Abstract

A metal nanoshell consists of a nanometer-scale dielectric core surrounded by a thin metallic shell. The plasmon resonance of metal nanoshells displays a geometric tunability controlled by the ratio of the core radius to the total radius. For gold-coated Au2S this ratio varies from 0.6 to 0.9, yielding a plasmon resonance tunable from 600 to greater than 1000 nm. Mie scattering theory for the nanoshell geometry quantitatively accounts for the observed plasmon resonance shifts and linewidths. In addition, the plasmon linewidth is shown to be dominated by electron surface scattering.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, New York, 1995).
  2. P. Mulvaney, “Surface plasmon spectroscopy of nanosized metal particles,” Langmuir 12, 788–800 (1996).
    [CrossRef]
  3. U. Kreibig, M. Gartz, and A. Hilger, “Mie resonances: sensors for physical and chemical cluster interface properties,” Ber. Bunsenges. Phys. Chem. 101, 1593–1604 (1997).
    [CrossRef]
  4. R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, and C. A. Mirkin, “Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles,” Science 277, 1078–1081 (1997).
    [CrossRef] [PubMed]
  5. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).
    [CrossRef] [PubMed]
  6. R. Antoine, P. F. Brevet, H. H. Girault, D. Bethell, and D. J. Schiffrin, “Surface plasmon enhanced non-linear optical response of gold nanoparticles at the air/toluene interface,” J. Chem. Soc. Chem. Commun. 1901–1902 (1997).
  7. D. Ricard, P. Roussignol, and C. Flytzanis, “Surface-mediated enhancement of optical phase conjugation in metal colloids,” Opt. Lett. 10, 511–513 (1985).
    [CrossRef] [PubMed]
  8. M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, and R. Whyman, “Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system,” J. Chem. Soc. Chem. Commun. 801–802 (1994).
  9. R. G. Freeman, K. C. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P. Guthrie, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter, and M. J. Natan, “Self-assembled metal colloid monolayers: an approach to SERS substrates,” Science 267, 1629–1632 (1995).
    [CrossRef] [PubMed]
  10. R. P. Andres, J. D. Bielefeld, J. I. Henderson, D. B. Janes, V. R. Kolagunta, C. P. Kubiak, W. J. Mahoney, and R. G. Osifchin, “Self-assembly of a two-dimensional superlattice of molecularly linked metal clusters,” Science 273, 1690–1693 (1996).
    [CrossRef]
  11. C. P. Collier, R. J. Saykally, J. J. Shiang, S. E. Henrichs, and J. R. Heath, “Reversible tuning of silver quantum dot monolayers through the metal-insulator transition,” Science 277, 1978–1981 (1997).
    [CrossRef]
  12. H. R. Stuart and D. G. Hall, “Enhanced dipole–dipole interaction between elementary radiators near a surface,” Phys. Rev. Lett. 80, 5663–5666 (1998).
    [CrossRef]
  13. T. S. Ahmadi, Z. L. Wang, T. C. Green, A. Henglein, and M. A. El-Sayed, “Shape-controlled synthesis of colloidal platinum nanoparticles,” Science 272, 1924–1926 (1996).
    [CrossRef] [PubMed]
  14. A. L. Aden and M. Kerker, “Scattering of electromagnetic waves from two concentric spheres,” J. Appl. Phys. 22, 1242–1246 (1951).
    [CrossRef]
  15. A. E. Neeves and M. H. Birnboim, “Composite structures for the enhancement of nonlinear-optical susceptibility,” J. Opt. Soc. Am. B 6, 787–796 (1989).
    [CrossRef]
  16. H. S. Zhou, I. Honma, H. Komiyama, and J. W. Haus, “Controlled synthesis and quantum-size effect in gold-coated nanoparticles,” Phys. Rev. B 50, 12052–12056 (1994).
    [CrossRef]
  17. R. D. Averitt, D. Sarkar, and N. J. Halas, “Plasmon resonance shifts of Au-coated Au2S nanoshells: insight into multicomponent nanoparticle growth,” Phys. Rev. Lett. 78, 4217–4220 (1997).
    [CrossRef]
  18. S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288, 243–247 (1998).
    [CrossRef]
  19. A. J. Bard, R. Parsons, and J. Jordan, eds., Standard Potentials in Aqueous Solution (Marcel Dekker, New York, 1985).
  20. G. Schmid and A. Lehnert, “The complexation of gold colloids,” Angew. Chem. Int. Ed. Engl. 28, 780–781 (1989).
    [CrossRef]
  21. The size distribution was determined with Image Tool for Windows, version 1.28, from the University of Texas Health Sciences Center at San Antonio.
  22. G. Mie, “Beiträge zur optik trüber medien, speziell kolloidaler metallösungen,” Ann. Phys. 25, 377–445 (1908).
    [CrossRef]
  23. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941).
  24. M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, New York, 1969).
  25. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  26. D. Sarkar, “Vector basis function solution of Maxwell’s equations,” Ph.D. dissertation (Rice University, Houston, Texas, 1996).
  27. D. Sarkar and N. J. Halas, “General vector basis function solution of Maxwell’s equations,” Phys. Rev. E 56, 1102–1112 (1997).
    [CrossRef]
  28. J. W. Haus, H. S. Zhou, S. Takami, M. Hirasawa, I. Honma, and H. Komiyama, “Enhanced optical properties of metal-coated nanoparticles,” J. Appl. Phys. 73, 1043–1048 (1993).
    [CrossRef]
  29. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).
  30. Au2S is a direct bandgap semiconductor with Eg in the range from 1.3 to 2.6 eV, O. Jepsen, Max-Planck-Institute for Solid State Research, D-7000 Stuttgart 80, Germany (personal communication, 1996).
  31. J. I. Pankove, Optical Processes in Semiconductors (Dover, New York, 1975).
  32. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [CrossRef]
  33. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Saunders, Philadelphia, 1976).
  34. H. Hövel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping,” Phys. Rev. B 48, 18178–18188 (1993).
    [CrossRef]
  35. U. Kreibig and L. Genzel, “Optical absorption of small metallic particles,” Surf. Sci. 156, 678–700 (1985).
    [CrossRef]
  36. M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783–826 (1985).
    [CrossRef]
  37. H. Metiu, “Surface enhanced spectroscopy,” Prog. Surf. Sci. 17, 153–320 (1984).
    [CrossRef]
  38. S. J. Oldenburg, S. L. Westcott, R. D. Averitt, and N. J. Halas, “Surface enhanced Raman scattering in the near infrared using metal nanoshell substrates,” J. Chem. Phys. (to be published).
  39. F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, “The optical Kerr effect in small metal particles and metal colloids: the case of gold,” Appl. Phys. A 47, 347–357 (1988).
    [CrossRef]
  40. J. W. Haus, N. Kalyaniwalla, R. Inguva, M. Bloemer, and C. M. Bowden, “Nonlinear-optical properties of conductive spheroidal particle composites,” J. Opt. Soc. Am. B 6, 797–807 (1989).
    [CrossRef]
  41. S. J. Oldenburg, G. D. Hale, J. B. Jackson, and N. J. Halas, “Light scattering from dipole and quadrupole nanoshell antennas,” Appl. Phys. Lett. (to be published).
  42. U. Kreibig, “The transition cluster–solid state in small gold particles,” Solid State Commun. 28, 767–769 (1978).
    [CrossRef]
  43. R. D. Averitt, S. L. Westcott, and N. J. Halas, “Ultrafast electron dynamics in gold nanoshells,” Phys. Rev. B 58, 10203–10206 (1998).
    [CrossRef]

