Abstract

The design, optimization, and performance of a narrow-bandwidth high-repetition-rate singly resonant picosecond optical parametric oscillator, based on a noncritical phase-matched lithium triborate crystal and synchronously pumped by the second harmonic of a mode-locked Nd:YLF laser, is described. The spectral bandwidth of the signal output is reduced with an intracavity birefringent filter to 0.06 nm. Furthermore, the filter allowed fast scanning of the output wavelength within the phase-matching bandwidth. A maximum average signal output of 1.6 W in pulses with a duration of 22 ps was obtained when the optical parametric oscillator was pumped four times above threshold with a 4-W pump source. With the present mirror set the signal and the idler wavelengths were tunable from, respectively, 740 to 930 nm and 1220 to 1830 nm. The total external power conversion efficiency was better than 55%.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Murray and I. A. Cowe, eds., Making Light Work: Advances in Near Infrared, Spectroscopy (VCH, Deefield Beach, Fla., 1992).
  2. T. Sueta and T. Okoshi, eds., Ultrafast and Ultra-parallel Optoelectronics (Wiley, New York, 1995).
  3. W. Koechner, Solid-State Laser Engineering, 4th ed. (Springer-Verlag, Berlin, 1996), p. 68.
  4. R. L. Byer and R. L. Herbst, “Parametric oscillation and mixing,” in Nonlinear Infrared Generation, Y. R. Shen, ed., Vol. 16 of Topics in Applied Physics (Springer-Verlag, Berlin, 1977), p. 81.
    [CrossRef]
  5. V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer-Verlag, Berlin, 1991), Vol. 64, p. 181.
  6. D. C. Edelstein, E. S. Wachman, and C. L. Tang, “Broadly tunable high repetition rate femtosecond parametric oscillator,” Appl. Phys. Lett. 54, 1728 (1989).
    [CrossRef]
  7. H. M. van Driel, “Synchronously pumped optical parametric oscillators,” Appl. Phys. B: Photophys. Laser Chem. 60, 411 (1995).
    [CrossRef]
  8. M. J. McCarthy and D. C. Hanna, “All-solid-state synchronously pumped optical parametric oscillator,” J. Opt. Soc. Am. B 10, 2180 (1993).
    [CrossRef]
  9. D. T. Reid, M. Ebrahimzadeh, and W. Sibbet, “Design criteria and comparison of femtosecond optical parametric oscillators based on KTiOPO4 and RbTiOAsO4,” J. Opt. Soc. Am. B 12, 2168 (1995).
    [CrossRef]
  10. T. J. Driscoll, G. M. Gale, and F. Hache, “Ti:sapphire second-harmonic-pumped visible femtosecond optical parametric oscillator,” Opt. Commun. 110, 638 (1994).
    [CrossRef]
  11. M. Ebrahimzadeh, S. French, and A. Miller, “Design and performance of a singly resonant picosecond LiB3O5 optical parametric oscillator synchronously pumped by a self-mode-locked Ti:sapphire laser,” J. Opt. Soc. Am. B 12, 2180 (1995).
    [CrossRef]
  12. S. D. Butterworth, S. Girard, and D. C. Hanna, “High power, broadly tunable all-solid-state synchronously pumped lithium triborate optical parametric oscillator,” J. Opt. Soc. Am. B 12, 2158 (1995).
    [CrossRef]
  13. J. D. Kafka, M. L. Watts, and J. W. Pieterse, “Synchronously pumped optical parametric oscillator with LBO,” J. Opt. Soc. Am. B 12, 2147 (1995).
