Abstract

The densification of a waveguide blank of composition 14GeO2:86SiO2 produced by 193- and 248-nm excimer exposure was measured by an interferometric technique. With the aid of a finite-element model, we derive the unconstrained densification from the experimentally determined optical phase shift. The densification versus exposure can be fitted to a power law and is compared with the behavior of fused silica. Again, with the finite-element model, an estimate is made of the refractive-index change that would be produced in a single-mode fiber. For the exposure levels typically used for the 248-nm exposure, the densification contribution to the optical index change is found to be negligible for this composition. On the other hand, for the high 193-nm exposure, the densification contribution can be dominant.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter application,” Appl. Phys. Lett. 32, 647–648 (1978).
    [CrossRef]
  2. G. Meltz, W. W. Morey, and W. H. Glenn, “Formation of Bragg gratings in optical fibers by a transverse holographic method,” Opt. Lett. 14, 823–825 (1989).
    [CrossRef] [PubMed]
  3. K. O. Hill, B. Malo, D. C. Johnson, and F. Bilodeau, “A novel low-loss inline bimodal-fiber tap: waveguide-selective properties,” IEEE Photonics Technol. Lett. 2, 484–486 (1990).
    [CrossRef]
  4. R. M. Atkins and V. Mizrahi, “Observation of changes in the UV absorption bands of single mode germanosilicate core optical fibers on writing and thermally erasing refractive index gratings,” Electron. Lett. 28, 1743–1744 (1992).
    [CrossRef]
  5. R. M. Atkins, V. Mizrahi, and T. Erdogan, “248-nm induced vacuum UV spectral changes in optical fibre preform cores: support for a colour centre model of photosensitivity,” Electron. Lett. 29, 385–387 (1993).
    [CrossRef]
  6. K. D. Simmons, S. LaRochelle, V. Mizrahi, G. Stegeman, and D. L. Griscom, “Correlation of defect centers with a wavelength-dependent photosensitive response in germania-doped silica optical fibers,” Opt. Lett. 16, 141–143 (1991).
    [CrossRef] [PubMed]
  7. N. F. Borrelli, R. A. Modavis, and J. W. H. Schreurs, “Photo-effects in SiO2–GeO2 waveguides,” Integrated Photonics Research, Vol. 10 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), p. 326.
  8. D. L. Williams, S. T. Davey, R. Kashyap, J. R. Armitage, and B. J. Ainsilie, “Ultraviolet absorption studies on photosensitive germanosilicate preforms and fibers,” Appl. Phys. Lett. 59, 762–764 (1991).
    [CrossRef]
  9. V. B. Neustruev, E. M. Dianov, V. M. Kim, V. M. Mashinsky, M. V. Romanov, A. N. Guryanov, V. F. Khopin, and V. A. Tikhomirov, “Ultraviolet-radiation and γ-radiation-induced color centers in germanium-doped silica glass and fibers,” Fiber Integr. Opt. 8, 143–196 (1989).
    [CrossRef]
  10. V. Marchenko, “Photoinduced transformations of oxygen-deficient centers,” Glass Phys. Chem. 21, 263–271 (1995).
  11. M. G. Sceats and S. B. Poole, “Stress-relief: the mechanism of photorefractive index control in fiber cores,” presented at the Sixteenth Australian Conference on Optical Fiber Technology, Adelaide, Australia, 302–305, 1991.
  12. B. Poumellec, P. Guenot, I. Riant, P. Sanonetti, P. Niay, P. Bernage, and J. F. Bayon, “UV induced densification during Bragg grating inscription in GeO2–SiO2 preforms,” Opt. Mater. 4, 441–449 (1995).
    [CrossRef]
  13. P. Y. Fonjallaz, H. G. Limberger, R. P. Salathe, F. Cochet, and B. Leuenberger, “Tension increase correlated to refractive-index change in fibers containing UV-written Bragg gratings,” Opt. Lett. 20, 1346–1348 (1995).
    [CrossRef] [PubMed]
  14. H. G. Limberger, P. Y. Fonjallaz, R. P. Salathe, and F. Cochet, “Compaction-and-photoelastic index changes in fiber Bragg gratings,” Appl. Phys. Lett. 68, 3069–3071 (1996).
    [CrossRef]
  15. D. C. Allan, C. Smith, N. F. Borrelli, and T. P. Seward III, “193-nm excimer-laser-induced densification of fused silica,” Opt. Lett. 21, 1960–1962 (1996).
    [CrossRef] [PubMed]
  16. N. F. Borrelli, C. Smith, D. C. Allan, and T. P. Seward III, “Densification of fused silica under 193-nm excitation,” J. Opt. Soc. Am. B 14, 1606–1615 (1997).
    [CrossRef]
  17. D. C. Allan, C. Smith, and N. F. Borrelli, “Measurement and analysis of compaction in fused silica,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, and M. J. Soileau, eds., Proc. SPIE 3578, 16–26 (1999).
    [CrossRef]
  18. K. W. Raine, R. Feced, S. E. Kanellopoulos, and V. A. Handerek, “Measurement of axial stress at high spatial resolution in ultraviolet-exposed fibers,” Appl. Opt. 38, 1086–1095 (1999).
    [CrossRef]
  19. J. Albert, K. O. Hill, D. C. Johnson, F. Bilodeau, S. J. Mihailov, N. F. Borrelli, and J. Amin, “Bragg gratings in defect-free germanium-doped fibers,” Opt. Lett. 25, 1266–1268 (1999).
    [CrossRef]