1998 (3)

H. R. Stuart and D. G. Hall, “Enhanced dipole–dipole interaction between elementary radiators near a surface,” Phys. Rev. Lett. 80, 5663–5666 (1998).
[CrossRef]

S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288, 243–247 (1998).
[CrossRef]

R. D. Averitt, S. L. Westcott, and N. J. Halas, “Ultrafast electron dynamics in gold nanoshells,” Phys. Rev. B 58, 10203–10206 (1998).
[CrossRef]

1997 (6)

D. Sarkar and N. J. Halas, “General vector basis function solution of Maxwell’s equations,” Phys. Rev. E 56, 1102–1112 (1997).
[CrossRef]

R. D. Averitt, D. Sarkar, and N. J. Halas, “Plasmon resonance shifts of Au-coated Au2S nanoshells: insight into multicomponent nanoparticle growth,” Phys. Rev. Lett. 78, 4217–4220 (1997).
[CrossRef]

C. P. Collier, R. J. Saykally, J. J. Shiang, S. E. Henrichs, and J. R. Heath, “Reversible tuning of silver quantum dot monolayers through the metal-insulator transition,” Science 277, 1978–1981 (1997).
[CrossRef]

U. Kreibig, M. Gartz, and A. Hilger, “Mie resonances: sensors for physical and chemical cluster interface properties,” Ber. Bunsenges. Phys. Chem. 101, 1593–1604 (1997).
[CrossRef]

R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, and C. A. Mirkin, “Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles,” Science 277, 1078–1081 (1997).
[CrossRef] [PubMed]

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).
[CrossRef] [PubMed]

1996 (3)

T. S. Ahmadi, Z. L. Wang, T. C. Green, A. Henglein, and M. A. El-Sayed, “Shape-controlled synthesis of colloidal platinum nanoparticles,” Science 272, 1924–1926 (1996).
[CrossRef] [PubMed]

P. Mulvaney, “Surface plasmon spectroscopy of nanosized metal particles,” Langmuir 12, 788–800 (1996).
[CrossRef]

R. P. Andres, J. D. Bielefeld, J. I. Henderson, D. B. Janes, V. R. Kolagunta, C. P. Kubiak, W. J. Mahoney, and R. G. Osifchin, “Self-assembly of a two-dimensional superlattice of molecularly linked metal clusters,” Science 273, 1690–1693 (1996).
[CrossRef]

1995 (1)

R. G. Freeman, K. C. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P. Guthrie, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter, and M. J. Natan, “Self-assembled metal colloid monolayers: an approach to SERS substrates,” Science 267, 1629–1632 (1995).
[CrossRef] [PubMed]

1994 (1)

H. S. Zhou, I. Honma, H. Komiyama, and J. W. Haus, “Controlled synthesis and quantum-size effect in gold-coated nanoparticles,” Phys. Rev. B 50, 12052–12056 (1994).
[CrossRef]

1993 (2)