    [CrossRef]
  14. A. Robertson and A. I. Ferguson, “Synchronously pumped all-solid-state lithium triborate optical parametric oscillator in a ring configuration,” Opt. Lett. 19, 117 (1994).
    [CrossRef] [PubMed]
  15. H. Zhou, J. Zhang, T. Chen, C. Chen, and Y. R. Shen, “Picosecond, narrow-band, widely tunable optical parametric oscillator using a temperature tuned lithium borate crystal,” Appl. Phys. Lett. 62, 1457 (1993).
    [CrossRef]
  16. Ch. Grässer, D. Wang, R. Beigang, and R. Wallenstein, “Singly resonant optical parametric oscillator of KTiOPO4 synchronously pumped by the radiation of a continuous-wave mode-locked Nd:YLF laser,” J. Opt. Soc. Am. B 10, 2218 (1993).
    [CrossRef]
  17. D. Wang, Ch. Grässer, R. Beigang, and R. Wallenstein, “The generation of tunable blue ps-light-pulses from a cw mode-locked LBO optical parametric oscillator,” Opt. Commun. 138, 87 (1997).
    [CrossRef]
  18. Data sheet lithium triborate (LBO) crystal, Castech-Phoenix, Inc. (Casix), Fuzhou, Fujian 350014, China.
  19. K. Kato, “Temperature-tuned 90° phase-matching properties of LiB3O5,” IEEE J. Quantum Electron. QE-30, 2950 (1994).
    [CrossRef]
  20. H. W. Kogelnik, E. P. Ippen, A. Dienes, and C. V. Shank, “Astigmatically compensated cavities for cw dye lasers,” IEEE J. Quantum Electron. QE-8, 373 (1972).
    [CrossRef]
  21. S. Guha, F. Wu, and J. Falk, “The effect of focusing on parametric oscillation,” IEEE J. Quantum Electron. QE-18, 907 (1982).
    [CrossRef]
  22. T. W. Tukker, C. Otto, and J. Greve, “Elliptical-focusing effect on parametric oscillation and downconversion,” J. Opt. Soc. Am. B 15, 2453 (1998). Note that calculations were presented for downconversion processes. The crystal lengths were 50 mm and 15 mm for, respectively, LiNbO3 and AgGaS2.
    [CrossRef]
  23. J. E. Bjorkholm, “Some effects of spatially nonuniform pumping in pulsed optical parametric oscillators,” IEEE J. Quantum Electron. QE-7, 109 (1971).
    [CrossRef]
  24. M. F. Becker, D. J. Kuizenga, D. W. Phillion, and A. E. Siegman, “Analytical expressions for ultrashort pulse generation in mode-locked optical parametric oscillators,” J. Appl. Phys. 45, 3996 (1974).
    [CrossRef]
  25. E. C. Cheung and J. M. Liu, “Theory of a synchronously pumped optical parametric oscillator in steady-state operation,” J. Opt. Soc. Am. B 7, 1385 (1990).
    [CrossRef]
  26. A. Laubereau, “Optical nonlinearities with ultrashort pulses,” in Ultrashort Laser Pulses Generation and Applications, 2nd ed., W. Kaiser, ed. (Springer-Verlag, New York, 1993), Vol. 60, p. 57.
  27. R. L. Zagone and W. M. Hetherington III, “Four-plate birefringent filter for high-gain pulsed dye laser tuning,” Appl. Opt. 35, 624 (1996).
    [CrossRef] [PubMed]
  28. G. Holtom and O. Teschke, “Design of a birefringent filter for high-power dye lasers,” IEEE J. Quantum Electron. QE-10, 577 (1974).
    [CrossRef]
  29. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984), p. 131.

