 Gbit/s all-optical demultiplexing using four-wave mixing in a travelling wave laser diode amplifier,” Electron. Lett. 30, 981–982 (1994).
[CrossRef]

Kawanishi, S.

S. Kawanishi, T. Morioka, O. Kamatani, H. Takara, J. M. Jacob, and M. Saruwatari, “100 Gbit/s all-optical demultiplexing using four-wave mixing in a travelling wave laser diode amplifier,” Electron. Lett. 30, 981–982 (1994).
[CrossRef]

Kindt, S.

S. Diez, C. Schmidt, R. Ludwig, H. G. Weber, K. Obermann, S. Kindt, I. Koltchanov, and K. Petermann, “Four-wave mixing in semiconductor optical amplifiers for frequency conversion and fast optical switching,” IEEE J. Sel. Top. Quantum Electron. 3, 1131–1145 (1997).
[CrossRef]

Koltchanov, I.

S. Diez, C. Schmidt, R. Ludwig, H. G. Weber, K. Obermann, S. Kindt, I. Koltchanov, and K. Petermann, “Four-wave mixing in semiconductor optical amplifiers for frequency conversion and fast optical switching,” IEEE J. Sel. Top. Quantum Electron. 3, 1131–1145 (1997).
[CrossRef]

K. Obermann, I. Koltchanov, K. Petermann, S. Diez, R. Ludwig, and H. G. Weber, “Noise analysis of frequency converters utilizing semiconductor-laser amplifiers,” IEEE J. Quantum Electron. 33, 81–88 (1997).
[CrossRef]

Ludwig, R.

K. Obermann, I. Koltchanov, K. Petermann, S. Diez, R. Ludwig, and H. G. Weber, “Noise analysis of frequency converters utilizing semiconductor-laser amplifiers,” IEEE J. Quantum Electron. 33, 81–88 (1997).
[CrossRef]

S. Diez, C. Schmidt, R. Ludwig, H. G. Weber, K. Obermann, S. Kindt, I. Koltchanov, and K. Petermann, “Four-wave mixing in semiconductor optical amplifiers for frequency conversion and fast optical switching,” IEEE J. Sel. Top. Quantum Electron. 3, 1131–1145 (1997).
[CrossRef]

Mecozzi, A.

A. Mecozzi and J. Mørk, “Saturation effects in nondegenerate four-wave mixing between short optical pulses in semiconductor Laser Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3, 1190–1207 (1997).
[CrossRef]

A. Mecozzi and J. Mørk, “Saturation induced by picosecond pulses in semiconductor optical amplifiers,” J. Opt. Soc. Am. B 14, 761–770 (1997).
[CrossRef]

A. D’Ottavi, E. Iannone, A. Mecozzi, S. Scotti, P. Spano, R. Dall’Ara, J. Eckner, and G. Guekos, “Efficiency and noise performance of wavelength converters based on FWM in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 7, 357–359 (1995).
[CrossRef]

Moodie, D.

A. Ellis, M. Tatham, D. Davies, D. Nesset, D. Moodie, and G. Sherlock, “40 Gbit/s transmission over 202 km of standard fiber using midspan spectral inversion,” Electron. Lett. 31, 299–301 (1995).
[CrossRef]

Morioka, T.

S. Kawanishi, T. Morioka, O. Kamatani, H. Takara, J. M. Jacob, and M. Saruwatari, “100 Gbit/s all-optical demultiplexing using four-wave mixing in a travelling wave laser diode amplifier,” Electron. Lett. 30, 981–982 (1994).
[CrossRef]

Mørk, J.

A. Mecozzi and J. Mørk, “Saturation effects in nondegenerate four-wave mixing between short optical pulses in semiconductor Laser Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3, 1190–1207 (1997).
[CrossRef]

A. Mecozzi and J. Mørk, “Saturation induced by picosecond pulses in semiconductor optical amplifiers,” J. Opt. Soc. Am. B 14, 761–770 (1997).
[CrossRef]

Nesset, D.

A. Ellis, M. Tatham, D. Davies, D. Nesset, D. Moodie, and G. Sherlock, “40 Gbit/s transmission over 202 km of standard fiber using midspan spectral inversion,” Electron. Lett. 31, 299–301 (1995).
[CrossRef]

Obermann, K.

S. Diez, C. Schmidt, R. Ludwig, H. G. Weber, K. Obermann, S. Kindt, I. Koltchanov, and K. Petermann, “Four-wave mixing in semiconductor optical amplifiers for frequency conversion and fast optical switching,” IEEE J. Sel. Top. Quantum Electron. 3, 1131–1145 (1997).
[CrossRef]

K. Obermann, I. Koltchanov, K. Petermann, S. Diez, R. Ludwig, and H. G. Weber, “Noise analysis of frequency converters utilizing semiconductor-laser amplifiers,” IEEE J. Quantum Electron. 33, 81–88 (1997).
[CrossRef]

Petermann, K.