H. Hövel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping,” Phys. Rev. B 48, 18178–18188 (1993).
[CrossRef]

J. W. Haus, H. S. Zhou, S. Takami, M. Hirasawa, I. Honma, and H. Komiyama, “Enhanced optical properties of metal-coated nanoparticles,” J. Appl. Phys. 73, 1043–1048 (1993).
[CrossRef]

1989 (3)

1988 (1)

F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, “The optical Kerr effect in small metal particles and metal colloids: the case of gold,” Appl. Phys. A 47, 347–357 (1988).
[CrossRef]

1985 (3)

D. Ricard, P. Roussignol, and C. Flytzanis, “Surface-mediated enhancement of optical phase conjugation in metal colloids,” Opt. Lett. 10, 511–513 (1985).
[CrossRef] [PubMed]

U. Kreibig and L. Genzel, “Optical absorption of small metallic particles,” Surf. Sci. 156, 678–700 (1985).
[CrossRef]

M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783–826 (1985).
[CrossRef]

1984 (1)

H. Metiu, “Surface enhanced spectroscopy,” Prog. Surf. Sci. 17, 153–320 (1984).
[CrossRef]

1978 (1)

U. Kreibig, “The transition cluster–solid state in small gold particles,” Solid State Commun. 28, 767–769 (1978).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

1951 (1)

A. L. Aden and M. Kerker, “Scattering of electromagnetic waves from two concentric spheres,” J. Appl. Phys. 22, 1242–1246 (1951).
[CrossRef]

1908 (1)

G. Mie, “Beiträge zur optik trüber medien, speziell kolloidaler metallösungen,” Ann. Phys. 25, 377–445 (1908).
[CrossRef]

Aden, A. L.

A. L. Aden and M. Kerker, “Scattering of electromagnetic waves from two concentric spheres,” J. Appl. Phys. 22, 1242–1246 (1951).
[CrossRef]

Ahmadi, T. S.

T. S. Ahmadi, Z. L. Wang, T. C. Green, A. Henglein, and M. A. El-Sayed, “Shape-controlled synthesis of colloidal platinum nanoparticles,” Science 272, 1924–1926 (1996).
[CrossRef] [PubMed]

Allison, K. J.

R. G. Freeman, K. C. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P. Guthrie, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter, and M. J. Natan, “Self-assembled metal colloid monolayers: an approach to SERS substrates,” Science 267, 1629–1632 (1995).
[CrossRef] [PubMed]

Andres, R. P.

R. P. Andres, J. D. Bielefeld, J. I. Henderson, D. B. Janes, V. R. Kolagunta, C. P. Kubiak, W. J. Mahoney, and R. G. Osifchin, “Self-assembly of a two-dimensional superlattice of molecularly linked metal clusters,” Science 273, 1690–1693 (1996).
[CrossRef]

Averitt, R. D.

S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288, 243–247 (1998).
[CrossRef]

R. D. Averitt, S. L. Westcott, and N. J. Halas, “Ultrafast electron dynamics in gold nanoshells,” Phys. Rev. B 58, 10203–10206 (1998).
[CrossRef]

R. D. Averitt, D. Sarkar, and N. J. Halas, “Plasmon resonance shifts of Au-coated Au2S nanoshells: insight into multicomponent nanoparticle growth,” Phys. Rev. Lett. 78, 4217–4220 (1997).
[CrossRef]

Bielefeld, J. D.

R. P. Andres, J. D. Bielefeld, J. I. Henderson, D. B. Janes, V. R. Kolagunta, C. P. Kubiak, W. J. Mahoney, and R. G. Osifchin, “Self-assembly of a two-dimensional superlattice of molecularly linked metal clusters,” Science 273, 1690–1693 (1996).
[CrossRef]

Birnboim, M. H.

Bloemer, M.

Bowden, C. M.

Bright, R. M.

R. G. Freeman, K. C. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P. Guthrie, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter, and M. J. Natan, “Self-assembled metal colloid monolayers: an approach to SERS substrates,” Science 267, 1629–1632 (1995).
[CrossRef] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Collier, C. P.

C. P. Collier, R. J. Saykally, J. J. Shiang, S. E. Henrichs, and J. R. Heath, “Reversible tuning of silver quantum dot monolayers through the metal-insulator transition,” Science 277, 1978–1981 (1997).
[CrossRef]

Davis, J. A.

R. G. Freeman, K. C. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P. Guthrie, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter, and M. J. Natan, “Self-assembled metal colloid monolayers: an approach to SERS substrates,” Science 267, 1629–1632 (1995).
[CrossRef] [PubMed]

Elghanian, R.

R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, and C. A. Mirkin, “Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles,” Science 277, 1078–1081 (1997).
[CrossRef] [PubMed]

El-Sayed, M. A.

T. S. Ahmadi, Z. L. Wang, T. C. Green, A. Henglein, and M. A. El-Sayed, “Shape-controlled synthesis of colloidal platinum nanoparticles,” Science 272, 1924–1926 (1996).
[CrossRef] [PubMed]

Emory, S. R.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).
[CrossRef] [PubMed]

Flytzanis, C.

F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, “The optical Kerr effect in small metal particles and metal colloids: the case of gold,” Appl. Phys. A 47, 347–357 (1988).
[CrossRef]

D. Ricard, P. Roussignol, and C. Flytzanis, “Surface-mediated enhancement of optical phase conjugation in metal colloids,” Opt. Lett. 10, 511–513 (1985).
[CrossRef] [PubMed]

Freeman, R. G.