1999 (3)

D. C. Allan, C. Smith, and N. F. Borrelli, “Measurement and analysis of compaction in fused silica,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, and M. J. Soileau, eds., Proc. SPIE 3578, 16–26 (1999).
[CrossRef]

K. W. Raine, R. Feced, S. E. Kanellopoulos, and V. A. Handerek, “Measurement of axial stress at high spatial resolution in ultraviolet-exposed fibers,” Appl. Opt. 38, 1086–1095 (1999).
[CrossRef]

J. Albert, K. O. Hill, D. C. Johnson, F. Bilodeau, S. J. Mihailov, N. F. Borrelli, and J. Amin, “Bragg gratings in defect-free germanium-doped fibers,” Opt. Lett. 25, 1266–1268 (1999).
[CrossRef]

1997 (1)

1996 (2)

H. G. Limberger, P. Y. Fonjallaz, R. P. Salathe, and F. Cochet, “Compaction-and-photoelastic index changes in fiber Bragg gratings,” Appl. Phys. Lett. 68, 3069–3071 (1996).
[CrossRef]

D. C. Allan, C. Smith, N. F. Borrelli, and T. P. Seward III, “193-nm excimer-laser-induced densification of fused silica,” Opt. Lett. 21, 1960–1962 (1996).
[CrossRef] [PubMed]

1995 (3)

V. Marchenko, “Photoinduced transformations of oxygen-deficient centers,” Glass Phys. Chem. 21, 263–271 (1995).

B. Poumellec, P. Guenot, I. Riant, P. Sanonetti, P. Niay, P. Bernage, and J. F. Bayon, “UV induced densification during Bragg grating inscription in GeO2–SiO2 preforms,” Opt. Mater. 4, 441–449 (1995).
[CrossRef]

P. Y. Fonjallaz, H. G. Limberger, R. P. Salathe, F. Cochet, and B. Leuenberger, “Tension increase correlated to refractive-index change in fibers containing UV-written Bragg gratings,” Opt. Lett. 20, 1346–1348 (1995).
[CrossRef] [PubMed]

1993 (1)

R. M. Atkins, V. Mizrahi, and T. Erdogan, “248-nm induced vacuum UV spectral changes in optical fibre preform cores: support for a colour centre model of photosensitivity,” Electron. Lett. 29, 385–387 (1993).
[CrossRef]

1992 (1)

R. M. Atkins and V. Mizrahi, “Observation of changes in the UV absorption bands of single mode germanosilicate core optical fibers on writing and thermally erasing refractive index gratings,” Electron. Lett. 28, 1743–1744 (1992).
[CrossRef]

1991 (2)

K. D. Simmons, S. LaRochelle, V. Mizrahi, G. Stegeman, and D. L. Griscom, “Correlation of defect centers with a wavelength-dependent photosensitive response in germania-doped silica optical fibers,” Opt. Lett. 16, 141–143 (1991).
[CrossRef] [PubMed]

