Abstract

Oscillating photocurrents are generated in a photorefractive iron-doped barium calcium titanate crystal (Ba0.77Ca0.23TiO3; BCT) by illumination with an oscillating interference pattern. Non-steady-state photocurrents arise usually from the interaction of a space-charge field with an oscillating photoconductivity pattern. However, a second-harmonic signal of the oscillating photocurrents is observed in BCT, which is present without any space-charge field. The main features of the new effect can be explained by consideration of a dynamic, i.e., time-dependent, bulk photovoltaic effect. The effect might be useful for optically addressed memories or optical correlators.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Ch. Kuper, R. Pankrath, and H. Hesse, “Growth and dielectric properties of congruently melting Ba1−xCaxTiO3 crystals,” Appl. Phys. A 65, 301–305 (1997).
    [CrossRef]
  2. P. Günter and J.-P. Huignard, eds., Topics in Applied Physics: Photorefractive Materials and Their Applications II, Vol. 62 of Topics in Applied Physics (Springer-Verlag, Berlin, 1989).
  3. G. S. Trofimov and S. I. Stepanov, “Time-dependent holographic currents in photorefractive crystals,” Sov. Phys. Solid State 28, 1559–1562 (1986).
  4. I. A. Sokolov and S. I. Stepanov, “Non-steady state photovoltage in crystals with long photoconductivity relaxation times,” Electron. Lett. 26, 1275–1277 (1990).
    [CrossRef]
  5. M. P. Petrov, I. A. Sokolov, S. I. Stepanov, and G. S. Trofimov, “Non-steady-state photo-electromotive-force induced by dynamic gratings in partially compensated photoconductors,” J. Appl. Phys. 68, 2216–2225 (1990).
    [CrossRef]
  6. G. S. Trofimov, S. I. Stepanov, M. P. Petrov, and M. V. Krasin’kova, “Time-varying photo-EMF associated with spatially nonuniform surface excitation of GaAs:Cr,” Sov. Tech. Phys. Lett. 13, 108–109 (1987).
  7. S. I. Stepanov and G. S. Trofimov, “Transient EMF in crystals having ambipolar photoconductivity,” Sov. Phys. Solid State 31, 49–50 (1989).
  8. S. Sochava, K. Buse, and E. Krätzig, “Non-steady-state photocurrent technique for the characterization of photorefractive BaTiO3,” Opt. Commun. 98, 265–268 (1993).
    [CrossRef]
  9. S. Sochava, K. Buse, and E. Krätzig, “Characterization of photorefractive KNbO3:Fe by non-steady-state photocurrent techniques,” Opt. Commun. 105, 315–319 (1994).
    [CrossRef]
  10. N. Korneev, D. Mayorga, S. Stepanov, A. Gerwens, K. Buse, and E. Krätzig, “Characterization of photorefractive strontium-barium niobate with non-steady-state holographic photocurrents,” Opt. Commun. 146, 215–219 (1998).
    [CrossRef]
  11. N. Korneev, D. Mayorga, S. Stepanov, H. Veenhuis, K. Buse, C. Kuper, H. Hesse, and E. Krätzig, “Holographic and non-steady-state photocurrent characterization of photorefractive barium-calcium titanate,” Opt. Commun. 160, 98–102 (1999).
    [CrossRef]
  12. A. M. Glass, D. von der Linde, and T. J. Negran, “High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3,” Appl. Phys. Lett. 25, 233–235 (1974).
    [CrossRef]
  13. N. Kristoffel, R. von Baltz, and D. Hornung, “On the intrinsic bulk photovoltaic effect: performing the sum over intermediate states,” Z. Phys. B 47, 293–296 (1982).
    [CrossRef]
  14. H. Presting and R. von Baltz, “Bulk photovoltaic effect in a ferroelectric crystal,” Phys. Status Solidi B 112, 559–564 (1982).
    [CrossRef]
  15. W. Ruppel, R. von Baltz, and P. Würfel, “The origin of the photo-EMF in ferroelectric and non-ferroelectric materials,” Ferroelectrics 43, 109–123 (1982).
    [CrossRef]
  16. R. S. Cudney, R. M. Pierce, G. D. Bacher, D. Mahgerefteh, and J. Feinberg, “Intensity dependence of the photogalvanic effect in barium titanate,” J. Opt. Soc. Am. B 9, 1704–1713 (1992).
    [CrossRef]
  17. K. Buse, “Light-induced charge transport processes in photorefractive crystals: I. Models and experimental methods,” Appl. Phys. B 64, 273–291 (1997).
    [CrossRef]
  18. N. Noginova, N. Kukhtarev, M. A. Noginov, B. S. Chen, H. J. Caulfield, and P. Venkateswarlu, “Holographic-current study in laser and photorefractive crystals,” J. Opt. Soc. Am. B 13, 2622–2629 (1996).
    [CrossRef]
  19. H. Veenhuis, K. Buse, E. Krätzig, N. Korneev, and D. Mayorga, “Non-steady-state photoelectromotive force in reduced lithium niobate crystals,” J. Appl. Phys. (to be published).
  20. K. Buse and K. H. Ringhofer, “Pyroelectric drive for light-induced charge transport in the photorefractive process,” Appl. Phys. A 57, 161–165 (1993).
    [CrossRef]
  21. Ch. Kuper, “Züchtung und Charakterisierung von (Ba1−xCax)TiO3-Kristallen, Ph.D. dissertation (Universität Osnabrück, Osnabrück, Germany, 1997).

