Abstract

A second-harmonic wave generated by an evanescent wave (SHEW) is used to measure the effective nonlinear coefficient of organic materials in powder form. The SHEW signal is less sensitive than the powder method to the phase-matching conditions of the material. For this reason, the SHEW technique can be used to survey a wide variety of samples. The effective nonlinear coefficient and the refractive indices of the sample are obtained as fitting parameters. The influence of experimental conditions on the fitting process is discussed. The results obtained from our powders are compared with the nonlinear coefficients of the same materials in bulk crystal form. Good agreement is found between experimental results and literature values.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Sottini, D. Grando, L. Palchetti, E. Ricceri, and G. Gabrielli, “Organic films for guided nonlinear optics,” Mater. Sci. Eng. C 5, 167 (1998).
  2. E. Van Tomme, P. P. Van Daele, R. G. Baets, and P. E. Lagasse, “Integrated optics devices based on nonlinear optical polymers,” IEEE J. Quantum Electron. 27, 778 (1991).
    [CrossRef]
  3. S. Dirr, A. Bohler, S. Wiess, H. H. Johannes, and W. Kowalsky, “Organic light emitting diodes with reduced spectral and spatial halfwidths,” Jpn. J. Appl. Phys., Part 1 37, 1457 (1998).
    [CrossRef]
  4. X. Zhu, Y. M. Chen, M. Kamath, R. J. Jeng, J. Kumar, and S. K. Tripathy, “Efficient Cerenkov second harmonic generation crosslinked poled polymer waveguides,” Nonlinear Opt. 4, 175 (1993).
  5. D. Y. Chen, N. Okamoto, T. Sasaki, S. Tasaka, and R. Matsushima, “2nd harmonic-generation from mixtures of organic nonlinear materials MNA and PNA,” IEIC Trans. Commun. Electron. Inf. Sys. 74, 946 (1991).
  6. J. Jerphagnon and S. K. Kurtz, “Maker fringes: a detailed comparison of theory and experiment for isotropic and uniaxial crystals,” J. Appl. Phys. 41, 1667 (1970).
    [CrossRef]
  7. S. K. Kurtz and T. T. Perry, “A powder technique for the evaluation of nonlinear optical materials,” J. Appl. Phys. 39, 3798 (1968).
    [CrossRef]
  8. M. Kiguchi, M. Kato, N. Kumegawa, and Y. Taniguchi, “Technique for evaluating second-order nonlinear optical materials in powder form,” J. Appl. Phys. 75, 4432 (1994).
    [CrossRef]
  9. M. Kiguchi, M. Kato, N. Kumegawa, and Y. Taniguchi, “A new measurement of second harmonic generation efficiency,” Mol. Cryst. Liq. Cryst. 227, 133 (1993).
    [CrossRef]
  10. M. Kiguchi, M. Kato, M. Okunaka, and Y. Taniguchi, “New method of measuring second harmonic generation efficiency using powder crystals,” Appl. Phys. Lett. 60, 1933 (1992).
    [CrossRef]
  11. M. Kiguchi, M. Kato, N. Kumegawa, M. Okunaka, and Y. Taniguchi, “Simple evaluation for second-order nonlinear optical materials in powder form,” Nonlinear Opt. 9, 223 (1995).
  12. J. Kawamata, K. Inoue, T. Inabe, M. Kiguchi, M. Kato, and Y. Taniguchi, “Large second-harmonic generation coefficients of bis(benzylidene)cycloalkanones estimated by the second-harmonic wave generated with the evanescent wave technique,” Chem. Phys. Lett. 249, 29 (1996).
    [CrossRef]
  13. N. Bloembergen and P. S. Pershan, “Light waves at the boundary of nonlinear media,” Phys. Rev. 128, 606 (1962).
    [CrossRef]
  14. J. Zyss, J. F. Nicoud, and M. Coquillay, “Chirality and hydrogen bonding in molecular crystals for phase-matched second-harmonic generation: N-(4-nitrophenyl)-(L)-prolinol (NPP),” J. Chem. Phys. 81, 4160 (1984).
    [CrossRef]
  15. M. Kiguchi, “Comparison of error properties of techniques used for measuring second-order nonlinear optical coefficients with least-squares fitting,” J. Opt. Soc. Am. B 12, 871 (1995).
    [CrossRef]
  16. R. L. Sutherland, Handbook of Nonlinear Optics (Marcel Dekker, New York, 1988).
  17. J. Zyss, D. S. Chemla, and J. F. Nicoud, “Demonstration of efficient nonlinear optical crystals with vanishing molecular dipole moment: second harmonic generation in 3-methyl-4-nitropyridine-1-oxide,” J. Chem. Phys. 74, 4800 (1981).
    [CrossRef]
  18. J. D. Bierlein, L. K. Cheng, Y. Wang, and W. Tam, “Linear and nonlinear optical properties of 3-methyl-4-methoxy-4-nitrostilbene single crystals,” Appl. Phys. Lett. 56, 423 (1990).
    [CrossRef]
  19. P. V. Vidakovic, M. Coquillay, and F. Salin, “N-(4-nitrophenyl)-N-methylamino-acetonitrile: a new organic material for efficient second harmonic generation in bulk and waveguide configurations: I. Growth, crystal structure, and characterization of organic crystal-cored fibers,” J. Opt. Soc. Am. B 4, 998 (1987).
    [CrossRef]