K. Obermann, I. Koltchanov, K. Petermann, S. Diez, R. Ludwig, and H. G. Weber, “Noise analysis of frequency converters utilizing semiconductor-laser amplifiers,” IEEE J. Quantum Electron. 33, 81–88 (1997).
[CrossRef]

S. Diez, C. Schmidt, R. Ludwig, H. G. Weber, K. Obermann, S. Kindt, I. Koltchanov, and K. Petermann, “Four-wave mixing in semiconductor optical amplifiers for frequency conversion and fast optical switching,” IEEE J. Sel. Top. Quantum Electron. 3, 1131–1145 (1997).
[CrossRef]

Saruwatari, M.

S. Kawanishi, T. Morioka, O. Kamatani, H. Takara, J. M. Jacob, and M. Saruwatari, “100 Gbit/s all-optical demultiplexing using four-wave mixing in a travelling wave laser diode amplifier,” Electron. Lett. 30, 981–982 (1994).
[CrossRef]

Schmidt, C.

S. Diez, C. Schmidt, R. Ludwig, H. G. Weber, K. Obermann, S. Kindt, I. Koltchanov, and K. Petermann, “Four-wave mixing in semiconductor optical amplifiers for frequency conversion and fast optical switching,” IEEE J. Sel. Top. Quantum Electron. 3, 1131–1145 (1997).
[CrossRef]

Scotti, S.

A. D’Ottavi, E. Iannone, A. Mecozzi, S. Scotti, P. Spano, R. Dall’Ara, J. Eckner, and G. Guekos, “Efficiency and noise performance of wavelength converters based on FWM in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 7, 357–359 (1995).
[CrossRef]

Sherlock, G.

A. Ellis, M. Tatham, D. Davies, D. Nesset, D. Moodie, and G. Sherlock, “40 Gbit/s transmission over 202 km of standard fiber using midspan spectral inversion,” Electron. Lett. 31, 299–301 (1995).
[CrossRef]

M. C. Tatham, G. Sherlock, and L. D. Westbrook, “20-nm optical wavelength conversion using nondegenerate four-wave mixing,” IEEE Photon. Technol. Lett. 5, 1303–1306 (1993).
[CrossRef]

Shtaif, M.

M. Shtaif and G. Eisenstein, “Noise characteristics of nonlinear semiconductor optical amplifiers in the Gaussian limit,” IEEE J. Quantum Electron. 32, 1801–1809 (1996).
[CrossRef]

M. Shtaif and G. Eisenstein, “Calculation of bit error rates in all-optical signal processing applications exploiting nondegenerate four-wave mixing in semiconductor optical amplifiers,” J. Lightwave Technol. 14, 2069–2077 (1996).
[CrossRef]

M. Shtaif and G. Eisenstein, “Analytical solution of wave mixing between short optical pulses in a semiconductor optical amplifier,” Appl. Phys. Lett. 66, 1458–1460 (1995).
[CrossRef]

Spano, P.

A. D’Ottavi, E. Iannone, A. Mecozzi, S. Scotti, P. Spano, R. Dall’Ara, J. Eckner, and G. Guekos, “Efficiency and noise performance of wavelength converters based on FWM in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 7, 357–359 (1995).
[CrossRef]

Summerfield, M. A.

M. A. Summerfield and R. S. Tucker, “Optimization of pump and signal powers for wavelength converters based on FWM in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 8, 1316–1318 (1996).
[CrossRef]

Takara, H.

S. Kawanishi, T. Morioka, O. Kamatani, H. Takara, J. M. Jacob, and M. Saruwatari, “100 Gbit/s all-optical demultiplexing using four-wave mixing in a travelling wave laser diode amplifier,” Electron. Lett. 30, 981–982 (1994).
[CrossRef]

Tatham, M.

A. Ellis, M. Tatham, D. Davies, D. Nesset, D. Moodie, and G. Sherlock, “40 Gbit/s transmission over 202 km of standard fiber using midspan spectral inversion,” Electron. Lett. 31, 299–301 (1995).
[CrossRef]

Tatham, M. C.

M. C. Tatham, G. Sherlock, and L. D. Westbrook, “20-nm optical wavelength conversion using nondegenerate four-wave mixing,” IEEE Photon. Technol. Lett. 5, 1303–1306 (1993).
[CrossRef]

Tucker, R. S.