D. L. Williams, S. T. Davey, R. Kashyap, J. R. Armitage, and B. J. Ainsilie, “Ultraviolet absorption studies on photosensitive germanosilicate preforms and fibers,” Appl. Phys. Lett. 59, 762–764 (1991).
[CrossRef]

1990 (1)

K. O. Hill, B. Malo, D. C. Johnson, and F. Bilodeau, “A novel low-loss inline bimodal-fiber tap: waveguide-selective properties,” IEEE Photonics Technol. Lett. 2, 484–486 (1990).
[CrossRef]

1989 (2)

G. Meltz, W. W. Morey, and W. H. Glenn, “Formation of Bragg gratings in optical fibers by a transverse holographic method,” Opt. Lett. 14, 823–825 (1989).
[CrossRef] [PubMed]

V. B. Neustruev, E. M. Dianov, V. M. Kim, V. M. Mashinsky, M. V. Romanov, A. N. Guryanov, V. F. Khopin, and V. A. Tikhomirov, “Ultraviolet-radiation and γ-radiation-induced color centers in germanium-doped silica glass and fibers,” Fiber Integr. Opt. 8, 143–196 (1989).
[CrossRef]

1978 (1)

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter application,” Appl. Phys. Lett. 32, 647–648 (1978).
[CrossRef]

Ainsilie, B. J.

D. L. Williams, S. T. Davey, R. Kashyap, J. R. Armitage, and B. J. Ainsilie, “Ultraviolet absorption studies on photosensitive germanosilicate preforms and fibers,” Appl. Phys. Lett. 59, 762–764 (1991).
[CrossRef]

Albert, J.

J. Albert, K. O. Hill, D. C. Johnson, F. Bilodeau, S. J. Mihailov, N. F. Borrelli, and J. Amin, “Bragg gratings in defect-free germanium-doped fibers,” Opt. Lett. 25, 1266–1268 (1999).
[CrossRef]

Allan, D. C.

D. C. Allan, C. Smith, and N. F. Borrelli, “Measurement and analysis of compaction in fused silica,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, and M. J. Soileau, eds., Proc. SPIE 3578, 16–26 (1999).
[CrossRef]

N. F. Borrelli, C. Smith, D. C. Allan, and T. P. Seward III, “Densification of fused silica under 193-nm excitation,” J. Opt. Soc. Am. B 14, 1606–1615 (1997).
[CrossRef]

D. C. Allan, C. Smith, N. F. Borrelli, and T. P. Seward III, “193-nm excimer-laser-induced densification of fused silica,” Opt. Lett. 21, 1960–1962 (1996).
[CrossRef] [PubMed]

Amin, J.

J. Albert, K. O. Hill, D. C. Johnson, F. Bilodeau, S. J. Mihailov, N. F. Borrelli, and J. Amin, “Bragg gratings in defect-free germanium-doped fibers,” Opt. Lett. 25, 1266–1268 (1999).
[CrossRef]

Armitage, J. R.

D. L. Williams, S. T. Davey, R. Kashyap, J. R. Armitage, and B. J. Ainsilie, “Ultraviolet absorption studies on photosensitive germanosilicate preforms and fibers,” Appl. Phys. Lett. 59, 762–764 (1991).
[CrossRef]

Atkins, R. M.

R. M. Atkins, V. Mizrahi, and T. Erdogan, “248-nm induced vacuum UV spectral changes in optical fibre preform cores: support for a colour centre model of photosensitivity,” Electron. Lett. 29, 385–387 (1993).
[CrossRef]

R. M. Atkins and V. Mizrahi, “Observation of changes in the UV absorption bands of single mode germanosilicate core optical fibers on writing and thermally erasing refractive index gratings,” Electron. Lett. 28, 1743–1744 (1992).
[CrossRef]

Bayon, J. F.

B. Poumellec, P. Guenot, I. Riant, P. Sanonetti, P. Niay, P. Bernage, and J. F. Bayon, “UV induced densification during Bragg grating inscription in GeO2–SiO2 preforms,” Opt. Mater. 4, 441–449 (1995).
[CrossRef]

Bernage, P.