1999 (1)

N. Korneev, D. Mayorga, S. Stepanov, H. Veenhuis, K. Buse, C. Kuper, H. Hesse, and E. Krätzig, “Holographic and non-steady-state photocurrent characterization of photorefractive barium-calcium titanate,” Opt. Commun. 160, 98–102 (1999).
[CrossRef]

1998 (1)

N. Korneev, D. Mayorga, S. Stepanov, A. Gerwens, K. Buse, and E. Krätzig, “Characterization of photorefractive strontium-barium niobate with non-steady-state holographic photocurrents,” Opt. Commun. 146, 215–219 (1998).
[CrossRef]

1997 (2)

Ch. Kuper, R. Pankrath, and H. Hesse, “Growth and dielectric properties of congruently melting Ba1−xCaxTiO3 crystals,” Appl. Phys. A 65, 301–305 (1997).
[CrossRef]

K. Buse, “Light-induced charge transport processes in photorefractive crystals: I. Models and experimental methods,” Appl. Phys. B 64, 273–291 (1997).
[CrossRef]

1996 (1)

1994 (1)

S. Sochava, K. Buse, and E. Krätzig, “Characterization of photorefractive KNbO3:Fe by non-steady-state photocurrent techniques,” Opt. Commun. 105, 315–319 (1994).
[CrossRef]

1993 (2)

S. Sochava, K. Buse, and E. Krätzig, “Non-steady-state photocurrent technique for the characterization of photorefractive BaTiO3,” Opt. Commun. 98, 265–268 (1993).
[CrossRef]

K. Buse and K. H. Ringhofer, “Pyroelectric drive for light-induced charge transport in the photorefractive process,” Appl. Phys. A 57, 161–165 (1993).
[CrossRef]

1992 (1)

1990 (2)

I. A. Sokolov and S. I. Stepanov, “Non-steady state photovoltage in crystals with long photoconductivity relaxation times,” Electron. Lett. 26, 1275–1277 (1990).
[CrossRef]

M. P. Petrov, I. A. Sokolov, S. I. Stepanov, and G. S. Trofimov, “Non-steady-state photo-electromotive-force induced by dynamic gratings in partially compensated photoconductors,” J. Appl. Phys. 68, 2216–2225 (1990).
[CrossRef]

1989 (1)

S. I. Stepanov and G. S. Trofimov, “Transient EMF in crystals having ambipolar photoconductivity,” Sov. Phys. Solid State 31, 49–50 (1989).

1987 (1)

G. S. Trofimov, S. I. Stepanov, M. P. Petrov, and M. V. Krasin’kova, “Time-varying photo-EMF associated with spatially nonuniform surface excitation of GaAs:Cr,” Sov. Tech. Phys. Lett. 13, 108–109 (1987).

1986 (1)

G. S. Trofimov and S. I. Stepanov, “Time-dependent holographic currents in photorefractive crystals,” Sov. Phys. Solid State 28, 1559–1562 (1986).