1998 (1)

T. W. Tukker, C. Otto, and J. Greve, “Elliptical-focusing effect on parametric oscillation and downconversion,” J. Opt. Soc. Am. B 15, 2453 (1998). Note that calculations were presented for downconversion processes. The crystal lengths were 50 mm and 15 mm for, respectively, LiNbO3 and AgGaS2.
[CrossRef]

1997 (1)

D. Wang, Ch. Grässer, R. Beigang, and R. Wallenstein, “The generation of tunable blue ps-light-pulses from a cw mode-locked LBO optical parametric oscillator,” Opt. Commun. 138, 87 (1997).
[CrossRef]

1996 (1)

1995 (5)

1994 (3)

A. Robertson and A. I. Ferguson, “Synchronously pumped all-solid-state lithium triborate optical parametric oscillator in a ring configuration,” Opt. Lett. 19, 117 (1994).
[CrossRef] [PubMed]

T. J. Driscoll, G. M. Gale, and F. Hache, “Ti:sapphire second-harmonic-pumped visible femtosecond optical parametric oscillator,” Opt. Commun. 110, 638 (1994).
[CrossRef]

K. Kato, “Temperature-tuned 90° phase-matching properties of LiB3O5,” IEEE J. Quantum Electron. QE-30, 2950 (1994).
[CrossRef]

1993 (3)

1990 (1)

1989 (1)

D. C. Edelstein, E. S. Wachman, and C. L. Tang, “Broadly tunable high repetition rate femtosecond parametric oscillator,” Appl. Phys. Lett. 54, 1728 (1989).
[CrossRef]

1982 (1)

S. Guha, F. Wu, and J. Falk, “The effect of focusing on parametric oscillation,” IEEE J. Quantum Electron. QE-18, 907 (1982).
[CrossRef]

1974 (2)

M. F. Becker, D. J. Kuizenga, D. W. Phillion, and A. E. Siegman, “Analytical expressions for ultrashort pulse generation in mode-locked optical parametric oscillators,” J. Appl. Phys. 45, 3996 (1974).
[CrossRef]

G. Holtom and O. Teschke, “Design of a birefringent filter for high-power dye lasers,” IEEE J. Quantum Electron. QE-10, 577 (1974).
[CrossRef]

1972 (1)

H. W. Kogelnik, E. P. Ippen, A. Dienes, and C. V. Shank, “Astigmatically compensated cavities for cw dye lasers,” IEEE J. Quantum Electron. QE-8, 373 (1972).
[CrossRef]

1971 (1)

J. E. Bjorkholm, “Some effects of spatially nonuniform pumping in pulsed optical parametric oscillators,” IEEE J. Quantum Electron. QE-7, 109 (1971).
[CrossRef]

Becker, M. F.

M. F. Becker, D. J. Kuizenga, D. W. Phillion, and A. E. Siegman, “Analytical expressions for ultrashort pulse generation in mode-locked optical parametric oscillators,” J. Appl. Phys. 45, 3996 (1974).
[CrossRef]

Beigang, R.

D. Wang, Ch. Grässer, R. Beigang, and R. Wallenstein, “The generation of tunable blue ps-light-pulses from a cw mode-locked LBO optical parametric oscillator,” Opt. Commun. 138, 87 (1997).
[CrossRef]

Ch. Grässer, D. Wang, R. Beigang, and R. Wallenstein, “Singly resonant optical parametric oscillator of KTiOPO4 synchronously pumped by the radiation of a continuous-wave mode-locked Nd:YLF laser,” J. Opt. Soc. Am. B 10, 2218 (1993).
[CrossRef]

Bjorkholm, J. E.

J. E. Bjorkholm, “Some effects of spatially nonuniform pumping in pulsed optical parametric oscillators,” IEEE J. Quantum Electron. QE-7, 109 (1971).
[CrossRef]

Butterworth, S. D.

Chen, C.

H. Zhou, J. Zhang, T. Chen, C. Chen, and Y. R. Shen, “Picosecond, narrow-band, widely tunable optical parametric oscillator using a temperature tuned lithium borate crystal,” Appl. Phys. Lett. 62, 1457 (1993).
[CrossRef]

Chen, T.

H. Zhou, J. Zhang, T. Chen, C. Chen, and Y. R. Shen, “Picosecond, narrow-band, widely tunable optical parametric oscillator using a temperature tuned lithium borate crystal,” Appl. Phys. Lett. 62, 1457 (1993).
[CrossRef]

Cheung, E. C.

Dienes, A.

H. W. Kogelnik, E. P. Ippen, A. Dienes, and C. V. Shank, “Astigmatically compensated cavities for cw dye lasers,” IEEE J. Quantum Electron. QE-8, 373 (1972).
[CrossRef]

Driscoll, T. J.

T. J. Driscoll, G. M. Gale, and F. Hache, “Ti:sapphire second-harmonic-pumped visible femtosecond optical parametric oscillator,” Opt. Commun. 110, 638 (1994).
[CrossRef]

Ebrahimzadeh, M.

Edelstein, D. C.

D. C. Edelstein, E. S. Wachman, and C. L. Tang, “Broadly tunable high repetition rate femtosecond parametric oscillator,” Appl. Phys. Lett. 54, 1728 (1989).
[CrossRef]

Falk, J.