B. Poumellec, P. Guenot, I. Riant, P. Sanonetti, P. Niay, P. Bernage, and J. F. Bayon, “UV induced densification during Bragg grating inscription in GeO2–SiO2 preforms,” Opt. Mater. 4, 441–449 (1995).
[CrossRef]

Bilodeau, F.

J. Albert, K. O. Hill, D. C. Johnson, F. Bilodeau, S. J. Mihailov, N. F. Borrelli, and J. Amin, “Bragg gratings in defect-free germanium-doped fibers,” Opt. Lett. 25, 1266–1268 (1999).
[CrossRef]

K. O. Hill, B. Malo, D. C. Johnson, and F. Bilodeau, “A novel low-loss inline bimodal-fiber tap: waveguide-selective properties,” IEEE Photonics Technol. Lett. 2, 484–486 (1990).
[CrossRef]

Borrelli, N. F.

D. C. Allan, C. Smith, and N. F. Borrelli, “Measurement and analysis of compaction in fused silica,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, and M. J. Soileau, eds., Proc. SPIE 3578, 16–26 (1999).
[CrossRef]

J. Albert, K. O. Hill, D. C. Johnson, F. Bilodeau, S. J. Mihailov, N. F. Borrelli, and J. Amin, “Bragg gratings in defect-free germanium-doped fibers,” Opt. Lett. 25, 1266–1268 (1999).
[CrossRef]

N. F. Borrelli, C. Smith, D. C. Allan, and T. P. Seward III, “Densification of fused silica under 193-nm excitation,” J. Opt. Soc. Am. B 14, 1606–1615 (1997).
[CrossRef]

D. C. Allan, C. Smith, N. F. Borrelli, and T. P. Seward III, “193-nm excimer-laser-induced densification of fused silica,” Opt. Lett. 21, 1960–1962 (1996).
[CrossRef] [PubMed]

Cochet, F.

H. G. Limberger, P. Y. Fonjallaz, R. P. Salathe, and F. Cochet, “Compaction-and-photoelastic index changes in fiber Bragg gratings,” Appl. Phys. Lett. 68, 3069–3071 (1996).
[CrossRef]

P. Y. Fonjallaz, H. G. Limberger, R. P. Salathe, F. Cochet, and B. Leuenberger, “Tension increase correlated to refractive-index change in fibers containing UV-written Bragg gratings,” Opt. Lett. 20, 1346–1348 (1995).
[CrossRef] [PubMed]

Davey, S. T.

D. L. Williams, S. T. Davey, R. Kashyap, J. R. Armitage, and B. J. Ainsilie, “Ultraviolet absorption studies on photosensitive germanosilicate preforms and fibers,” Appl. Phys. Lett. 59, 762–764 (1991).
[CrossRef]

Dianov, E. M.

V. B. Neustruev, E. M. Dianov, V. M. Kim, V. M. Mashinsky, M. V. Romanov, A. N. Guryanov, V. F. Khopin, and V. A. Tikhomirov, “Ultraviolet-radiation and γ-radiation-induced color centers in germanium-doped silica glass and fibers,” Fiber Integr. Opt. 8, 143–196 (1989).
[CrossRef]

Erdogan, T.

R. M. Atkins, V. Mizrahi, and T. Erdogan, “248-nm induced vacuum UV spectral changes in optical fibre preform cores: support for a colour centre model of photosensitivity,” Electron. Lett. 29, 385–387 (1993).
[CrossRef]

Feced, R.

Fonjallaz, P. Y.

H. G. Limberger, P. Y. Fonjallaz, R. P. Salathe, and F. Cochet, “Compaction-and-photoelastic index changes in fiber Bragg gratings,” Appl. Phys. Lett. 68, 3069–3071 (1996).
[CrossRef]

P. Y. Fonjallaz, H. G. Limberger, R. P. Salathe, F. Cochet, and B. Leuenberger, “Tension increase correlated to refractive-index change in fibers containing UV-written Bragg gratings,” Opt. Lett. 20, 1346–1348 (1995).
[CrossRef] [PubMed]

Fujii, Y.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter application,” Appl. Phys. Lett. 32, 647–648 (1978).
[CrossRef]

Glenn, W. H.

Griscom, D. L.

Guenot, P.