1982 (3)

N. Kristoffel, R. von Baltz, and D. Hornung, “On the intrinsic bulk photovoltaic effect: performing the sum over intermediate states,” Z. Phys. B 47, 293–296 (1982).
[CrossRef]

H. Presting and R. von Baltz, “Bulk photovoltaic effect in a ferroelectric crystal,” Phys. Status Solidi B 112, 559–564 (1982).
[CrossRef]

W. Ruppel, R. von Baltz, and P. Würfel, “The origin of the photo-EMF in ferroelectric and non-ferroelectric materials,” Ferroelectrics 43, 109–123 (1982).
[CrossRef]

1974 (1)

A. M. Glass, D. von der Linde, and T. J. Negran, “High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3,” Appl. Phys. Lett. 25, 233–235 (1974).
[CrossRef]

Bacher, G. D.

Buse, K.

N. Korneev, D. Mayorga, S. Stepanov, H. Veenhuis, K. Buse, C. Kuper, H. Hesse, and E. Krätzig, “Holographic and non-steady-state photocurrent characterization of photorefractive barium-calcium titanate,” Opt. Commun. 160, 98–102 (1999).
[CrossRef]

N. Korneev, D. Mayorga, S. Stepanov, A. Gerwens, K. Buse, and E. Krätzig, “Characterization of photorefractive strontium-barium niobate with non-steady-state holographic photocurrents,” Opt. Commun. 146, 215–219 (1998).
[CrossRef]

K. Buse, “Light-induced charge transport processes in photorefractive crystals: I. Models and experimental methods,” Appl. Phys. B 64, 273–291 (1997).
[CrossRef]

S. Sochava, K. Buse, and E. Krätzig, “Characterization of photorefractive KNbO3:Fe by non-steady-state photocurrent techniques,” Opt. Commun. 105, 315–319 (1994).
[CrossRef]

S. Sochava, K. Buse, and E. Krätzig, “Non-steady-state photocurrent technique for the characterization of photorefractive BaTiO3,” Opt. Commun. 98, 265–268 (1993).
[CrossRef]

K. Buse and K. H. Ringhofer, “Pyroelectric drive for light-induced charge transport in the photorefractive process,” Appl. Phys. A 57, 161–165 (1993).
[CrossRef]

Caulfield, H. J.

Chen, B. S.

Cudney, R. S.

Feinberg, J.

Gerwens, A.

N. Korneev, D. Mayorga, S. Stepanov, A. Gerwens, K. Buse, and E. Krätzig, “Characterization of photorefractive strontium-barium niobate with non-steady-state holographic photocurrents,” Opt. Commun. 146, 215–219 (1998).
[CrossRef]

Glass, A. M.

A. M. Glass, D. von der Linde, and T. J. Negran, “High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3,” Appl. Phys. Lett. 25, 233–235 (1974).
[CrossRef]

Hesse, H.

N. Korneev, D. Mayorga, S. Stepanov, H. Veenhuis, K. Buse, C. Kuper, H. Hesse, and E. Krätzig, “Holographic and non-steady-state photocurrent characterization of photorefractive barium-calcium titanate,” Opt. Commun. 160, 98–102 (1999).
[CrossRef]

Ch. Kuper, R. Pankrath, and H. Hesse, “Growth and dielectric properties of congruently melting Ba1−xCaxTiO3 crystals,” Appl. Phys. A 65, 301–305 (1997).
[CrossRef]

Hornung, D.

N. Kristoffel, R. von Baltz, and D. Hornung, “On the intrinsic bulk photovoltaic effect: performing the sum over intermediate states,” Z. Phys. B 47, 293–296 (1982).
[CrossRef]

Korneev, N.

N. Korneev, D. Mayorga, S. Stepanov, H. Veenhuis, K. Buse, C. Kuper, H. Hesse, and E. Krätzig, “Holographic and non-steady-state photocurrent characterization of photorefractive barium-calcium titanate,” Opt. Commun. 160, 98–102 (1999).
[CrossRef]

N. Korneev, D. Mayorga, S. Stepanov, A. Gerwens, K. Buse, and E. Krätzig, “Characterization of photorefractive strontium-barium niobate with non-steady-state holographic photocurrents,” Opt. Commun. 146, 215–219 (1998).
[CrossRef]

Krasin’kova, M. V.