S. Guha, F. Wu, and J. Falk, “The effect of focusing on parametric oscillation,” IEEE J. Quantum Electron. QE-18, 907 (1982).
[CrossRef]

Ferguson, A. I.

French, S.

Gale, G. M.

T. J. Driscoll, G. M. Gale, and F. Hache, “Ti:sapphire second-harmonic-pumped visible femtosecond optical parametric oscillator,” Opt. Commun. 110, 638 (1994).
[CrossRef]

Girard, S.

Grässer, Ch.

D. Wang, Ch. Grässer, R. Beigang, and R. Wallenstein, “The generation of tunable blue ps-light-pulses from a cw mode-locked LBO optical parametric oscillator,” Opt. Commun. 138, 87 (1997).
[CrossRef]

Ch. Grässer, D. Wang, R. Beigang, and R. Wallenstein, “Singly resonant optical parametric oscillator of KTiOPO4 synchronously pumped by the radiation of a continuous-wave mode-locked Nd:YLF laser,” J. Opt. Soc. Am. B 10, 2218 (1993).
[CrossRef]

Greve, J.

T. W. Tukker, C. Otto, and J. Greve, “Elliptical-focusing effect on parametric oscillation and downconversion,” J. Opt. Soc. Am. B 15, 2453 (1998). Note that calculations were presented for downconversion processes. The crystal lengths were 50 mm and 15 mm for, respectively, LiNbO3 and AgGaS2.
[CrossRef]

Guha, S.

S. Guha, F. Wu, and J. Falk, “The effect of focusing on parametric oscillation,” IEEE J. Quantum Electron. QE-18, 907 (1982).
[CrossRef]

Hache, F.

T. J. Driscoll, G. M. Gale, and F. Hache, “Ti:sapphire second-harmonic-pumped visible femtosecond optical parametric oscillator,” Opt. Commun. 110, 638 (1994).
[CrossRef]

Hanna, D. C.

Hetherington III, W. M.

Holtom, G.

G. Holtom and O. Teschke, “Design of a birefringent filter for high-power dye lasers,” IEEE J. Quantum Electron. QE-10, 577 (1974).
[CrossRef]

Ippen, E. P.

H. W. Kogelnik, E. P. Ippen, A. Dienes, and C. V. Shank, “Astigmatically compensated cavities for cw dye lasers,” IEEE J. Quantum Electron. QE-8, 373 (1972).
[CrossRef]

Kafka, J. D.

Kato, K.

K. Kato, “Temperature-tuned 90° phase-matching properties of LiB3O5,” IEEE J. Quantum Electron. QE-30, 2950 (1994).
[CrossRef]

Kogelnik, H. W.

H. W. Kogelnik, E. P. Ippen, A. Dienes, and C. V. Shank, “Astigmatically compensated cavities for cw dye lasers,” IEEE J. Quantum Electron. QE-8, 373 (1972).
[CrossRef]

Kuizenga, D. J.

M. F. Becker, D. J. Kuizenga, D. W. Phillion, and A. E. Siegman, “Analytical expressions for ultrashort pulse generation in mode-locked optical parametric oscillators,” J. Appl. Phys. 45, 3996 (1974).
[CrossRef]

Liu, J. M.

McCarthy, M. J.

Miller, A.

Otto, C.

T. W. Tukker, C. Otto, and J. Greve, “Elliptical-focusing effect on parametric oscillation and downconversion,” J. Opt. Soc. Am. B 15, 2453 (1998). Note that calculations were presented for downconversion processes. The crystal lengths were 50 mm and 15 mm for, respectively, LiNbO3 and AgGaS2.
[CrossRef]

Phillion, D. W.

M. F. Becker, D. J. Kuizenga, D. W. Phillion, and A. E. Siegman, “Analytical expressions for ultrashort pulse generation in mode-locked optical parametric oscillators,” J. Appl. Phys. 45, 3996 (1974).
[CrossRef]

Pieterse, J. W.

Reid, D. T.

Robertson, A.

Shank, C. V.