B. Poumellec, P. Guenot, I. Riant, P. Sanonetti, P. Niay, P. Bernage, and J. F. Bayon, “UV induced densification during Bragg grating inscription in GeO2–SiO2 preforms,” Opt. Mater. 4, 441–449 (1995).
[CrossRef]

Guryanov, A. N.

V. B. Neustruev, E. M. Dianov, V. M. Kim, V. M. Mashinsky, M. V. Romanov, A. N. Guryanov, V. F. Khopin, and V. A. Tikhomirov, “Ultraviolet-radiation and γ-radiation-induced color centers in germanium-doped silica glass and fibers,” Fiber Integr. Opt. 8, 143–196 (1989).
[CrossRef]

Handerek, V. A.

Hill, K. O.

J. Albert, K. O. Hill, D. C. Johnson, F. Bilodeau, S. J. Mihailov, N. F. Borrelli, and J. Amin, “Bragg gratings in defect-free germanium-doped fibers,” Opt. Lett. 25, 1266–1268 (1999).
[CrossRef]

K. O. Hill, B. Malo, D. C. Johnson, and F. Bilodeau, “A novel low-loss inline bimodal-fiber tap: waveguide-selective properties,” IEEE Photonics Technol. Lett. 2, 484–486 (1990).
[CrossRef]

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter application,” Appl. Phys. Lett. 32, 647–648 (1978).
[CrossRef]

Johnson, D. C.

J. Albert, K. O. Hill, D. C. Johnson, F. Bilodeau, S. J. Mihailov, N. F. Borrelli, and J. Amin, “Bragg gratings in defect-free germanium-doped fibers,” Opt. Lett. 25, 1266–1268 (1999).
[CrossRef]

K. O. Hill, B. Malo, D. C. Johnson, and F. Bilodeau, “A novel low-loss inline bimodal-fiber tap: waveguide-selective properties,” IEEE Photonics Technol. Lett. 2, 484–486 (1990).
[CrossRef]

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter application,” Appl. Phys. Lett. 32, 647–648 (1978).
[CrossRef]

Kanellopoulos, S. E.

Kashyap, R.

D. L. Williams, S. T. Davey, R. Kashyap, J. R. Armitage, and B. J. Ainsilie, “Ultraviolet absorption studies on photosensitive germanosilicate preforms and fibers,” Appl. Phys. Lett. 59, 762–764 (1991).
[CrossRef]

Kawasaki, B. S.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter application,” Appl. Phys. Lett. 32, 647–648 (1978).
[CrossRef]

Khopin, V. F.

V. B. Neustruev, E. M. Dianov, V. M. Kim, V. M. Mashinsky, M. V. Romanov, A. N. Guryanov, V. F. Khopin, and V. A. Tikhomirov, “Ultraviolet-radiation and γ-radiation-induced color centers in germanium-doped silica glass and fibers,” Fiber Integr. Opt. 8, 143–196 (1989).
[CrossRef]

Kim, V. M.

V. B. Neustruev, E. M. Dianov, V. M. Kim, V. M. Mashinsky, M. V. Romanov, A. N. Guryanov, V. F. Khopin, and V. A. Tikhomirov, “Ultraviolet-radiation and γ-radiation-induced color centers in germanium-doped silica glass and fibers,” Fiber Integr. Opt. 8, 143–196 (1989).
[CrossRef]

LaRochelle, S.

Leuenberger, B.

Limberger, H. G.

H. G. Limberger, P. Y. Fonjallaz, R. P. Salathe, and F. Cochet, “Compaction-and-photoelastic index changes in fiber Bragg gratings,” Appl. Phys. Lett. 68, 3069–3071 (1996).
[CrossRef]

P. Y. Fonjallaz, H. G. Limberger, R. P. Salathe, F. Cochet, and B. Leuenberger, “Tension increase correlated to refractive-index change in fibers containing UV-written Bragg gratings,” Opt. Lett. 20, 1346–1348 (1995).
[CrossRef] [PubMed]

Malo, B.

K. O. Hill, B. Malo, D. C. Johnson, and F. Bilodeau, “A novel low-loss inline bimodal-fiber tap: waveguide-selective properties,” IEEE Photonics Technol. Lett. 2, 484–486 (1990).
[CrossRef]

Marchenko, V.