G. S. Trofimov, S. I. Stepanov, M. P. Petrov, and M. V. Krasin’kova, “Time-varying photo-EMF associated with spatially nonuniform surface excitation of GaAs:Cr,” Sov. Tech. Phys. Lett. 13, 108–109 (1987).

Krätzig, E.

N. Korneev, D. Mayorga, S. Stepanov, H. Veenhuis, K. Buse, C. Kuper, H. Hesse, and E. Krätzig, “Holographic and non-steady-state photocurrent characterization of photorefractive barium-calcium titanate,” Opt. Commun. 160, 98–102 (1999).
[CrossRef]

N. Korneev, D. Mayorga, S. Stepanov, A. Gerwens, K. Buse, and E. Krätzig, “Characterization of photorefractive strontium-barium niobate with non-steady-state holographic photocurrents,” Opt. Commun. 146, 215–219 (1998).
[CrossRef]

S. Sochava, K. Buse, and E. Krätzig, “Characterization of photorefractive KNbO3:Fe by non-steady-state photocurrent techniques,” Opt. Commun. 105, 315–319 (1994).
[CrossRef]

S. Sochava, K. Buse, and E. Krätzig, “Non-steady-state photocurrent technique for the characterization of photorefractive BaTiO3,” Opt. Commun. 98, 265–268 (1993).
[CrossRef]

Kristoffel, N.

N. Kristoffel, R. von Baltz, and D. Hornung, “On the intrinsic bulk photovoltaic effect: performing the sum over intermediate states,” Z. Phys. B 47, 293–296 (1982).
[CrossRef]

Kukhtarev, N.

Kuper, C.

N. Korneev, D. Mayorga, S. Stepanov, H. Veenhuis, K. Buse, C. Kuper, H. Hesse, and E. Krätzig, “Holographic and non-steady-state photocurrent characterization of photorefractive barium-calcium titanate,” Opt. Commun. 160, 98–102 (1999).
[CrossRef]

Kuper, Ch.

Ch. Kuper, R. Pankrath, and H. Hesse, “Growth and dielectric properties of congruently melting Ba1−xCaxTiO3 crystals,” Appl. Phys. A 65, 301–305 (1997).
[CrossRef]

Mahgerefteh, D.

Mayorga, D.

N. Korneev, D. Mayorga, S. Stepanov, H. Veenhuis, K. Buse, C. Kuper, H. Hesse, and E. Krätzig, “Holographic and non-steady-state photocurrent characterization of photorefractive barium-calcium titanate,” Opt. Commun. 160, 98–102 (1999).
[CrossRef]

N. Korneev, D. Mayorga, S. Stepanov, A. Gerwens, K. Buse, and E. Krätzig, “Characterization of photorefractive strontium-barium niobate with non-steady-state holographic photocurrents,” Opt. Commun. 146, 215–219 (1998).
[CrossRef]

Negran, T. J.

A. M. Glass, D. von der Linde, and T. J. Negran, “High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3,” Appl. Phys. Lett. 25, 233–235 (1974).
[CrossRef]

Noginov, M. A.

Noginova, N.

Pankrath, R.

Ch. Kuper, R. Pankrath, and H. Hesse, “Growth and dielectric properties of congruently melting Ba1−xCaxTiO3 crystals,” Appl. Phys. A 65, 301–305 (1997).
[CrossRef]

Petrov, M. P.

M. P. Petrov, I. A. Sokolov, S. I. Stepanov, and G. S. Trofimov, “Non-steady-state photo-electromotive-force induced by dynamic gratings in partially compensated photoconductors,” J. Appl. Phys. 68, 2216–2225 (1990).
[CrossRef]

G. S. Trofimov, S. I. Stepanov, M. P. Petrov, and M. V. Krasin’kova, “Time-varying photo-EMF associated with spatially nonuniform surface excitation of GaAs:Cr,” Sov. Tech. Phys. Lett. 13, 108–109 (1987).

Pierce, R. M.

Presting, H.

H. Presting and R. von Baltz, “Bulk photovoltaic effect in a ferroelectric crystal,” Phys. Status Solidi B 112, 559–564 (1982).
[CrossRef]

Ringhofer, K. H.

