Abstract

Three aspects of the experimental observation of self-written waveguides are analyzed. The evolution of the self-written waveguide is compared quantitatively with a model that incorporates saturation and an exposure-dependent attenuation, giving excellent agreement. The spatial features of the self-written channel that are observable by luminescence are qualitatively explained by the same model. Even though the channel is multimoded at the blue writing wavelength, it is demonstrated to be single moded at the wavelength λ=1550 nm, consistent with predictions.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. M. Monro, D. Moss, M. Bazylenko, C. M. de Sterke, and L. Poladian, “Observation of self-trapping of light in a self-written channel in photosensitive glass,” Phys. Rev. Lett. 80, 4072–4075 (1998).
    [CrossRef]
  2. T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76, 73–80 (1994).
    [CrossRef]
  3. M. V. Bazylenko, M. Gross, A. Simonian, and P. L. Chu, “Pure and fluorine doped silica films deposited in a hollow cathode reactor for integrated optics applications,” J. Vac. Sci. Technol. 14, 336–345 (1996).
    [CrossRef]
  4. C. Meneghini and A. Villeneuve, “Self-writing channel waveguides in As2S3 thin films by two-photon absorption,” in Nonlinear Guided Waves & Their Applications, Vol. 5 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 32–34.
  5. S. J. Frisken, “Light-induced optical waveguide uptapers,” Opt. Lett. 18, 1035–1037 (1993).
    [CrossRef] [PubMed]
  6. A. S. Kewitsch and A. Yariv, “Self-focusing and self-trapping of optical beams upon photopolymerization,” Opt. Lett. 21, 24–26 (1996).
    [CrossRef] [PubMed]
  7. W. Torruellas, Z. Wang, and C. R. Menyuk, “Observation of two-dimensional spatial solitary waves in a quadratic medium,” Phys. Rev. Lett. 74, 5036–5039 (1995).
    [CrossRef] [PubMed]
  8. J. S. Aitchison, A. M. Weiner, Y. Silberberg, D. E. Leaird, M. K. Oliver, J. L. Jackel, and P. W. E. Smith, “Experimental observation of spatial soliton interactions,” Opt. Lett. 16, 15–17 (1991).
    [CrossRef] [PubMed]
  9. M. Segev, B. Crosignani, and A. Yariv, “Spatial solitons in photorefractive media,” Phys. Rev. Lett. 68, 923–926 (1992).
    [CrossRef] [PubMed]
  10. V. Tikhonenko, J. Christou, and B. Luther-Davies, “Three dimensional bright spatial soliton collision and fusion in a saturable nonlinear medium,” Phys. Rev. Lett. 76, 2698–2701 (1996).
    [CrossRef] [PubMed]
  11. K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
    [CrossRef]
  12. G. Meltz, W. W. Morey, and W. H. Glenn, “Formation of Bragg gratings in optical fibers by a transverse holographic method,” Opt. Lett. 14, 823–825 (1989).
    [CrossRef] [PubMed]
  13. C. V. Poulsen, J. Hubner, T. Rasmussen, L. Anderson, and M. Kristensen, “Characterisation of dispersion properties in planar wave guides using UV-induced Bragg gratings,” Electron. Lett. 31, 1437–1438 (1995).
    [CrossRef]
  14. V. Mizrahi, P. J. Lemaire, T. Erdogan, W. A. Reed, D. J. DiGiovanni, and R. M. Atkins, “Ultraviolet laser fabrication of ultrastrong optical fiber gratings and of germania-doped channel waveguides,” Appl. Phys. Lett. 63, 1727–1729 (1993).
    [CrossRef]
  15. D. K. W. Lam and B. K. Garside, “Characterization of single-mode optical fiber filters,” Appl. Opt. 20, 440–445 (1981).
    [CrossRef] [PubMed]
  16. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).
  17. C. M. de Sterke and J. E. Sipe, “Ideal mode expansion for planar optical waveguides,” J. Opt. Soc. Am. A 7, 636–645 (1990).
    [CrossRef]
  18. T. M. Monro, C. M. de Sterke, and L. Poladian, “Investigation of waveguide growth in photosensitive germano-silicate glass,” J. Opt. Soc. Am. B 13, 2824–2832 (1996).
    [CrossRef]
  19. T. M. Monro, L. Poladian, and C. M. de Sterke, “Numerically efficient modal decomposition approach to self-writing processes,” J. Opt. Soc. Am. A 14, 2180–2189 (1997).
    [CrossRef]
  20. T. M. Monro, P. D. Miller, L. Poladian, and C. M. de Sterke, “Self-similar evolution of self-written waveguides,” Opt. Lett. 23, 268–270 (1998).
    [CrossRef]
  21. T. M. Monro, L. Poladian, and C. M. de Sterke, “Analysis of self-written waveguides in photopolymers and photosensitive materials,” Phys. Rev. E 57, 1103–1113 (1998).
    [CrossRef]
  22. L. J. Poyntz-Wright and P. St. J. Russell, “Spontaneous relaxation processes in irradiated germanosilicate optical fibres,” Electron. Lett. 25, 478–480 (1989).
    [CrossRef]
  23. E. M. Dianov, V. M. Mashinsky, V. B. Neustruev, O. D. Sazhin, V. V. Brazhkin, and V. A. Sidorov, “Optical absorption and luminescence of germanium oxygen-deficient centers in densified germanosilicate glass,” Opt. Lett. 22, 1089–1091 (1997).
    [CrossRef] [PubMed]
  24. M. V. Bazylenko and D. Moss, “Two types of photosensitivity observed in hollow cathode PECVD germanosilicate planar waveguides,” Bragg Gratings, Photosensitivity, and Poling in Glass Fibers and Waveguides: Applications and Fundamentals, Vol. 15 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 184–186.