V. Marchenko, “Photoinduced transformations of oxygen-deficient centers,” Glass Phys. Chem. 21, 263–271 (1995).

Mashinsky, V. M.

V. B. Neustruev, E. M. Dianov, V. M. Kim, V. M. Mashinsky, M. V. Romanov, A. N. Guryanov, V. F. Khopin, and V. A. Tikhomirov, “Ultraviolet-radiation and γ-radiation-induced color centers in germanium-doped silica glass and fibers,” Fiber Integr. Opt. 8, 143–196 (1989).
[CrossRef]

Meltz, G.

Mihailov, S. J.

J. Albert, K. O. Hill, D. C. Johnson, F. Bilodeau, S. J. Mihailov, N. F. Borrelli, and J. Amin, “Bragg gratings in defect-free germanium-doped fibers,” Opt. Lett. 25, 1266–1268 (1999).
[CrossRef]

Mizrahi, V.

R. M. Atkins, V. Mizrahi, and T. Erdogan, “248-nm induced vacuum UV spectral changes in optical fibre preform cores: support for a colour centre model of photosensitivity,” Electron. Lett. 29, 385–387 (1993).
[CrossRef]

R. M. Atkins and V. Mizrahi, “Observation of changes in the UV absorption bands of single mode germanosilicate core optical fibers on writing and thermally erasing refractive index gratings,” Electron. Lett. 28, 1743–1744 (1992).
[CrossRef]

K. D. Simmons, S. LaRochelle, V. Mizrahi, G. Stegeman, and D. L. Griscom, “Correlation of defect centers with a wavelength-dependent photosensitive response in germania-doped silica optical fibers,” Opt. Lett. 16, 141–143 (1991).
[CrossRef] [PubMed]

Morey, W. W.

Neustruev, V. B.

V. B. Neustruev, E. M. Dianov, V. M. Kim, V. M. Mashinsky, M. V. Romanov, A. N. Guryanov, V. F. Khopin, and V. A. Tikhomirov, “Ultraviolet-radiation and γ-radiation-induced color centers in germanium-doped silica glass and fibers,” Fiber Integr. Opt. 8, 143–196 (1989).
[CrossRef]

Niay, P.

B. Poumellec, P. Guenot, I. Riant, P. Sanonetti, P. Niay, P. Bernage, and J. F. Bayon, “UV induced densification during Bragg grating inscription in GeO2–SiO2 preforms,” Opt. Mater. 4, 441–449 (1995).
[CrossRef]

Poumellec, B.

B. Poumellec, P. Guenot, I. Riant, P. Sanonetti, P. Niay, P. Bernage, and J. F. Bayon, “UV induced densification during Bragg grating inscription in GeO2–SiO2 preforms,” Opt. Mater. 4, 441–449 (1995).
[CrossRef]

Raine, K. W.

Riant, I.

B. Poumellec, P. Guenot, I. Riant, P. Sanonetti, P. Niay, P. Bernage, and J. F. Bayon, “UV induced densification during Bragg grating inscription in GeO2–SiO2 preforms,” Opt. Mater. 4, 441–449 (1995).
[CrossRef]

Romanov, M. V.

V. B. Neustruev, E. M. Dianov, V. M. Kim, V. M. Mashinsky, M. V. Romanov, A. N. Guryanov, V. F. Khopin, and V. A. Tikhomirov, “Ultraviolet-radiation and γ-radiation-induced color centers in germanium-doped silica glass and fibers,” Fiber Integr. Opt. 8, 143–196 (1989).
[CrossRef]

Salathe, R. P.

H. G. Limberger, P. Y. Fonjallaz, R. P. Salathe, and F. Cochet, “Compaction-and-photoelastic index changes in fiber Bragg gratings,” Appl. Phys. Lett. 68, 3069–3071 (1996).
[CrossRef]

P. Y. Fonjallaz, H. G. Limberger, R. P. Salathe, F. Cochet, and B. Leuenberger, “Tension increase correlated to refractive-index change in fibers containing UV-written Bragg gratings,” Opt. Lett. 20, 1346–1348 (1995).
[CrossRef] [PubMed]

Sanonetti, P.