K. Buse and K. H. Ringhofer, “Pyroelectric drive for light-induced charge transport in the photorefractive process,” Appl. Phys. A 57, 161–165 (1993).
[CrossRef]

Ruppel, W.

W. Ruppel, R. von Baltz, and P. Würfel, “The origin of the photo-EMF in ferroelectric and non-ferroelectric materials,” Ferroelectrics 43, 109–123 (1982).
[CrossRef]

Sochava, S.

S. Sochava, K. Buse, and E. Krätzig, “Characterization of photorefractive KNbO3:Fe by non-steady-state photocurrent techniques,” Opt. Commun. 105, 315–319 (1994).
[CrossRef]

S. Sochava, K. Buse, and E. Krätzig, “Non-steady-state photocurrent technique for the characterization of photorefractive BaTiO3,” Opt. Commun. 98, 265–268 (1993).
[CrossRef]

Sokolov, I. A.

I. A. Sokolov and S. I. Stepanov, “Non-steady state photovoltage in crystals with long photoconductivity relaxation times,” Electron. Lett. 26, 1275–1277 (1990).
[CrossRef]

M. P. Petrov, I. A. Sokolov, S. I. Stepanov, and G. S. Trofimov, “Non-steady-state photo-electromotive-force induced by dynamic gratings in partially compensated photoconductors,” J. Appl. Phys. 68, 2216–2225 (1990).
[CrossRef]

Stepanov, S.

N. Korneev, D. Mayorga, S. Stepanov, H. Veenhuis, K. Buse, C. Kuper, H. Hesse, and E. Krätzig, “Holographic and non-steady-state photocurrent characterization of photorefractive barium-calcium titanate,” Opt. Commun. 160, 98–102 (1999).
[CrossRef]

N. Korneev, D. Mayorga, S. Stepanov, A. Gerwens, K. Buse, and E. Krätzig, “Characterization of photorefractive strontium-barium niobate with non-steady-state holographic photocurrents,” Opt. Commun. 146, 215–219 (1998).
[CrossRef]

Stepanov, S. I.

M. P. Petrov, I. A. Sokolov, S. I. Stepanov, and G. S. Trofimov, “Non-steady-state photo-electromotive-force induced by dynamic gratings in partially compensated photoconductors,” J. Appl. Phys. 68, 2216–2225 (1990).
[CrossRef]

I. A. Sokolov and S. I. Stepanov, “Non-steady state photovoltage in crystals with long photoconductivity relaxation times,” Electron. Lett. 26, 1275–1277 (1990).
[CrossRef]

S. I. Stepanov and G. S. Trofimov, “Transient EMF in crystals having ambipolar photoconductivity,” Sov. Phys. Solid State 31, 49–50 (1989).

G. S. Trofimov, S. I. Stepanov, M. P. Petrov, and M. V. Krasin’kova, “Time-varying photo-EMF associated with spatially nonuniform surface excitation of GaAs:Cr,” Sov. Tech. Phys. Lett. 13, 108–109 (1987).

G. S. Trofimov and S. I. Stepanov, “Time-dependent holographic currents in photorefractive crystals,” Sov. Phys. Solid State 28, 1559–1562 (1986).

Trofimov, G. S.

M. P. Petrov, I. A. Sokolov, S. I. Stepanov, and G. S. Trofimov, “Non-steady-state photo-electromotive-force induced by dynamic gratings in partially compensated photoconductors,” J. Appl. Phys. 68, 2216–2225 (1990).
[CrossRef]

S. I. Stepanov and G. S. Trofimov, “Transient EMF in crystals having ambipolar photoconductivity,” Sov. Phys. Solid State 31, 49–50 (1989).

G. S. Trofimov, S. I. Stepanov, M. P. Petrov, and M. V. Krasin’kova, “Time-varying photo-EMF associated with spatially nonuniform surface excitation of GaAs:Cr,” Sov. Tech. Phys. Lett. 13, 108–109 (1987).

G. S. Trofimov and S. I. Stepanov, “Time-dependent holographic currents in photorefractive crystals,” Sov. Phys. Solid State 28, 1559–1562 (1986).

Veenhuis, H.