1998 (3)

T. M. Monro, D. Moss, M. Bazylenko, C. M. de Sterke, and L. Poladian, “Observation of self-trapping of light in a self-written channel in photosensitive glass,” Phys. Rev. Lett. 80, 4072–4075 (1998).
[CrossRef]

T. M. Monro, L. Poladian, and C. M. de Sterke, “Analysis of self-written waveguides in photopolymers and photosensitive materials,” Phys. Rev. E 57, 1103–1113 (1998).
[CrossRef]

T. M. Monro, P. D. Miller, L. Poladian, and C. M. de Sterke, “Self-similar evolution of self-written waveguides,” Opt. Lett. 23, 268–270 (1998).
[CrossRef]

1997 (2)

1996 (4)

T. M. Monro, C. M. de Sterke, and L. Poladian, “Investigation of waveguide growth in photosensitive germano-silicate glass,” J. Opt. Soc. Am. B 13, 2824–2832 (1996).
[CrossRef]

M. V. Bazylenko, M. Gross, A. Simonian, and P. L. Chu, “Pure and fluorine doped silica films deposited in a hollow cathode reactor for integrated optics applications,” J. Vac. Sci. Technol. 14, 336–345 (1996).
[CrossRef]

V. Tikhonenko, J. Christou, and B. Luther-Davies, “Three dimensional bright spatial soliton collision and fusion in a saturable nonlinear medium,” Phys. Rev. Lett. 76, 2698–2701 (1996).
[CrossRef] [PubMed]

A. S. Kewitsch and A. Yariv, “Self-focusing and self-trapping of optical beams upon photopolymerization,” Opt. Lett. 21, 24–26 (1996).
[CrossRef] [PubMed]

1995 (2)

W. Torruellas, Z. Wang, and C. R. Menyuk, “Observation of two-dimensional spatial solitary waves in a quadratic medium,” Phys. Rev. Lett. 74, 5036–5039 (1995).
[CrossRef] [PubMed]

C. V. Poulsen, J. Hubner, T. Rasmussen, L. Anderson, and M. Kristensen, “Characterisation of dispersion properties in planar wave guides using UV-induced Bragg gratings,” Electron. Lett. 31, 1437–1438 (1995).
[CrossRef]

1994 (1)

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76, 73–80 (1994).
[CrossRef]

1993 (2)

V. Mizrahi, P. J. Lemaire, T. Erdogan, W. A. Reed, D. J. DiGiovanni, and R. M. Atkins, “Ultraviolet laser fabrication of ultrastrong optical fiber gratings and of germania-doped channel waveguides,” Appl. Phys. Lett. 63, 1727–1729 (1993).
[CrossRef]