H. W. Kogelnik, E. P. Ippen, A. Dienes, and C. V. Shank, “Astigmatically compensated cavities for cw dye lasers,” IEEE J. Quantum Electron. QE-8, 373 (1972).
[CrossRef]

Shen, Y. R.

H. Zhou, J. Zhang, T. Chen, C. Chen, and Y. R. Shen, “Picosecond, narrow-band, widely tunable optical parametric oscillator using a temperature tuned lithium borate crystal,” Appl. Phys. Lett. 62, 1457 (1993).
[CrossRef]

Sibbet, W.

Siegman, A. E.

M. F. Becker, D. J. Kuizenga, D. W. Phillion, and A. E. Siegman, “Analytical expressions for ultrashort pulse generation in mode-locked optical parametric oscillators,” J. Appl. Phys. 45, 3996 (1974).
[CrossRef]

Tang, C. L.

D. C. Edelstein, E. S. Wachman, and C. L. Tang, “Broadly tunable high repetition rate femtosecond parametric oscillator,” Appl. Phys. Lett. 54, 1728 (1989).
[CrossRef]

Teschke, O.

G. Holtom and O. Teschke, “Design of a birefringent filter for high-power dye lasers,” IEEE J. Quantum Electron. QE-10, 577 (1974).
[CrossRef]

Tukker, T. W.

T. W. Tukker, C. Otto, and J. Greve, “Elliptical-focusing effect on parametric oscillation and downconversion,” J. Opt. Soc. Am. B 15, 2453 (1998). Note that calculations were presented for downconversion processes. The crystal lengths were 50 mm and 15 mm for, respectively, LiNbO3 and AgGaS2.
[CrossRef]

van Driel, H. M.

H. M. van Driel, “Synchronously pumped optical parametric oscillators,” Appl. Phys. B: Photophys. Laser Chem. 60, 411 (1995).
[CrossRef]

Wachman, E. S.

D. C. Edelstein, E. S. Wachman, and C. L. Tang, “Broadly tunable high repetition rate femtosecond parametric oscillator,” Appl. Phys. Lett. 54, 1728 (1989).
[CrossRef]

Wallenstein, R.

D. Wang, Ch. Grässer, R. Beigang, and R. Wallenstein, “The generation of tunable blue ps-light-pulses from a cw mode-locked LBO optical parametric oscillator,” Opt. Commun. 138, 87 (1997).
[CrossRef]

Ch. Grässer, D. Wang, R. Beigang, and R. Wallenstein, “Singly resonant optical parametric oscillator of KTiOPO4 synchronously pumped by the radiation of a continuous-wave mode-locked Nd:YLF laser,” J. Opt. Soc. Am. B 10, 2218 (1993).
[CrossRef]

Wang, D.

D. Wang, Ch. Grässer, R. Beigang, and R. Wallenstein, “The generation of tunable blue ps-light-pulses from a cw mode-locked LBO optical parametric oscillator,” Opt. Commun. 138, 87 (1997).
[CrossRef]

Ch. Grässer, D. Wang, R. Beigang, and R. Wallenstein, “Singly resonant optical parametric oscillator of KTiOPO4 synchronously pumped by the radiation of a continuous-wave mode-locked Nd:YLF laser,” J. Opt. Soc. Am. B 10, 2218 (1993).
[CrossRef]

Watts, M. L.

Wu, F.

S. Guha, F. Wu, and J. Falk, “The effect of focusing on parametric oscillation,” IEEE J. Quantum Electron. QE-18, 907 (1982).
[CrossRef]

Zagone, R. L.

Zhang, J.

H. Zhou, J. Zhang, T. Chen, C. Chen, and Y. R. Shen, “Picosecond, narrow-band, widely tunable optical parametric oscillator using a temperature tuned lithium borate crystal,” Appl. Phys. Lett. 62, 1457 (1993).
[CrossRef]

Zhou, H.