1998 (1)

S. Dirr, A. Bohler, S. Wiess, H. H. Johannes, and W. Kowalsky, “Organic light emitting diodes with reduced spectral and spatial halfwidths,” Jpn. J. Appl. Phys., Part 1 37, 1457 (1998).
[CrossRef]

1996 (1)

J. Kawamata, K. Inoue, T. Inabe, M. Kiguchi, M. Kato, and Y. Taniguchi, “Large second-harmonic generation coefficients of bis(benzylidene)cycloalkanones estimated by the second-harmonic wave generated with the evanescent wave technique,” Chem. Phys. Lett. 249, 29 (1996).
[CrossRef]

1995 (2)

M. Kiguchi, “Comparison of error properties of techniques used for measuring second-order nonlinear optical coefficients with least-squares fitting,” J. Opt. Soc. Am. B 12, 871 (1995).
[CrossRef]

M. Kiguchi, M. Kato, N. Kumegawa, M. Okunaka, and Y. Taniguchi, “Simple evaluation for second-order nonlinear optical materials in powder form,” Nonlinear Opt. 9, 223 (1995).

1994 (1)

M. Kiguchi, M. Kato, N. Kumegawa, and Y. Taniguchi, “Technique for evaluating second-order nonlinear optical materials in powder form,” J. Appl. Phys. 75, 4432 (1994).
[CrossRef]

1993 (2)

M. Kiguchi, M. Kato, N. Kumegawa, and Y. Taniguchi, “A new measurement of second harmonic generation efficiency,” Mol. Cryst. Liq. Cryst. 227, 133 (1993).
[CrossRef]

X. Zhu, Y. M. Chen, M. Kamath, R. J. Jeng, J. Kumar, and S. K. Tripathy, “Efficient Cerenkov second harmonic generation crosslinked poled polymer waveguides,” Nonlinear Opt. 4, 175 (1993).

1992 (1)

M. Kiguchi, M. Kato, M. Okunaka, and Y. Taniguchi, “New method of measuring second harmonic generation efficiency using powder crystals,” Appl. Phys. Lett. 60, 1933 (1992).
[CrossRef]

1991 (1)

E. Van Tomme, P. P. Van Daele, R. G. Baets, and P. E. Lagasse, “Integrated optics devices based on nonlinear optical polymers,” IEEE J. Quantum Electron. 27, 778 (1991).
[CrossRef]

1990 (1)

J. D. Bierlein, L. K. Cheng, Y. Wang, and W. Tam, “Linear and nonlinear optical properties of 3-methyl-4-methoxy-4-nitrostilbene single crystals,” Appl. Phys. Lett. 56, 423 (1990).
[CrossRef]

1987 (1)

1984 (1)

J. Zyss, J. F. Nicoud, and M. Coquillay, “Chirality and hydrogen bonding in molecular crystals for phase-matched second-harmonic generation: N-(4-nitrophenyl)-(L)-prolinol (NPP),” J. Chem. Phys. 81, 4160 (1984).
[CrossRef]

1981 (1)

J. Zyss, D. S. Chemla, and J. F. Nicoud, “Demonstration of efficient nonlinear optical crystals with vanishing molecular dipole moment: second harmonic generation in 3-methyl-4-nitropyridine-1-oxide,” J. Chem. Phys. 74, 4800 (1981).
[CrossRef]

1970 (1)

J. Jerphagnon and S. K. Kurtz, “Maker fringes: a detailed comparison of theory and experiment for isotropic and uniaxial crystals,” J. Appl. Phys. 41, 1667 (1970).
[CrossRef]

1968 (1)

S. K. Kurtz and T. T. Perry, “A powder technique for the evaluation of nonlinear optical materials,” J. Appl. Phys. 39, 3798 (1968).
[CrossRef]

1962 (1)

N. Bloembergen and P. S. Pershan, “Light waves at the boundary of nonlinear media,” Phys. Rev. 128, 606 (1962).
[CrossRef]

Baets, R. G.

E. Van Tomme, P. P. Van Daele, R. G. Baets, and P. E. Lagasse, “Integrated optics devices based on nonlinear optical polymers,” IEEE J. Quantum Electron. 27, 778 (1991).
[CrossRef]

Bierlein, J. D.