S. J. Frisken, “Light-induced optical waveguide uptapers,” Opt. Lett. 18, 1035–1037 (1993).
[CrossRef] [PubMed]

1992 (1)

M. Segev, B. Crosignani, and A. Yariv, “Spatial solitons in photorefractive media,” Phys. Rev. Lett. 68, 923–926 (1992).
[CrossRef] [PubMed]

1991 (1)

1990 (1)

1989 (2)

G. Meltz, W. W. Morey, and W. H. Glenn, “Formation of Bragg gratings in optical fibers by a transverse holographic method,” Opt. Lett. 14, 823–825 (1989).
[CrossRef] [PubMed]

L. J. Poyntz-Wright and P. St. J. Russell, “Spontaneous relaxation processes in irradiated germanosilicate optical fibres,” Electron. Lett. 25, 478–480 (1989).
[CrossRef]

1981 (1)

1978 (1)

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[CrossRef]

Aitchison, J. S.

Anderson, L.

C. V. Poulsen, J. Hubner, T. Rasmussen, L. Anderson, and M. Kristensen, “Characterisation of dispersion properties in planar wave guides using UV-induced Bragg gratings,” Electron. Lett. 31, 1437–1438 (1995).
[CrossRef]

Atkins, R. M.

V. Mizrahi, P. J. Lemaire, T. Erdogan, W. A. Reed, D. J. DiGiovanni, and R. M. Atkins, “Ultraviolet laser fabrication of ultrastrong optical fiber gratings and of germania-doped channel waveguides,” Appl. Phys. Lett. 63, 1727–1729 (1993).
[CrossRef]

Bazylenko, M.

T. M. Monro, D. Moss, M. Bazylenko, C. M. de Sterke, and L. Poladian, “Observation of self-trapping of light in a self-written channel in photosensitive glass,” Phys. Rev. Lett. 80, 4072–4075 (1998).
[CrossRef]

Bazylenko, M. V.

M. V. Bazylenko, M. Gross, A. Simonian, and P. L. Chu, “Pure and fluorine doped silica films deposited in a hollow cathode reactor for integrated optics applications,” J. Vac. Sci. Technol. 14, 336–345 (1996).
[CrossRef]

Brazhkin, V. V.

Christou, J.

V. Tikhonenko, J. Christou, and B. Luther-Davies, “Three dimensional bright spatial soliton collision and fusion in a saturable nonlinear medium,” Phys. Rev. Lett. 76, 2698–2701 (1996).
[CrossRef] [PubMed]

Chu, P. L.

M. V. Bazylenko, M. Gross, A. Simonian, and P. L. Chu, “Pure and fluorine doped silica films deposited in a hollow cathode reactor for integrated optics applications,” J. Vac. Sci. Technol. 14, 336–345 (1996).
[CrossRef]

Crosignani, B.

M. Segev, B. Crosignani, and A. Yariv, “Spatial solitons in photorefractive media,” Phys. Rev. Lett. 68, 923–926 (1992).
[CrossRef] [PubMed]

de Sterke, C. M.

Dianov, E. M.

DiGiovanni, D. J.

V. Mizrahi, P. J. Lemaire, T. Erdogan, W. A. Reed, D. J. DiGiovanni, and R. M. Atkins, “Ultraviolet laser fabrication of ultrastrong optical fiber gratings and of germania-doped channel waveguides,” Appl. Phys. Lett. 63, 1727–1729 (1993).
[CrossRef]

Erdogan, T.

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76, 73–80 (1994).
[CrossRef]

V. Mizrahi, P. J. Lemaire, T. Erdogan, W. A. Reed, D. J. DiGiovanni, and R. M. Atkins, “Ultraviolet laser fabrication of ultrastrong optical fiber gratings and of germania-doped channel waveguides,” Appl. Phys. Lett. 63, 1727–1729 (1993).
[CrossRef]

Frisken, S. J.

Fujii, Y.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[CrossRef]

Garside, B. K.

Glenn, W. H.

Gross, M.

M. V. Bazylenko, M. Gross, A. Simonian, and P. L. Chu, “Pure and fluorine doped silica films deposited in a hollow cathode reactor for integrated optics applications,” J. Vac. Sci. Technol. 14, 336–345 (1996).
[CrossRef]

Hill, K. O.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[CrossRef]

Hubner, J.