N. Korneev, D. Mayorga, S. Stepanov, H. Veenhuis, K. Buse, C. Kuper, H. Hesse, and E. Krätzig, “Holographic and non-steady-state photocurrent characterization of photorefractive barium-calcium titanate,” Opt. Commun. 160, 98–102 (1999).
[CrossRef]

Venkateswarlu, P.

von Baltz, R.

W. Ruppel, R. von Baltz, and P. Würfel, “The origin of the photo-EMF in ferroelectric and non-ferroelectric materials,” Ferroelectrics 43, 109–123 (1982).
[CrossRef]

H. Presting and R. von Baltz, “Bulk photovoltaic effect in a ferroelectric crystal,” Phys. Status Solidi B 112, 559–564 (1982).
[CrossRef]

N. Kristoffel, R. von Baltz, and D. Hornung, “On the intrinsic bulk photovoltaic effect: performing the sum over intermediate states,” Z. Phys. B 47, 293–296 (1982).
[CrossRef]

von der Linde, D.

A. M. Glass, D. von der Linde, and T. J. Negran, “High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3,” Appl. Phys. Lett. 25, 233–235 (1974).
[CrossRef]

Würfel, P.

W. Ruppel, R. von Baltz, and P. Würfel, “The origin of the photo-EMF in ferroelectric and non-ferroelectric materials,” Ferroelectrics 43, 109–123 (1982).
[CrossRef]

Appl. Phys. A (2)

Ch. Kuper, R. Pankrath, and H. Hesse, “Growth and dielectric properties of congruently melting Ba1−xCaxTiO3 crystals,” Appl. Phys. A 65, 301–305 (1997).
[CrossRef]

K. Buse and K. H. Ringhofer, “Pyroelectric drive for light-induced charge transport in the photorefractive process,” Appl. Phys. A 57, 161–165 (1993).
[CrossRef]

Appl. Phys. B (1)

K. Buse, “Light-induced charge transport processes in photorefractive crystals: I. Models and experimental methods,” Appl. Phys. B 64, 273–291 (1997).
[CrossRef]

Appl. Phys. Lett. (1)

A. M. Glass, D. von der Linde, and T. J. Negran, “High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3,” Appl. Phys. Lett. 25, 233–235 (1974).
[CrossRef]

Electron. Lett. (1)

I. A. Sokolov and S. I. Stepanov, “Non-steady state photovoltage in crystals with long photoconductivity relaxation times,” Electron. Lett. 26, 1275–1277 (1990).
[CrossRef]

Ferroelectrics (1)

W. Ruppel, R. von Baltz, and P. Würfel, “The origin of the photo-EMF in ferroelectric and non-ferroelectric materials,” Ferroelectrics 43, 109–123 (1982).
[CrossRef]

J. Appl. Phys. (1)

M. P. Petrov, I. A. Sokolov, S. I. Stepanov, and G. S. Trofimov, “Non-steady-state photo-electromotive-force induced by dynamic gratings in partially compensated photoconductors,” J. Appl. Phys. 68, 2216–2225 (1990).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Commun. (4)

S. Sochava, K. Buse, and E. Krätzig, “Non-steady-state photocurrent technique for the characterization of photorefractive BaTiO3,” Opt. Commun. 98, 265–268 (1993).
[CrossRef]

S. Sochava, K. Buse, and E. Krätzig, “Characterization of photorefractive KNbO3:Fe by non-steady-state photocurrent techniques,” Opt. Commun. 105, 315–319 (1994).
[CrossRef]

N. Korneev, D. Mayorga, S. Stepanov, A. Gerwens, K. Buse, and E. Krätzig, “Characterization of photorefractive strontium-barium niobate with non-steady-state holographic photocurrents,” Opt. Commun. 146, 215–219 (1998).
[CrossRef]

N. Korneev, D. Mayorga, S. Stepanov, H. Veenhuis, K. Buse, C. Kuper, H. Hesse, and E. Krätzig, “Holographic and non-steady-state photocurrent characterization of photorefractive barium-calcium titanate,” Opt. Commun. 160, 98–102 (1999).
[CrossRef]

Phys. Status Solidi B (1)

H. Presting and R. von Baltz, “Bulk photovoltaic effect in a ferroelectric crystal,” Phys. Status Solidi B 112, 559–564 (1982).
[CrossRef]

Sov. Phys. Solid State (2)

G. S. Trofimov and S. I. Stepanov, “Time-dependent holographic currents in photorefractive crystals,” Sov. Phys. Solid State 28, 1559–1562 (1986).