R. G. Freeman, K. C. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P. Guthrie, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter, and M. J. Natan, “Self-assembled metal colloid monolayers: an approach to SERS substrates,” Science 267, 1629–1632 (1995).
[CrossRef] [PubMed]

Fritz, S.

H. Hövel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping,” Phys. Rev. B 48, 18178–18188 (1993).
[CrossRef]

Gartz, M.

U. Kreibig, M. Gartz, and A. Hilger, “Mie resonances: sensors for physical and chemical cluster interface properties,” Ber. Bunsenges. Phys. Chem. 101, 1593–1604 (1997).
[CrossRef]

Genzel, L.

U. Kreibig and L. Genzel, “Optical absorption of small metallic particles,” Surf. Sci. 156, 678–700 (1985).
[CrossRef]

Grabar, K. C.

R. G. Freeman, K. C. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P. Guthrie, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter, and M. J. Natan, “Self-assembled metal colloid monolayers: an approach to SERS substrates,” Science 267, 1629–1632 (1995).
[CrossRef] [PubMed]

Green, T. C.

T. S. Ahmadi, Z. L. Wang, T. C. Green, A. Henglein, and M. A. El-Sayed, “Shape-controlled synthesis of colloidal platinum nanoparticles,” Science 272, 1924–1926 (1996).
[CrossRef] [PubMed]

Guthrie, A. P.

R. G. Freeman, K. C. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P. Guthrie, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter, and M. J. Natan, “Self-assembled metal colloid monolayers: an approach to SERS substrates,” Science 267, 1629–1632 (1995).
[CrossRef] [PubMed]

Hache, F.

F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, “The optical Kerr effect in small metal particles and metal colloids: the case of gold,” Appl. Phys. A 47, 347–357 (1988).
[CrossRef]

Halas, N. J.

S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288, 243–247 (1998).
[CrossRef]

R. D. Averitt, S. L. Westcott, and N. J. Halas, “Ultrafast electron dynamics in gold nanoshells,” Phys. Rev. B 58, 10203–10206 (1998).
[CrossRef]

D. Sarkar and N. J. Halas, “General vector basis function solution of Maxwell’s equations,” Phys. Rev. E 56, 1102–1112 (1997).
[CrossRef]

R. D. Averitt, D. Sarkar, and N. J. Halas, “Plasmon resonance shifts of Au-coated Au2S nanoshells: insight into multicomponent nanoparticle growth,” Phys. Rev. Lett. 78, 4217–4220 (1997).
[CrossRef]

Hall, D. G.

H. R. Stuart and D. G. Hall, “Enhanced dipole–dipole interaction between elementary radiators near a surface,” Phys. Rev. Lett. 80, 5663–5666 (1998).
[CrossRef]

Haus, J. W.

H. S. Zhou, I. Honma, H. Komiyama, and J. W. Haus, “Controlled synthesis and quantum-size effect in gold-coated nanoparticles,” Phys. Rev. B 50, 12052–12056 (1994).
[CrossRef]

J. W. Haus, H. S. Zhou, S. Takami, M. Hirasawa, I. Honma, and H. Komiyama, “Enhanced optical properties of metal-coated nanoparticles,” J. Appl. Phys. 73, 1043–1048 (1993).
[CrossRef]

J. W. Haus, N. Kalyaniwalla, R. Inguva, M. Bloemer, and C. M. Bowden, “Nonlinear-optical properties of conductive spheroidal particle composites,” J. Opt. Soc. Am. B 6, 797–807 (1989).
[CrossRef]

Heath, J. R.

C. P. Collier, R. J. Saykally, J. J. Shiang, S. E. Henrichs, and J. R. Heath, “Reversible tuning of silver quantum dot monolayers through the metal-insulator transition,” Science 277, 1978–1981 (1997).
[CrossRef]

Henderson, J. I.

R. P. Andres, J. D. Bielefeld, J. I. Henderson, D. B. Janes, V. R. Kolagunta, C. P. Kubiak, W. J. Mahoney, and R. G. Osifchin, “Self-assembly of a two-dimensional superlattice of molecularly linked metal clusters,” Science 273, 1690–1693 (1996).
[CrossRef]

Henglein, A.

T. S. Ahmadi, Z. L. Wang, T. C. Green, A. Henglein, and M. A. El-Sayed, “Shape-controlled synthesis of colloidal platinum nanoparticles,” Science 272, 1924–1926 (1996).
[CrossRef] [PubMed]

Henrichs, S. E.

C. P. Collier, R. J. Saykally, J. J. Shiang, S. E. Henrichs, and J. R. Heath, “Reversible tuning of silver quantum dot monolayers through the metal-insulator transition,” Science 277, 1978–1981 (1997).
[CrossRef]

Hilger, A.

U. Kreibig, M. Gartz, and A. Hilger, “Mie resonances: sensors for physical and chemical cluster interface properties,” Ber. Bunsenges. Phys. Chem. 101, 1593–1604 (1997).
[CrossRef]

H. Hövel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping,” Phys. Rev. B 48, 18178–18188 (1993).
[CrossRef]

Hirasawa, M.