B. Poumellec, P. Guenot, I. Riant, P. Sanonetti, P. Niay, P. Bernage, and J. F. Bayon, “UV induced densification during Bragg grating inscription in GeO2–SiO2 preforms,” Opt. Mater. 4, 441–449 (1995).
[CrossRef]

Seward III, T. P.

Simmons, K. D.

Smith, C.

D. C. Allan, C. Smith, and N. F. Borrelli, “Measurement and analysis of compaction in fused silica,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, and M. J. Soileau, eds., Proc. SPIE 3578, 16–26 (1999).
[CrossRef]

N. F. Borrelli, C. Smith, D. C. Allan, and T. P. Seward III, “Densification of fused silica under 193-nm excitation,” J. Opt. Soc. Am. B 14, 1606–1615 (1997).
[CrossRef]

D. C. Allan, C. Smith, N. F. Borrelli, and T. P. Seward III, “193-nm excimer-laser-induced densification of fused silica,” Opt. Lett. 21, 1960–1962 (1996).
[CrossRef] [PubMed]

Stegeman, G.

Tikhomirov, V. A.

V. B. Neustruev, E. M. Dianov, V. M. Kim, V. M. Mashinsky, M. V. Romanov, A. N. Guryanov, V. F. Khopin, and V. A. Tikhomirov, “Ultraviolet-radiation and γ-radiation-induced color centers in germanium-doped silica glass and fibers,” Fiber Integr. Opt. 8, 143–196 (1989).
[CrossRef]

Williams, D. L.

D. L. Williams, S. T. Davey, R. Kashyap, J. R. Armitage, and B. J. Ainsilie, “Ultraviolet absorption studies on photosensitive germanosilicate preforms and fibers,” Appl. Phys. Lett. 59, 762–764 (1991).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

D. L. Williams, S. T. Davey, R. Kashyap, J. R. Armitage, and B. J. Ainsilie, “Ultraviolet absorption studies on photosensitive germanosilicate preforms and fibers,” Appl. Phys. Lett. 59, 762–764 (1991).
[CrossRef]

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter application,” Appl. Phys. Lett. 32, 647–648 (1978).
[CrossRef]

H. G. Limberger, P. Y. Fonjallaz, R. P. Salathe, and F. Cochet, “Compaction-and-photoelastic index changes in fiber Bragg gratings,” Appl. Phys. Lett. 68, 3069–3071 (1996).
[CrossRef]

Electron. Lett. (2)

R. M. Atkins and V. Mizrahi, “Observation of changes in the UV absorption bands of single mode germanosilicate core optical fibers on writing and thermally erasing refractive index gratings,” Electron. Lett. 28, 1743–1744 (1992).
[CrossRef]

R. M. Atkins, V. Mizrahi, and T. Erdogan, “248-nm induced vacuum UV spectral changes in optical fibre preform cores: support for a colour centre model of photosensitivity,” Electron. Lett. 29, 385–387 (1993).
[CrossRef]

Fiber Integr. Opt. (1)

V. B. Neustruev, E. M. Dianov, V. M. Kim, V. M. Mashinsky, M. V. Romanov, A. N. Guryanov, V. F. Khopin, and V. A. Tikhomirov, “Ultraviolet-radiation and γ-radiation-induced color centers in germanium-doped silica glass and fibers,” Fiber Integr. Opt. 8, 143–196 (1989).
[CrossRef]

Glass Phys. Chem. (1)

V. Marchenko, “Photoinduced transformations of oxygen-deficient centers,” Glass Phys. Chem. 21, 263–271 (1995).

IEEE Photonics Technol. Lett. (1)

K. O. Hill, B. Malo, D. C. Johnson, and F. Bilodeau, “A novel low-loss inline bimodal-fiber tap: waveguide-selective properties,” IEEE Photonics Technol. Lett. 2, 484–486 (1990).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (5)

Opt. Mater. (1)

B. Poumellec, P. Guenot, I. Riant, P. Sanonetti, P. Niay, P. Bernage, and J. F. Bayon, “UV induced densification during Bragg grating inscription in GeO2–SiO2 preforms,” Opt. Mater. 4, 441–449 (1995).
[CrossRef]

Proc. SPIE (1)

D. C. Allan, C. Smith, and N. F. Borrelli, “Measurement and analysis of compaction in fused silica,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, and M. J. Soileau, eds., Proc. SPIE 3578, 16–26 (1999).
[CrossRef]

Other (2)

N. F. Borrelli, R. A. Modavis, and J. W. H. Schreurs, “Photo-effects in SiO2–GeO2 waveguides,” Integrated Photonics Research, Vol. 10 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), p. 326.