C. V. Poulsen, J. Hubner, T. Rasmussen, L. Anderson, and M. Kristensen, “Characterisation of dispersion properties in planar wave guides using UV-induced Bragg gratings,” Electron. Lett. 31, 1437–1438 (1995).
[CrossRef]

Jackel, J. L.

Johnson, D. C.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[CrossRef]

Kawasaki, B. S.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[CrossRef]

Kewitsch, A. S.

Kristensen, M.

C. V. Poulsen, J. Hubner, T. Rasmussen, L. Anderson, and M. Kristensen, “Characterisation of dispersion properties in planar wave guides using UV-induced Bragg gratings,” Electron. Lett. 31, 1437–1438 (1995).
[CrossRef]

Lam, D. K. W.

Leaird, D. E.

Lemaire, P. J.

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76, 73–80 (1994).
[CrossRef]

V. Mizrahi, P. J. Lemaire, T. Erdogan, W. A. Reed, D. J. DiGiovanni, and R. M. Atkins, “Ultraviolet laser fabrication of ultrastrong optical fiber gratings and of germania-doped channel waveguides,” Appl. Phys. Lett. 63, 1727–1729 (1993).
[CrossRef]

Luther-Davies, B.

V. Tikhonenko, J. Christou, and B. Luther-Davies, “Three dimensional bright spatial soliton collision and fusion in a saturable nonlinear medium,” Phys. Rev. Lett. 76, 2698–2701 (1996).
[CrossRef] [PubMed]

Mashinsky, V. M.

Meltz, G.

Menyuk, C. R.

W. Torruellas, Z. Wang, and C. R. Menyuk, “Observation of two-dimensional spatial solitary waves in a quadratic medium,” Phys. Rev. Lett. 74, 5036–5039 (1995).
[CrossRef] [PubMed]

Miller, P. D.

Mizrahi, V.

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76, 73–80 (1994).
[CrossRef]

V. Mizrahi, P. J. Lemaire, T. Erdogan, W. A. Reed, D. J. DiGiovanni, and R. M. Atkins, “Ultraviolet laser fabrication of ultrastrong optical fiber gratings and of germania-doped channel waveguides,” Appl. Phys. Lett. 63, 1727–1729 (1993).
[CrossRef]

Monro, T. M.

T. M. Monro, P. D. Miller, L. Poladian, and C. M. de Sterke, “Self-similar evolution of self-written waveguides,” Opt. Lett. 23, 268–270 (1998).
[CrossRef]

T. M. Monro, D. Moss, M. Bazylenko, C. M. de Sterke, and L. Poladian, “Observation of self-trapping of light in a self-written channel in photosensitive glass,” Phys. Rev. Lett. 80, 4072–4075 (1998).
[CrossRef]

T. M. Monro, L. Poladian, and C. M. de Sterke, “Analysis of self-written waveguides in photopolymers and photosensitive materials,” Phys. Rev. E 57, 1103–1113 (1998).
[CrossRef]

T. M. Monro, L. Poladian, and C. M. de Sterke, “Numerically efficient modal decomposition approach to self-writing processes,” J. Opt. Soc. Am. A 14, 2180–2189 (1997).
[CrossRef]

T. M. Monro, C. M. de Sterke, and L. Poladian, “Investigation of waveguide growth in photosensitive germano-silicate glass,” J. Opt. Soc. Am. B 13, 2824–2832 (1996).
[CrossRef]

Monroe, D.

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76, 73–80 (1994).
[CrossRef]

Morey, W. W.

Moss, D.

T. M. Monro, D. Moss, M. Bazylenko, C. M. de Sterke, and L. Poladian, “Observation of self-trapping of light in a self-written channel in photosensitive glass,” Phys. Rev. Lett. 80, 4072–4075 (1998).
[CrossRef]

Neustruev, V. B.

Oliver, M. K.

Poladian, L.