J. W. Haus, H. S. Zhou, S. Takami, M. Hirasawa, I. Honma, and H. Komiyama, “Enhanced optical properties of metal-coated nanoparticles,” J. Appl. Phys. 73, 1043–1048 (1993).
[CrossRef]

Hommer, M. B.

R. G. Freeman, K. C. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P. Guthrie, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter, and M. J. Natan, “Self-assembled metal colloid monolayers: an approach to SERS substrates,” Science 267, 1629–1632 (1995).
[CrossRef] [PubMed]

Honma, I.

H. S. Zhou, I. Honma, H. Komiyama, and J. W. Haus, “Controlled synthesis and quantum-size effect in gold-coated nanoparticles,” Phys. Rev. B 50, 12052–12056 (1994).
[CrossRef]

J. W. Haus, H. S. Zhou, S. Takami, M. Hirasawa, I. Honma, and H. Komiyama, “Enhanced optical properties of metal-coated nanoparticles,” J. Appl. Phys. 73, 1043–1048 (1993).
[CrossRef]

Hövel, H.

H. Hövel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping,” Phys. Rev. B 48, 18178–18188 (1993).
[CrossRef]

Inguva, R.

Jackson, M. A.

R. G. Freeman, K. C. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P. Guthrie, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter, and M. J. Natan, “Self-assembled metal colloid monolayers: an approach to SERS substrates,” Science 267, 1629–1632 (1995).
[CrossRef] [PubMed]

Janes, D. B.

R. P. Andres, J. D. Bielefeld, J. I. Henderson, D. B. Janes, V. R. Kolagunta, C. P. Kubiak, W. J. Mahoney, and R. G. Osifchin, “Self-assembly of a two-dimensional superlattice of molecularly linked metal clusters,” Science 273, 1690–1693 (1996).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Kalyaniwalla, N.

Kerker, M.

A. L. Aden and M. Kerker, “Scattering of electromagnetic waves from two concentric spheres,” J. Appl. Phys. 22, 1242–1246 (1951).
[CrossRef]

Kolagunta, V. R.

R. P. Andres, J. D. Bielefeld, J. I. Henderson, D. B. Janes, V. R. Kolagunta, C. P. Kubiak, W. J. Mahoney, and R. G. Osifchin, “Self-assembly of a two-dimensional superlattice of molecularly linked metal clusters,” Science 273, 1690–1693 (1996).
[CrossRef]

Komiyama, H.

H. S. Zhou, I. Honma, H. Komiyama, and J. W. Haus, “Controlled synthesis and quantum-size effect in gold-coated nanoparticles,” Phys. Rev. B 50, 12052–12056 (1994).
[CrossRef]

J. W. Haus, H. S. Zhou, S. Takami, M. Hirasawa, I. Honma, and H. Komiyama, “Enhanced optical properties of metal-coated nanoparticles,” J. Appl. Phys. 73, 1043–1048 (1993).
[CrossRef]

Kreibig, U.

U. Kreibig, M. Gartz, and A. Hilger, “Mie resonances: sensors for physical and chemical cluster interface properties,” Ber. Bunsenges. Phys. Chem. 101, 1593–1604 (1997).
[CrossRef]

H. Hövel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping,” Phys. Rev. B 48, 18178–18188 (1993).
[CrossRef]

F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, “The optical Kerr effect in small metal particles and metal colloids: the case of gold,” Appl. Phys. A 47, 347–357 (1988).
[CrossRef]

U. Kreibig and L. Genzel, “Optical absorption of small metallic particles,” Surf. Sci. 156, 678–700 (1985).
[CrossRef]

U. Kreibig, “The transition cluster–solid state in small gold particles,” Solid State Commun. 28, 767–769 (1978).
[CrossRef]

Kubiak, C. P.

R. P. Andres, J. D. Bielefeld, J. I. Henderson, D. B. Janes, V. R. Kolagunta, C. P. Kubiak, W. J. Mahoney, and R. G. Osifchin, “Self-assembly of a two-dimensional superlattice of molecularly linked metal clusters,” Science 273, 1690–1693 (1996).
[CrossRef]

Lehnert, A.

G. Schmid and A. Lehnert, “The complexation of gold colloids,” Angew. Chem. Int. Ed. Engl. 28, 780–781 (1989).
[CrossRef]

Letsinger, R. L.

R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, and C. A. Mirkin, “Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles,” Science 277, 1078–1081 (1997).
[CrossRef] [PubMed]

Mahoney, W. J.

R. P. Andres, J. D. Bielefeld, J. I. Henderson, D. B. Janes, V. R. Kolagunta, C. P. Kubiak, W. J. Mahoney, and R. G. Osifchin, “Self-assembly of a two-dimensional superlattice of molecularly linked metal clusters,” Science 273, 1690–1693 (1996).
[CrossRef]

Metiu, H.

H. Metiu, “Surface enhanced spectroscopy,” Prog. Surf. Sci. 17, 153–320 (1984).
[CrossRef]

Mie, G.

G. Mie, “Beiträge zur optik trüber medien, speziell kolloidaler metallösungen,” Ann. Phys. 25, 377–445 (1908).
[CrossRef]

Mirkin, C. A.

R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, and C. A. Mirkin, “Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles,” Science 277, 1078–1081 (1997).
[CrossRef] [PubMed]

Moskovits, M.