J. D. Bierlein, L. K. Cheng, Y. Wang, and W. Tam, “Linear and nonlinear optical properties of 3-methyl-4-methoxy-4-nitrostilbene single crystals,” Appl. Phys. Lett. 56, 423 (1990).
[CrossRef]

Bloembergen, N.

N. Bloembergen and P. S. Pershan, “Light waves at the boundary of nonlinear media,” Phys. Rev. 128, 606 (1962).
[CrossRef]

Bohler, A.

S. Dirr, A. Bohler, S. Wiess, H. H. Johannes, and W. Kowalsky, “Organic light emitting diodes with reduced spectral and spatial halfwidths,” Jpn. J. Appl. Phys., Part 1 37, 1457 (1998).
[CrossRef]

Chemla, D. S.

J. Zyss, D. S. Chemla, and J. F. Nicoud, “Demonstration of efficient nonlinear optical crystals with vanishing molecular dipole moment: second harmonic generation in 3-methyl-4-nitropyridine-1-oxide,” J. Chem. Phys. 74, 4800 (1981).
[CrossRef]

Chen, Y. M.

X. Zhu, Y. M. Chen, M. Kamath, R. J. Jeng, J. Kumar, and S. K. Tripathy, “Efficient Cerenkov second harmonic generation crosslinked poled polymer waveguides,” Nonlinear Opt. 4, 175 (1993).

Cheng, L. K.

J. D. Bierlein, L. K. Cheng, Y. Wang, and W. Tam, “Linear and nonlinear optical properties of 3-methyl-4-methoxy-4-nitrostilbene single crystals,” Appl. Phys. Lett. 56, 423 (1990).
[CrossRef]

Coquillay, M.

Dirr, S.

S. Dirr, A. Bohler, S. Wiess, H. H. Johannes, and W. Kowalsky, “Organic light emitting diodes with reduced spectral and spatial halfwidths,” Jpn. J. Appl. Phys., Part 1 37, 1457 (1998).
[CrossRef]

Inabe, T.

J. Kawamata, K. Inoue, T. Inabe, M. Kiguchi, M. Kato, and Y. Taniguchi, “Large second-harmonic generation coefficients of bis(benzylidene)cycloalkanones estimated by the second-harmonic wave generated with the evanescent wave technique,” Chem. Phys. Lett. 249, 29 (1996).
[CrossRef]

Inoue, K.

J. Kawamata, K. Inoue, T. Inabe, M. Kiguchi, M. Kato, and Y. Taniguchi, “Large second-harmonic generation coefficients of bis(benzylidene)cycloalkanones estimated by the second-harmonic wave generated with the evanescent wave technique,” Chem. Phys. Lett. 249, 29 (1996).
[CrossRef]

Jeng, R. J.

X. Zhu, Y. M. Chen, M. Kamath, R. J. Jeng, J. Kumar, and S. K. Tripathy, “Efficient Cerenkov second harmonic generation crosslinked poled polymer waveguides,” Nonlinear Opt. 4, 175 (1993).

Jerphagnon, J.

J. Jerphagnon and S. K. Kurtz, “Maker fringes: a detailed comparison of theory and experiment for isotropic and uniaxial crystals,” J. Appl. Phys. 41, 1667 (1970).
[CrossRef]

Johannes, H. H.

S. Dirr, A. Bohler, S. Wiess, H. H. Johannes, and W. Kowalsky, “Organic light emitting diodes with reduced spectral and spatial halfwidths,” Jpn. J. Appl. Phys., Part 1 37, 1457 (1998).
[CrossRef]

Kamath, M.

X. Zhu, Y. M. Chen, M. Kamath, R. J. Jeng, J. Kumar, and S. K. Tripathy, “Efficient Cerenkov second harmonic generation crosslinked poled polymer waveguides,” Nonlinear Opt. 4, 175 (1993).

Kato, M.

J. Kawamata, K. Inoue, T. Inabe, M. Kiguchi, M. Kato, and Y. Taniguchi, “Large second-harmonic generation coefficients of bis(benzylidene)cycloalkanones estimated by the second-harmonic wave generated with the evanescent wave technique,” Chem. Phys. Lett. 249, 29 (1996).
[CrossRef]

M. Kiguchi, M. Kato, N. Kumegawa, M. Okunaka, and Y. Taniguchi, “Simple evaluation for second-order nonlinear optical materials in powder form,” Nonlinear Opt. 9, 223 (1995).

M. Kiguchi, M. Kato, N. Kumegawa, and Y. Taniguchi, “Technique for evaluating second-order nonlinear optical materials in powder form,” J. Appl. Phys. 75, 4432 (1994).
[CrossRef]

M. Kiguchi, M. Kato, N. Kumegawa, and Y. Taniguchi, “A new measurement of second harmonic generation efficiency,” Mol. Cryst. Liq. Cryst. 227, 133 (1993).
[CrossRef]

M. Kiguchi, M. Kato, M. Okunaka, and Y. Taniguchi, “New method of measuring second harmonic generation efficiency using powder crystals,” Appl. Phys. Lett. 60, 1933 (1992).
[CrossRef]

Kawamata, J.