T. M. Monro, L. Poladian, and C. M. de Sterke, “Analysis of self-written waveguides in photopolymers and photosensitive materials,” Phys. Rev. E 57, 1103–1113 (1998).
[CrossRef]

T. M. Monro, D. Moss, M. Bazylenko, C. M. de Sterke, and L. Poladian, “Observation of self-trapping of light in a self-written channel in photosensitive glass,” Phys. Rev. Lett. 80, 4072–4075 (1998).
[CrossRef]

T. M. Monro, P. D. Miller, L. Poladian, and C. M. de Sterke, “Self-similar evolution of self-written waveguides,” Opt. Lett. 23, 268–270 (1998).
[CrossRef]

T. M. Monro, L. Poladian, and C. M. de Sterke, “Numerically efficient modal decomposition approach to self-writing processes,” J. Opt. Soc. Am. A 14, 2180–2189 (1997).
[CrossRef]

T. M. Monro, C. M. de Sterke, and L. Poladian, “Investigation of waveguide growth in photosensitive germano-silicate glass,” J. Opt. Soc. Am. B 13, 2824–2832 (1996).
[CrossRef]

Poulsen, C. V.

C. V. Poulsen, J. Hubner, T. Rasmussen, L. Anderson, and M. Kristensen, “Characterisation of dispersion properties in planar wave guides using UV-induced Bragg gratings,” Electron. Lett. 31, 1437–1438 (1995).
[CrossRef]

Poyntz-Wright, L. J.

L. J. Poyntz-Wright and P. St. J. Russell, “Spontaneous relaxation processes in irradiated germanosilicate optical fibres,” Electron. Lett. 25, 478–480 (1989).
[CrossRef]

Rasmussen, T.

C. V. Poulsen, J. Hubner, T. Rasmussen, L. Anderson, and M. Kristensen, “Characterisation of dispersion properties in planar wave guides using UV-induced Bragg gratings,” Electron. Lett. 31, 1437–1438 (1995).
[CrossRef]

Reed, W. A.

V. Mizrahi, P. J. Lemaire, T. Erdogan, W. A. Reed, D. J. DiGiovanni, and R. M. Atkins, “Ultraviolet laser fabrication of ultrastrong optical fiber gratings and of germania-doped channel waveguides,” Appl. Phys. Lett. 63, 1727–1729 (1993).
[CrossRef]

Russell, P. St. J.

L. J. Poyntz-Wright and P. St. J. Russell, “Spontaneous relaxation processes in irradiated germanosilicate optical fibres,” Electron. Lett. 25, 478–480 (1989).
[CrossRef]

Sazhin, O. D.

Segev, M.

M. Segev, B. Crosignani, and A. Yariv, “Spatial solitons in photorefractive media,” Phys. Rev. Lett. 68, 923–926 (1992).
[CrossRef] [PubMed]

Sidorov, V. A.

Silberberg, Y.

Simonian, A.

M. V. Bazylenko, M. Gross, A. Simonian, and P. L. Chu, “Pure and fluorine doped silica films deposited in a hollow cathode reactor for integrated optics applications,” J. Vac. Sci. Technol. 14, 336–345 (1996).
[CrossRef]

Sipe, J. E.

Smith, P. W. E.

Tikhonenko, V.

V. Tikhonenko, J. Christou, and B. Luther-Davies, “Three dimensional bright spatial soliton collision and fusion in a saturable nonlinear medium,” Phys. Rev. Lett. 76, 2698–2701 (1996).
[CrossRef] [PubMed]

Torruellas, W.

W. Torruellas, Z. Wang, and C. R. Menyuk, “Observation of two-dimensional spatial solitary waves in a quadratic medium,” Phys. Rev. Lett. 74, 5036–5039 (1995).
[CrossRef] [PubMed]

Wang, Z.

W. Torruellas, Z. Wang, and C. R. Menyuk, “Observation of two-dimensional spatial solitary waves in a quadratic medium,” Phys. Rev. Lett. 74, 5036–5039 (1995).
[CrossRef] [PubMed]

Weiner, A. M.

Yariv, A.