M. A. Summerfield and R. S. Tucker, “Optimization of pump and signal powers for wavelength converters based on FWM in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 8, 1316–1318 (1996).
[CrossRef]

Weber, H. G.

K. Obermann, I. Koltchanov, K. Petermann, S. Diez, R. Ludwig, and H. G. Weber, “Noise analysis of frequency converters utilizing semiconductor-laser amplifiers,” IEEE J. Quantum Electron. 33, 81–88 (1997).
[CrossRef]

S. Diez, C. Schmidt, R. Ludwig, H. G. Weber, K. Obermann, S. Kindt, I. Koltchanov, and K. Petermann, “Four-wave mixing in semiconductor optical amplifiers for frequency conversion and fast optical switching,” IEEE J. Sel. Top. Quantum Electron. 3, 1131–1145 (1997).
[CrossRef]

Westbrook, L. D.

M. C. Tatham, G. Sherlock, and L. D. Westbrook, “20-nm optical wavelength conversion using nondegenerate four-wave mixing,” IEEE Photon. Technol. Lett. 5, 1303–1306 (1993).
[CrossRef]

Xie, C.

C. Xie and P. Ye, “Four-wave mixing between short optical pulses in semiconductor optical amplifiers with the consideration of fast gain saturation,” IEEE Photon. Technol. Lett. 11, 560–562 (1999).
[CrossRef]

Ye, P.

C. Xie and P. Ye, “Four-wave mixing between short optical pulses in semiconductor optical amplifiers with the consideration of fast gain saturation,” IEEE Photon. Technol. Lett. 11, 560–562 (1999).
[CrossRef]

Appl. Phys. Lett.

M. Shtaif and G. Eisenstein, “Analytical solution of wave mixing between short optical pulses in a semiconductor optical amplifier,” Appl. Phys. Lett. 66, 1458–1460 (1995).
[CrossRef]

Electron. Lett.

A. Ellis, M. Tatham, D. Davies, D. Nesset, D. Moodie, and G. Sherlock, “40 Gbit/s transmission over 202 km of standard fiber using midspan spectral inversion,” Electron. Lett. 31, 299–301 (1995).
[CrossRef]

S. Kawanishi, T. Morioka, O. Kamatani, H. Takara, J. M. Jacob, and M. Saruwatari, “100 Gbit/s all-optical demultiplexing using four-wave mixing in a travelling wave laser diode amplifier,” Electron. Lett. 30, 981–982 (1994).
[CrossRef]

IEEE J. Quantum Electron.

K. Obermann, I. Koltchanov, K. Petermann, S. Diez, R. Ludwig, and H. G. Weber, “Noise analysis of frequency converters utilizing semiconductor-laser amplifiers,” IEEE J. Quantum Electron. 33, 81–88 (1997).
[CrossRef]

M. Shtaif and G. Eisenstein, “Noise characteristics of nonlinear semiconductor optical amplifiers in the Gaussian limit,” IEEE J. Quantum Electron. 32, 1801–1809 (1996).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

A. Mecozzi and J. Mørk, “Saturation effects in nondegenerate four-wave mixing between short optical pulses in semiconductor Laser Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3, 1190–1207 (1997).
[CrossRef]

S. Diez, C. Schmidt, R. Ludwig, H. G. Weber, K. Obermann, S. Kindt, I. Koltchanov, and K. Petermann, “Four-wave mixing in semiconductor optical amplifiers for frequency conversion and fast optical switching,” IEEE J. Sel. Top. Quantum Electron. 3, 1131–1145 (1997).
[CrossRef]

IEEE Photon. Technol. Lett.

C. Xie and P. Ye, “Four-wave mixing between short optical pulses in semiconductor optical amplifiers with the consideration of fast gain saturation,” IEEE Photon. Technol. Lett. 11, 560–562 (1999).
[CrossRef]

A. D’Ottavi, E. Iannone, A. Mecozzi, S. Scotti, P. Spano, R. Dall’Ara, J. Eckner, and G. Guekos, “Efficiency and noise performance of wavelength converters based on FWM in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 7, 357–359 (1995).
[CrossRef]

M. A. Summerfield and R. S. Tucker, “Optimization of pump and signal powers for wavelength converters based on FWM in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 8, 1316–1318 (1996).
[CrossRef]

M. C. Tatham, G. Sherlock, and L. D. Westbrook, “20-nm optical wavelength conversion using nondegenerate four-wave mixing,” IEEE Photon. Technol. Lett. 5, 1303–1306 (1993).
[CrossRef]

J. Lightwave Technol.

M. Shtaif and G. Eisenstein, “Calculation of bit error rates in all-optical signal processing applications exploiting nondegenerate four-wave mixing in semiconductor optical amplifiers,” J. Lightwave Technol. 14, 2069–2077 (1996).
[CrossRef]

J. Opt. Soc. Am. B

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Output ASE noise power versus average input optical power. Solid and dashed curves, results of Eq. (12) for pulse input with and without the effects of fast gain saturation, respectively; filled and open circles, their numerical results; dotted curve, for cw input. The input pulses were 3-ps Gaussian pulses with 100-ps period and G0=20 dB.