H. Zhou, J. Zhang, T. Chen, C. Chen, and Y. R. Shen, “Picosecond, narrow-band, widely tunable optical parametric oscillator using a temperature tuned lithium borate crystal,” Appl. Phys. Lett. 62, 1457 (1993).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B: Photophys. Laser Chem. (1)

H. M. van Driel, “Synchronously pumped optical parametric oscillators,” Appl. Phys. B: Photophys. Laser Chem. 60, 411 (1995).
[CrossRef]

Appl. Phys. Lett. (2)

H. Zhou, J. Zhang, T. Chen, C. Chen, and Y. R. Shen, “Picosecond, narrow-band, widely tunable optical parametric oscillator using a temperature tuned lithium borate crystal,” Appl. Phys. Lett. 62, 1457 (1993).
[CrossRef]

D. C. Edelstein, E. S. Wachman, and C. L. Tang, “Broadly tunable high repetition rate femtosecond parametric oscillator,” Appl. Phys. Lett. 54, 1728 (1989).
[CrossRef]

IEEE J. Quantum Electron. (5)

G. Holtom and O. Teschke, “Design of a birefringent filter for high-power dye lasers,” IEEE J. Quantum Electron. QE-10, 577 (1974).
[CrossRef]

K. Kato, “Temperature-tuned 90° phase-matching properties of LiB3O5,” IEEE J. Quantum Electron. QE-30, 2950 (1994).
[CrossRef]

H. W. Kogelnik, E. P. Ippen, A. Dienes, and C. V. Shank, “Astigmatically compensated cavities for cw dye lasers,” IEEE J. Quantum Electron. QE-8, 373 (1972).
[CrossRef]

S. Guha, F. Wu, and J. Falk, “The effect of focusing on parametric oscillation,” IEEE J. Quantum Electron. QE-18, 907 (1982).
[CrossRef]

J. E. Bjorkholm, “Some effects of spatially nonuniform pumping in pulsed optical parametric oscillators,” IEEE J. Quantum Electron. QE-7, 109 (1971).
[CrossRef]

J. Appl. Phys. (1)

M. F. Becker, D. J. Kuizenga, D. W. Phillion, and A. E. Siegman, “Analytical expressions for ultrashort pulse generation in mode-locked optical parametric oscillators,” J. Appl. Phys. 45, 3996 (1974).
[CrossRef]

J. Opt. Soc. Am. B (8)

E. C. Cheung and J. M. Liu, “Theory of a synchronously pumped optical parametric oscillator in steady-state operation,” J. Opt. Soc. Am. B 7, 1385 (1990).
[CrossRef]

T. W. Tukker, C. Otto, and J. Greve, “Elliptical-focusing effect on parametric oscillation and downconversion,” J. Opt. Soc. Am. B 15, 2453 (1998). Note that calculations were presented for downconversion processes. The crystal lengths were 50 mm and 15 mm for, respectively, LiNbO3 and AgGaS2.
[CrossRef]

Ch. Grässer, D. Wang, R. Beigang, and R. Wallenstein, “Singly resonant optical parametric oscillator of KTiOPO4 synchronously pumped by the radiation of a continuous-wave mode-locked Nd:YLF laser,” J. Opt. Soc. Am. B 10, 2218 (1993).
[CrossRef]

M. Ebrahimzadeh, S. French, and A. Miller, “Design and performance of a singly resonant picosecond LiB3O5 optical parametric oscillator synchronously pumped by a self-mode-locked Ti:sapphire laser,” J. Opt. Soc. Am. B 12, 2180 (1995).
[CrossRef]

S. D. Butterworth, S. Girard, and D. C. Hanna, “High power, broadly tunable all-solid-state synchronously pumped lithium triborate optical parametric oscillator,” J. Opt. Soc. Am. B 12, 2158 (1995).
[CrossRef]

J. D. Kafka, M. L. Watts, and J. W. Pieterse, “Synchronously pumped optical parametric oscillator with LBO,” J. Opt. Soc. Am. B 12, 2147 (1995).
[CrossRef]

M. J. McCarthy and D. C. Hanna, “All-solid-state synchronously pumped optical parametric oscillator,” J. Opt. Soc. Am. B 10, 2180 (1993).
[CrossRef]

D. T. Reid, M. Ebrahimzadeh, and W. Sibbet, “Design criteria and comparison of femtosecond optical parametric oscillators based on KTiOPO4 and RbTiOAsO4,” J. Opt. Soc. Am. B 12, 2168 (1995).
[CrossRef]