A. S. Kewitsch and A. Yariv, “Self-focusing and self-trapping of optical beams upon photopolymerization,” Opt. Lett. 21, 24–26 (1996).
[CrossRef] [PubMed]

M. Segev, B. Crosignani, and A. Yariv, “Spatial solitons in photorefractive media,” Phys. Rev. Lett. 68, 923–926 (1992).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[CrossRef]

V. Mizrahi, P. J. Lemaire, T. Erdogan, W. A. Reed, D. J. DiGiovanni, and R. M. Atkins, “Ultraviolet laser fabrication of ultrastrong optical fiber gratings and of germania-doped channel waveguides,” Appl. Phys. Lett. 63, 1727–1729 (1993).
[CrossRef]

Electron. Lett. (2)

L. J. Poyntz-Wright and P. St. J. Russell, “Spontaneous relaxation processes in irradiated germanosilicate optical fibres,” Electron. Lett. 25, 478–480 (1989).
[CrossRef]

C. V. Poulsen, J. Hubner, T. Rasmussen, L. Anderson, and M. Kristensen, “Characterisation of dispersion properties in planar wave guides using UV-induced Bragg gratings,” Electron. Lett. 31, 1437–1438 (1995).
[CrossRef]

J. Appl. Phys. (1)

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76, 73–80 (1994).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (1)

J. Vac. Sci. Technol. (1)

M. V. Bazylenko, M. Gross, A. Simonian, and P. L. Chu, “Pure and fluorine doped silica films deposited in a hollow cathode reactor for integrated optics applications,” J. Vac. Sci. Technol. 14, 336–345 (1996).
[CrossRef]

Opt. Lett. (6)

Phys. Rev. E (1)

T. M. Monro, L. Poladian, and C. M. de Sterke, “Analysis of self-written waveguides in photopolymers and photosensitive materials,” Phys. Rev. E 57, 1103–1113 (1998).
[CrossRef]

Phys. Rev. Lett. (4)

M. Segev, B. Crosignani, and A. Yariv, “Spatial solitons in photorefractive media,” Phys. Rev. Lett. 68, 923–926 (1992).
[CrossRef] [PubMed]

V. Tikhonenko, J. Christou, and B. Luther-Davies, “Three dimensional bright spatial soliton collision and fusion in a saturable nonlinear medium,” Phys. Rev. Lett. 76, 2698–2701 (1996).
[CrossRef] [PubMed]

T. M. Monro, D. Moss, M. Bazylenko, C. M. de Sterke, and L. Poladian, “Observation of self-trapping of light in a self-written channel in photosensitive glass,” Phys. Rev. Lett. 80, 4072–4075 (1998).
[CrossRef]

W. Torruellas, Z. Wang, and C. R. Menyuk, “Observation of two-dimensional spatial solitary waves in a quadratic medium,” Phys. Rev. Lett. 74, 5036–5039 (1995).
[CrossRef] [PubMed]

Other (3)

C. Meneghini and A. Villeneuve, “Self-writing channel waveguides in As2S3 thin films by two-photon absorption,” in Nonlinear Guided Waves & Their Applications, Vol. 5 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 32–34.

M. V. Bazylenko and D. Moss, “Two types of photosensitivity observed in hollow cathode PECVD germanosilicate planar waveguides,” Bragg Gratings, Photosensitivity, and Poling in Glass Fibers and Waveguides: Applications and Fundamentals, Vol. 15 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 184–186.

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Beam intensity profiles at the output edge at 0, 0.5, 3, and 8 h, respectively, from the start of the exposure.

Fig. 2
Fig. 2

Intensity FWHM at the sample edge. The solid curve is the experimental result, the dashed curve is the numerical result including the effect of increased attenuation [γ=0.05 in Eq. (3)], and the dotted curve is the numerical result ignoring the effect of loss (i.e., γ=0).

Fig. 3
Fig. 3

Peak intensity at the sample edge. The solid curve is the experimental result, the dashed curve is the numerical result with γ=0.05 in Eq. (3), and the dotted curve is the numerical result with γ=0. The inset shows the same data with the intensity axis scaled by a factor of 10.

Fig. 4
Fig. 4

Upper photograph shows the red luminescence at the channel position. The lower photograph shows these data expanded by a factor of 3 in the y direction. The arrows indicate the regions of high intensity, and the contrast is adjusted to highlight these regions.

Fig. 5
Fig. 5

Far-field intensity pattern when the self-written channel is used to guide 1550-nm light from a diode laser.

Fig. 6
Fig. 6

Far-field intensity pattern when the self-written channel is used to guide 633-nm light from a He–Ne laser.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δn(r, t)tI2(r, t)1-Δn(r, t)Δns
ik0n0Ez+122Ey2+k02n0ΔnE+i2k0n0αE=0,
α=γk0Δn,

Metrics