M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783–826 (1985).
[CrossRef]

Mucic, R. C.

R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, and C. A. Mirkin, “Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles,” Science 277, 1078–1081 (1997).
[CrossRef] [PubMed]

Mulvaney, P.

P. Mulvaney, “Surface plasmon spectroscopy of nanosized metal particles,” Langmuir 12, 788–800 (1996).
[CrossRef]

Natan, M. J.

R. G. Freeman, K. C. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P. Guthrie, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter, and M. J. Natan, “Self-assembled metal colloid monolayers: an approach to SERS substrates,” Science 267, 1629–1632 (1995).
[CrossRef] [PubMed]

Neeves, A. E.

Nie, S.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).
[CrossRef] [PubMed]

Oldenburg, S. J.

S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288, 243–247 (1998).
[CrossRef]

Osifchin, R. G.

R. P. Andres, J. D. Bielefeld, J. I. Henderson, D. B. Janes, V. R. Kolagunta, C. P. Kubiak, W. J. Mahoney, and R. G. Osifchin, “Self-assembly of a two-dimensional superlattice of molecularly linked metal clusters,” Science 273, 1690–1693 (1996).
[CrossRef]

Ricard, D.

F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, “The optical Kerr effect in small metal particles and metal colloids: the case of gold,” Appl. Phys. A 47, 347–357 (1988).
[CrossRef]

D. Ricard, P. Roussignol, and C. Flytzanis, “Surface-mediated enhancement of optical phase conjugation in metal colloids,” Opt. Lett. 10, 511–513 (1985).
[CrossRef] [PubMed]

Roussignol, P.

Sarkar, D.

R. D. Averitt, D. Sarkar, and N. J. Halas, “Plasmon resonance shifts of Au-coated Au2S nanoshells: insight into multicomponent nanoparticle growth,” Phys. Rev. Lett. 78, 4217–4220 (1997).
[CrossRef]

D. Sarkar and N. J. Halas, “General vector basis function solution of Maxwell’s equations,” Phys. Rev. E 56, 1102–1112 (1997).
[CrossRef]

Saykally, R. J.

C. P. Collier, R. J. Saykally, J. J. Shiang, S. E. Henrichs, and J. R. Heath, “Reversible tuning of silver quantum dot monolayers through the metal-insulator transition,” Science 277, 1978–1981 (1997).
[CrossRef]

Schmid, G.

G. Schmid and A. Lehnert, “The complexation of gold colloids,” Angew. Chem. Int. Ed. Engl. 28, 780–781 (1989).
[CrossRef]

Shiang, J. J.

C. P. Collier, R. J. Saykally, J. J. Shiang, S. E. Henrichs, and J. R. Heath, “Reversible tuning of silver quantum dot monolayers through the metal-insulator transition,” Science 277, 1978–1981 (1997).
[CrossRef]

Smith, P. C.

R. G. Freeman, K. C. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P. Guthrie, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter, and M. J. Natan, “Self-assembled metal colloid monolayers: an approach to SERS substrates,” Science 267, 1629–1632 (1995).
[CrossRef] [PubMed]

Storhoff, J. J.

R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, and C. A. Mirkin, “Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles,” Science 277, 1078–1081 (1997).
[CrossRef] [PubMed]

Stuart, H. R.

H. R. Stuart and D. G. Hall, “Enhanced dipole–dipole interaction between elementary radiators near a surface,” Phys. Rev. Lett. 80, 5663–5666 (1998).
[CrossRef]

Takami, S.

J. W. Haus, H. S. Zhou, S. Takami, M. Hirasawa, I. Honma, and H. Komiyama, “Enhanced optical properties of metal-coated nanoparticles,” J. Appl. Phys. 73, 1043–1048 (1993).
[CrossRef]

Vollmer, M.

H. Hövel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping,” Phys. Rev. B 48, 18178–18188 (1993).
[CrossRef]

Walter, D. G.

R. G. Freeman, K. C. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P. Guthrie, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter, and M. J. Natan, “Self-assembled metal colloid monolayers: an approach to SERS substrates,” Science 267, 1629–1632 (1995).
[CrossRef] [PubMed]

Wang, Z. L.

T. S. Ahmadi, Z. L. Wang, T. C. Green, A. Henglein, and M. A. El-Sayed, “Shape-controlled synthesis of colloidal platinum nanoparticles,” Science 272, 1924–1926 (1996).
[CrossRef] [PubMed]

Westcott, S. L.

R. D. Averitt, S. L. Westcott, and N. J. Halas, “Ultrafast electron dynamics in gold nanoshells,” Phys. Rev. B 58, 10203–10206 (1998).
[CrossRef]

S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288, 243–247 (1998).
[CrossRef]

Zhou, H. S.