Opt. Commun. (2)

T. J. Driscoll, G. M. Gale, and F. Hache, “Ti:sapphire second-harmonic-pumped visible femtosecond optical parametric oscillator,” Opt. Commun. 110, 638 (1994).
[CrossRef]

D. Wang, Ch. Grässer, R. Beigang, and R. Wallenstein, “The generation of tunable blue ps-light-pulses from a cw mode-locked LBO optical parametric oscillator,” Opt. Commun. 138, 87 (1997).
[CrossRef]

Opt. Lett. (1)

Other (8)

Data sheet lithium triborate (LBO) crystal, Castech-Phoenix, Inc. (Casix), Fuzhou, Fujian 350014, China.

I. Murray and I. A. Cowe, eds., Making Light Work: Advances in Near Infrared, Spectroscopy (VCH, Deefield Beach, Fla., 1992).

T. Sueta and T. Okoshi, eds., Ultrafast and Ultra-parallel Optoelectronics (Wiley, New York, 1995).

W. Koechner, Solid-State Laser Engineering, 4th ed. (Springer-Verlag, Berlin, 1996), p. 68.

R. L. Byer and R. L. Herbst, “Parametric oscillation and mixing,” in Nonlinear Infrared Generation, Y. R. Shen, ed., Vol. 16 of Topics in Applied Physics (Springer-Verlag, Berlin, 1977), p. 81.
[CrossRef]

V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer-Verlag, Berlin, 1991), Vol. 64, p. 181.

A. Laubereau, “Optical nonlinearities with ultrashort pulses,” in Ultrashort Laser Pulses Generation and Applications, 2nd ed., W. Kaiser, ed. (Springer-Verlag, New York, 1993), Vol. 60, p. 57.

Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984), p. 131.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Calculated tuning curve obtained from the Sellmeier equations of Ref. 18 with the thermal coefficients from Kato,19 together with the experimental points of the noncritically phase-matched LBO OPO pumped at a wavelength of 527 nm.

Fig. 2
Fig. 2

Schematic of the narrow-bandwidth OPO. A 30-mm-long Brewster-angled LBO crystal is placed in an oven. The resonator is formed by two concave mirrors M1 (100-mm radius of curvature) and M2 (250-mm radius of curvature), two plane mirrors M3, M4, an output coupler (OC), and a birefringent filter (BR). A lens (200-mm focal length) focuses the second harmonic of a Nd:YLF laser in the LBO crystal.

Fig. 3
Fig. 3

Average signal power as a function of the pump power obtained with the 6% output coupler. The solid curve is the calculated signal output according to Ref. 23. The threshold of oscillation is 0.88 W.

Fig. 4
Fig. 4

Total conversion efficiency of the OPO as a function of the pumping power relative to the threshold for the different output couplers. The solid curve is the calculated OPO conversion efficiency for Gaussian-beam profiles as described in Ref. 23.

Fig. 5
Fig. 5

Average signal output power as function of the frequency for the OPO for the different output couplers. With the 9% output coupler, two different output couplers were used to cover the whole spectral range. The drawn curves are only to guide the eye.

Fig. 6
Fig. 6

(a) Intensity autocorrelation and (b) corresponding Fabry–Perot spectrum of the signal output at 792 nm obtained with the 6% output coupler. The deconvoluted pulse width is 23-ps FWHM, and the spectral bandwidth is 0.06-nm FWHM.

Fig. 7
Fig. 7

Calculated FWHM phase-matching bandwidth obtained from the Sellmeier equations of Ref. 18 as a function of the signal wavelength, together with the experimental points obtained by tuning of the birefringent filter only.

Tables (1)

Tables Icon

Table 1 Experimental Quantities of the Optical Parametric Oscillator for the Different Output-Coupler Transmissions

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Pp(lc)=Ppth+Pp(0)0ln[Pp(0)/Ppth]cos2[Γ(a)]exp(-a)da,
sinc2[Γ(a)]=PpthPp(0)exp(a).
Ps=1-Pp(lc)Pp(0)×λpumpλsignal×Tocloss+Toc×Pp(0),

Metrics