S. I. Stepanov and G. S. Trofimov, “Transient EMF in crystals having ambipolar photoconductivity,” Sov. Phys. Solid State 31, 49–50 (1989).

Sov. Tech. Phys. Lett. (1)

G. S. Trofimov, S. I. Stepanov, M. P. Petrov, and M. V. Krasin’kova, “Time-varying photo-EMF associated with spatially nonuniform surface excitation of GaAs:Cr,” Sov. Tech. Phys. Lett. 13, 108–109 (1987).

Z. Phys. B (1)

N. Kristoffel, R. von Baltz, and D. Hornung, “On the intrinsic bulk photovoltaic effect: performing the sum over intermediate states,” Z. Phys. B 47, 293–296 (1982).
[CrossRef]

Other (3)

H. Veenhuis, K. Buse, E. Krätzig, N. Korneev, and D. Mayorga, “Non-steady-state photoelectromotive force in reduced lithium niobate crystals,” J. Appl. Phys. (to be published).

P. Günter and J.-P. Huignard, eds., Topics in Applied Physics: Photorefractive Materials and Their Applications II, Vol. 62 of Topics in Applied Physics (Springer-Verlag, Berlin, 1989).

Ch. Kuper, “Züchtung und Charakterisierung von (Ba1−xCax)TiO3-Kristallen, Ph.D. dissertation (Universität Osnabrück, Osnabrück, Germany, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Normalized amplitudes j2ω,sq and j2ω,si of the alternating photocurrent densities versus frequency ω/2π for a square and a sine phase-modulated beam, respectively. The curves are theoretical curves according to Eqs. (5) and (7) (square phase modulation) and to Eqs. (7) and (9) (sine phase modulation).

Fig. 2
Fig. 2

Bulk photovoltaic field Ephv and bulk photovoltaic current density jphv versus light intensity I. Symbols, measured data; dotted–dashed line, linear fit.

Fig. 3
Fig. 3

Amplitudes jω,sq and j2ω,sq of the first and second harmonics of the alternating photocurrents for a square phase-modulated beam, and amplitude j2ω,si for a sine phase-modulated beam, relative to modulation amplitude Δω. Symbols, measured data. Dotted curve, proportional to |sin(2Δω)|; dashed curve, fit according to Eq. (5).

Fig. 4
Fig. 4

Amplitude j2ω,sq of the first harmonic of the alternating photocurrent for a square phase-modulated beam versus the square of the fringe contrast m2. Symbols, measured data; dotted curve, linear fit.

Fig. 5
Fig. 5

Amplitude j2ω,sq of the first harmonic of the alternating photocurrent for a square phase-modulated beam versus spatial frequency K. Symbols, measured data; dashed curve, horizontal fit.

Fig. 6
Fig. 6

Normalized amplitudes j2ω,sq and j2ω,si of the second harmonic of the alternating photocurrent for a square and for a sine phase-modulated beam versus frequency ω/2π.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

I(x, t)=I0+mI0 cos[Kx+ΔωΘ(t)],
I(x, t)
=I0+mI0 cos(Kx)cos(Δω)-mI0 sin(Kx)sin(Δω)
×(2/π)k=-(-1)k(2k+1)exp[iω(2k+1)t].
N(x, t)=N(0)+mN(0)cos(Kx)cos(Δω)-m sin(Kx)sin(Δω)(2/π)×k=-(-1)k(2k+1)N[(2k+1)ω]×exp[iω(2k+1)t],
j(t)=p1L0LI(x, t)N(x, t)d x.
j2ω,sq(t)=m2 sin2(Δω)pI0(2/π2)×k=-N[(2k+1)ω]1-4k2exp(2iωt)+c.c.
N/t=Ne/τ-ω0N.
N(ω)=N(0)/(1+iω/ω0).
I(x, t)=I0+mI0 cos[Kx+Δω cos(ωt)].
j2ω,si(t)=(1/8)m2Δω2pI0[N(ω)-N(2ω)/2-N(0)/2]exp(2iωt)+c.c.,

Metrics