H. S. Zhou, I. Honma, H. Komiyama, and J. W. Haus, “Controlled synthesis and quantum-size effect in gold-coated nanoparticles,” Phys. Rev. B 50, 12052–12056 (1994).
[CrossRef]

J. W. Haus, H. S. Zhou, S. Takami, M. Hirasawa, I. Honma, and H. Komiyama, “Enhanced optical properties of metal-coated nanoparticles,” J. Appl. Phys. 73, 1043–1048 (1993).
[CrossRef]

Angew. Chem. Int. Ed. Engl. (1)

G. Schmid and A. Lehnert, “The complexation of gold colloids,” Angew. Chem. Int. Ed. Engl. 28, 780–781 (1989).
[CrossRef]

Ann. Phys. (1)

G. Mie, “Beiträge zur optik trüber medien, speziell kolloidaler metallösungen,” Ann. Phys. 25, 377–445 (1908).
[CrossRef]

Appl. Phys. A (1)

F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, “The optical Kerr effect in small metal particles and metal colloids: the case of gold,” Appl. Phys. A 47, 347–357 (1988).
[CrossRef]

Ber. Bunsenges. Phys. Chem. (1)

U. Kreibig, M. Gartz, and A. Hilger, “Mie resonances: sensors for physical and chemical cluster interface properties,” Ber. Bunsenges. Phys. Chem. 101, 1593–1604 (1997).
[CrossRef]

Chem. Phys. Lett. (1)

S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288, 243–247 (1998).
[CrossRef]

J. Appl. Phys. (2)

J. W. Haus, H. S. Zhou, S. Takami, M. Hirasawa, I. Honma, and H. Komiyama, “Enhanced optical properties of metal-coated nanoparticles,” J. Appl. Phys. 73, 1043–1048 (1993).
[CrossRef]

A. L. Aden and M. Kerker, “Scattering of electromagnetic waves from two concentric spheres,” J. Appl. Phys. 22, 1242–1246 (1951).
[CrossRef]

J. Opt. Soc. Am. B (2)

Langmuir (1)

P. Mulvaney, “Surface plasmon spectroscopy of nanosized metal particles,” Langmuir 12, 788–800 (1996).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. B (4)

R. D. Averitt, S. L. Westcott, and N. J. Halas, “Ultrafast electron dynamics in gold nanoshells,” Phys. Rev. B 58, 10203–10206 (1998).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

H. S. Zhou, I. Honma, H. Komiyama, and J. W. Haus, “Controlled synthesis and quantum-size effect in gold-coated nanoparticles,” Phys. Rev. B 50, 12052–12056 (1994).
[CrossRef]

H. Hövel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping,” Phys. Rev. B 48, 18178–18188 (1993).
[CrossRef]

Phys. Rev. E (1)

D. Sarkar and N. J. Halas, “General vector basis function solution of Maxwell’s equations,” Phys. Rev. E 56, 1102–1112 (1997).
[CrossRef]

Phys. Rev. Lett. (2)

H. R. Stuart and D. G. Hall, “Enhanced dipole–dipole interaction between elementary radiators near a surface,” Phys. Rev. Lett. 80, 5663–5666 (1998).
[CrossRef]

R. D. Averitt, D. Sarkar, and N. J. Halas, “Plasmon resonance shifts of Au-coated Au2S nanoshells: insight into multicomponent nanoparticle growth,” Phys. Rev. Lett. 78, 4217–4220 (1997).
[CrossRef]

Prog. Surf. Sci. (1)

H. Metiu, “Surface enhanced spectroscopy,” Prog. Surf. Sci. 17, 153–320 (1984).
[CrossRef]

Rev. Mod. Phys. (1)

M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783–826 (1985).
[CrossRef]

Science (6)

T. S. Ahmadi, Z. L. Wang, T. C. Green, A. Henglein, and M. A. El-Sayed, “Shape-controlled synthesis of colloidal platinum nanoparticles,” Science 272, 1924–1926 (1996).
[CrossRef] [PubMed]

R. G. Freeman, K. C. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P. Guthrie, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter, and M. J. Natan, “Self-assembled metal colloid monolayers: an approach to SERS substrates,” Science 267, 1629–1632 (1995).
[CrossRef] [PubMed]

R. P. Andres, J. D. Bielefeld, J. I. Henderson, D. B. Janes, V. R. Kolagunta, C. P. Kubiak, W. J. Mahoney, and R. G. Osifchin, “Self-assembly of a two-dimensional superlattice of molecularly linked metal clusters,” Science 273, 1690–1693 (1996).
[CrossRef]

C. P. Collier, R. J. Saykally, J. J. Shiang, S. E. Henrichs, and J. R. Heath, “Reversible tuning of silver quantum dot monolayers through the metal-insulator transition,” Science 277, 1978–1981 (1997).
[CrossRef]

R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, and C. A. Mirkin, “Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles,” Science 277, 1078–1081 (1997).
[CrossRef] [PubMed]

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).
[CrossRef] [PubMed]

Solid State Commun. (1)

U. Kreibig, “The transition cluster–solid state in small gold particles,” Solid State Commun. 28, 767–769 (1978).
[CrossRef]

Surf. Sci. (1)

U. Kreibig and L. Genzel, “Optical absorption of small metallic particles,” Surf. Sci. 156, 678–700 (1985).
[CrossRef]

Other (15)

S. J. Oldenburg, S. L. Westcott, R. D. Averitt, and N. J. Halas, “Surface enhanced Raman scattering in the near infrared using metal nanoshell substrates,” J. Chem. Phys. (to be published).

M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, and R. Whyman, “Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system,” J. Chem. Soc. Chem. Commun. 801–802 (1994).

R. Antoine, P. F. Brevet, H. H. Girault, D. Bethell, and D. J. Schiffrin, “Surface plasmon enhanced non-linear optical response of gold nanoparticles at the air/toluene interface,” J. Chem. Soc. Chem. Commun. 1901–1902 (1997).