Fig. 2
Fig. 2

Dynamic gain of SOA in different cases with the same average input power. Solid curve, the injection of a sequence of short pulses with fast gain saturation considered; dashed curve, without consideration of fast gain saturation; dotted curve, for cw input. The input pulses were 3-ps Gaussian pulses with 100-ps period; average input power, 20 dBm; G0=20 dB.

Fig. 3
Fig. 3

Effects of a nonuniform inversion factor on the output ASE noise power. Solid curve, results of injection of a sequence of short pulses with fast gain saturation considered; dashed curve, without consideration of fast gain saturation; dotted curve, for cw input. Curves with squares, circles, and diamonds, results for a uniform inversion factor. The input pulses were 3-ps Gaussian pulses with 100-ps period and G0=20 dB.

Fig. 4
Fig. 4

Spatial distribution of the inversion factor and the carrier density along the SOA for two input optical powers. L, length of the SOA. (a) -20-dBm input optical power, (b) 20-dBm input optical power.

Fig. 5
Fig. 5

Output SNR and FWM conversion efficiency versus average input pump power. The pump and signal pulses are Gaussian pulses with 100-ps period. Input signal power, -10 dBm, G0=20 dB. Solid curves, 3-ps pulse width; dotted curves, 10-ps pulse width.

Fig. 6
Fig. 6

Output SNR and FWM conversion efficiency versus average input signal power. The pump and signal pulses are Gaussian pulses with 100-ps period. Input pump power, 10 dBm and G0=20 dB. Solid curves, 3-ps pulse width; dotted curves, 10-ps pulse width.

Fig. 7
Fig. 7

Simulated eye diagrams of output FWM signal for three input signal powers but constant pump power. (a) -20-dBm input signal power, (b) 0-dBm input signal power, (c) 15-dBm input signal power. The pump and signal pulses are 3-ps Gaussian pulses with 100-ps period. Input pump power, 10 dBm; G0=20 dB.

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

g(z, t)t=g0-g(z, t)τs-g(z, t)1+P(z, t)P(z, t)Psatτs,
P(z, t)z=g(z, t)1+P(z, t)P(z, t).
EASE(z, t)z=121-iα1+P(z, t)g(z, t)EASE(z, t)+n(z, t),
n(z, t)n(z, t)=0,
n(z, t)n*(z, t)=ω g(z, t)1+P(z, t)nsp(z, t)
×δ(z-z)δ(t-t),
nsp(z, t)=N(z, t)N(z, t)-N0=g(z, t)+ΓaN0g(z, t),
EASE(L, t)=0L expzL 121-iα1+P(z, t)g(z, t)dz×n(z, t)dz,
EASE(L, t)EASE*(L, t+τ)
=ω 0L g(z, t)1+P(z, t)nsp(z, t)
×expzL g(z, t)1+P(z, t)dzdzδ(τ).
dh(z, t)dt=11+ exp[h(z, t)]P(0, t)h0-h(z, t)τs-{exp[h(z, t)]-1} dP(0, t)dt-{exp[h(z, t)]-1}P(0, t)τs+1Psatτs,
EASE(L, t)EASE*(L, t+τ)
=ωG(t)-1+ΓaN0G(t)×0L exp[-h(z, t)]1+P(z, t)dzδ(τ).
WASE=ω 1T0TG(t)-1+ΓaN0G(t)×0L exp[-h(z, t)]1+P(z, t)dzdt,
WASE=ω 1T0TG(t)-1+ΓaN0Lln G(t)×P(0, t)G(t)ln 1+P(0, t)G(t)1+P(0, t)-ln G(t)+G(t)-1dt.
Ec(L, t)=-C exp[h/2(1-iα)] exp(h)-12
×1-iα1+exp(h)|Ep(0, t)|2/Psat-iΩτs
+x (1-iαx)xPsat1-iΩτx Ep2(0, t)PsatEs*(0, t),
ηFWM=Pc(L)Ps(0),
ρN,c=ηFWMρN,s+ηc,pρN,p+j=s,p,c η˜c, jWASE, j,
SNR=Pc(L)PASE=Pc(L)ρN,cB,

Metrics