M. G. Sceats and S. B. Poole, “Stress-relief: the mechanism of photorefractive index control in fiber cores,” presented at the Sixteenth Australian Conference on Optical Fiber Technology, Adelaide, Australia, 302–305, 1991.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Initial absorbance versus wavelength for the silica–germania sample used in the densification study, labeled undamaged, and that measured after the exposure, labeled damaged. The sample thickness was 4.78 mm.

Fig. 2
Fig. 2

Representation of the exposure. An excimer beam, Gaussian in the direction shown, is apertured and incident upon the sample. The drawing is an actual interferometric depiction of the surface deformation induced by the exposure.

Fig. 3
Fig. 3

(a) Interferometric measure of the surface deformation measured in 633-nm waves after 50×106 pulses at 36 mJ/cm2. (b) The surface distortion in 633-nm waves as a function of the number of pulses. Inset, comparison with silica.

Fig. 4
Fig. 4

Unconstrained densification Δρ/ρ versus exposure dose for 248-nm exposure of 14GeO2:86SiO2 glass. The dose is NE2/τ, where N is the number of pulses in millions, E is the peak fluence in millijoules per square centimeter, and τ is the pulse width in nanoseconds. Two different exposure fluences are contained in this data set to establish the reciprocity. Dashed line, the same correlation for pure silica (negligible densification on this scale). The power-law fit through the data points is Δρ/ρ=0.28(dose)1.08.

Fig. 5
Fig. 5

Computed results from finite-element analysis of the refractive index and the volume change ΔV/V as a function of the exposure corresponding to an unconstrained densification of 1 ppm. (a) The situation for a short-period grating. Dotted curve, the computed refractive index; dashed curve and solid curve, the initial input volume contraction and the corresponding equilibrium value, respectively. (b) The same thing for a long-period grating geometry.

Fig. 6
Fig. 6

(a) Measured reflection and (b) transmission of a fiber Bragg grating made in the fiber corresponding to the blank for which the densification was measured. The exposure was 100 mJ/cm2 at 10 Hz for 15 min. The calculated modulated index change was 0.4×10-4, whereas the total index change measured from the reflection wavelength shift was 0.82×10-4.

Fig. 7
Fig. 7

Measured absorption curve of waveguide blank from which grating was subsequently made. The absorption feature at 240 nm is associated with the oxygen-deficient center. Also shown is the spectrum after the blank was exposed, with an exposure equivalent to that used in making the grating.

Fig. 8
Fig. 8

Finite-element-calculated results for stresses, index change, and volume change corresponding to densification. (a) Axial variation of the radial, hoop, and axial stresses located in the core of the fiber for the long-period geometry. The hoop and the radial stresses are equal near the end of the grating as shown. (b) Radial variation of the initial and equilibrium volumes, and the change of refractive index, for the long-period geometry. (c) Radial variation of the initial and equilibrium volumes, and the change of the refractive index, for the short-period grating.

Fig. 10
Fig. 10

Unconstrained densification Δρ/ρ versus exposure dose for a 193-nm exposure of 14GeO2:86SiO2 glass. The dose is NE2/τ, where N is the number of pulses in millions, E is peak fluence in millijoules per square centimeter, and τ is the pulse width in nanoseconds. The power-law fit through the data points is Δρ/ρ=27(dose)0.70. These results are obtained with reflection interferometry and a finite-element photoelastic model. A transmission of ∼10% through a 5-mm thickness is accounted for in the finite-element model.

Fig. 9
Fig. 9

Prediction of the average induced refractive-index contribution from pure densification with a 248-nm exposure as a function of total exposure for two different peak fluences. Similar results for 193-nm exposures (two higher curves) are also presented. A nominal pulse width of τ=30 ns is used for the comparison.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Dose=I2t=E2N/τ.
τ=|I(t)d t|2I(t)2d t.
Δρρ(10-6)=0.28E2Nτ1.08.
Δn=-(n3/2)(p11+2p12),

Metrics