S. J. Oldenburg, G. D. Hale, J. B. Jackson, and N. J. Halas, “Light scattering from dipole and quadrupole nanoshell antennas,” Appl. Phys. Lett. (to be published).

A. J. Bard, R. Parsons, and J. Jordan, eds., Standard Potentials in Aqueous Solution (Marcel Dekker, New York, 1985).

J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941).

M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, New York, 1969).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

D. Sarkar, “Vector basis function solution of Maxwell’s equations,” Ph.D. dissertation (Rice University, Houston, Texas, 1996).

N. W. Ashcroft and N. D. Mermin, Solid State Physics (Saunders, Philadelphia, 1976).

The size distribution was determined with Image Tool for Windows, version 1.28, from the University of Texas Health Sciences Center at San Antonio.

H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).

Au2S is a direct bandgap semiconductor with Eg in the range from 1.3 to 2.6 eV, O. Jepsen, Max-Planck-Institute for Solid State Research, D-7000 Stuttgart 80, Germany (personal communication, 1996).

J. I. Pankove, Optical Processes in Semiconductors (Dover, New York, 1975).

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, New York, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Nanoshell geometry: i (i=1, 2, 3) are the dielectric functions for the core, shell, and embedding regions, respectively. r1 is the core radius, and r2 is the total particle radius.

Fig. 2
Fig. 2

(a) UV-visible absorption spectra of gold-coated Au2S nanoshells during the course of the reaction, showing the plasmon resonance shifts and the linewidth changes. (b) The metal nanoshell plasmon resonance wavelength (diamonds, left axis) and linewidth (circles, right axis) as a function of time. The curve is to guide the eye. Fig. 2(a) was presented previously in Ref. 17.

Fig. 3
Fig. 3

(a) Transmission electron micrograph of the larger gold-coated Au2S nanoshells and accompanying smaller solid gold nanoparticles. (b) Electron diffraction pattern of a nanoshell sample. Sharp Bragg peaks correspond to various plane spacings of gold and Au2S, as labeled.

Fig. 4
Fig. 4

(a) Total cross section versus wavelength for gold nanoshells with a 2-nm shell thickness. In going from shorter to longer wavelengths the total radius r2 is 4, 10, and 17 nm, respectively. Circles, calculations in the quasi-static limit; solid curves, calculations based on generalized Mie scattering theory. (b) The ratio of the core radius to the total radius required to give a plasmon resonance at a specific wavelength.

Fig. 5
Fig. 5

Calculations of the plasmon resonance for a gold nanoshell with a core radius of 10 nm and a shell thickness of 2.5 nm. When electron surface scattering is taken into account, the FWHM increases from 0.075 to 0.42 eV (dotted–dashed curve and dashed curve, respectively). When a size distribution of ±20 percent is included, the FWHM is 0.57 eV. Nonetheless, the dominant broadening mechanism is electron surface scattering.

Fig. 6
Fig. 6

UV-visible spectra of gold-coated Au2S nanoshells at different times during the reaction. Solid curves, data; dotted curves, theory. The calculations yield (a) r1=8.6 nm, r2=10.2 nm; (b) r1=15.2 nm, r2=17.9 nm; (c) r1=15.2 nm, r2=20.4 nm. A modified version of Fig. 6 was presented in Ref. 17.

Fig. 7
Fig. 7

Quasi-static calculations of the local electric field at the plasmon resonance versus radial distance. (a)–(c) Calculations for the field in the core, shell, and embedding medium, respectively, with the bulk dielectric function for gold. (d)–(f) The same calculations taking into account electron surface scattering. For these calculations, r1=12 nm, r2=15 nm, 1=5.44, and 3=1.78, giving a plasmon resonance at 750 nm. Solid curves, parallel to the incident field; dotted curves, perpendicular to the incident field.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

2AuCl4-+3HS-2; 2Au+3S+3H++8Cl-.
Φi(r, θ)=[Air+(Bi/r2)]cos θ,
Φiθr=ri=Φi+1θr=ri.
i Φirr=ri=i+1 Φi+1rr=ri.
E1=9232a+23bEo(cos θrˆ-sin θθˆ),
E2=332a+23b{[(1+22)+2(1-2)×(r1/r)3]Eo cos θrˆ-[(1+22)-(1-2)(r1/r)3]Eo sin θθˆ},
E3=2 2a-3b2a+23br23r3+1Eo cos θrˆ+2a-3b2a+23br23r3-1Eo sin θθˆ,
a=1(3-2P)+22P,
b=1P+2(3-P),
P=1-(r1/r2)3.
α=4πor232a-3b2a+23b,
σsca=16πo2k4|α|2,=128π53λ432r262a-3b2a+23b2,
σabs=koIm(α),=8π23λr23 Im2a-3b2a+23b.
r1r2=1+322(λ)(1+23)[2(λ)]2-2(λ)(1+3)+{13-[2(λ)]2}1/3.
ε(ω)exp=1-ωp2ω2+iωγbulk+ε(ω)inter,
Γ=γbulk+AvF/a,
(a, ω)=(ω)exp+ωp2ω2+iωγbulk-ωp2ω2+iωΓ,
=1-ωp2ω2+iωΓ+(ω)inter.

Metrics