J. Kawamata, K. Inoue, T. Inabe, M. Kiguchi, M. Kato, and Y. Taniguchi, “Large second-harmonic generation coefficients of bis(benzylidene)cycloalkanones estimated by the second-harmonic wave generated with the evanescent wave technique,” Chem. Phys. Lett. 249, 29 (1996).
[CrossRef]

Kiguchi, M.

J. Kawamata, K. Inoue, T. Inabe, M. Kiguchi, M. Kato, and Y. Taniguchi, “Large second-harmonic generation coefficients of bis(benzylidene)cycloalkanones estimated by the second-harmonic wave generated with the evanescent wave technique,” Chem. Phys. Lett. 249, 29 (1996).
[CrossRef]

M. Kiguchi, “Comparison of error properties of techniques used for measuring second-order nonlinear optical coefficients with least-squares fitting,” J. Opt. Soc. Am. B 12, 871 (1995).
[CrossRef]

M. Kiguchi, M. Kato, N. Kumegawa, M. Okunaka, and Y. Taniguchi, “Simple evaluation for second-order nonlinear optical materials in powder form,” Nonlinear Opt. 9, 223 (1995).

M. Kiguchi, M. Kato, N. Kumegawa, and Y. Taniguchi, “Technique for evaluating second-order nonlinear optical materials in powder form,” J. Appl. Phys. 75, 4432 (1994).
[CrossRef]

M. Kiguchi, M. Kato, N. Kumegawa, and Y. Taniguchi, “A new measurement of second harmonic generation efficiency,” Mol. Cryst. Liq. Cryst. 227, 133 (1993).
[CrossRef]

M. Kiguchi, M. Kato, M. Okunaka, and Y. Taniguchi, “New method of measuring second harmonic generation efficiency using powder crystals,” Appl. Phys. Lett. 60, 1933 (1992).
[CrossRef]

Kowalsky, W.

S. Dirr, A. Bohler, S. Wiess, H. H. Johannes, and W. Kowalsky, “Organic light emitting diodes with reduced spectral and spatial halfwidths,” Jpn. J. Appl. Phys., Part 1 37, 1457 (1998).
[CrossRef]

Kumar, J.

X. Zhu, Y. M. Chen, M. Kamath, R. J. Jeng, J. Kumar, and S. K. Tripathy, “Efficient Cerenkov second harmonic generation crosslinked poled polymer waveguides,” Nonlinear Opt. 4, 175 (1993).

Kumegawa, N.

M. Kiguchi, M. Kato, N. Kumegawa, M. Okunaka, and Y. Taniguchi, “Simple evaluation for second-order nonlinear optical materials in powder form,” Nonlinear Opt. 9, 223 (1995).

M. Kiguchi, M. Kato, N. Kumegawa, and Y. Taniguchi, “Technique for evaluating second-order nonlinear optical materials in powder form,” J. Appl. Phys. 75, 4432 (1994).
[CrossRef]

M. Kiguchi, M. Kato, N. Kumegawa, and Y. Taniguchi, “A new measurement of second harmonic generation efficiency,” Mol. Cryst. Liq. Cryst. 227, 133 (1993).
[CrossRef]

Kurtz, S. K.

J. Jerphagnon and S. K. Kurtz, “Maker fringes: a detailed comparison of theory and experiment for isotropic and uniaxial crystals,” J. Appl. Phys. 41, 1667 (1970).
[CrossRef]

S. K. Kurtz and T. T. Perry, “A powder technique for the evaluation of nonlinear optical materials,” J. Appl. Phys. 39, 3798 (1968).
[CrossRef]

Lagasse, P. E.

E. Van Tomme, P. P. Van Daele, R. G. Baets, and P. E. Lagasse, “Integrated optics devices based on nonlinear optical polymers,” IEEE J. Quantum Electron. 27, 778 (1991).
[CrossRef]

Nicoud, J. F.

J. Zyss, J. F. Nicoud, and M. Coquillay, “Chirality and hydrogen bonding in molecular crystals for phase-matched second-harmonic generation: N-(4-nitrophenyl)-(L)-prolinol (NPP),” J. Chem. Phys. 81, 4160 (1984).
[CrossRef]

J. Zyss, D. S. Chemla, and J. F. Nicoud, “Demonstration of efficient nonlinear optical crystals with vanishing molecular dipole moment: second harmonic generation in 3-methyl-4-nitropyridine-1-oxide,” J. Chem. Phys. 74, 4800 (1981).
[CrossRef]

Okunaka, M.

M. Kiguchi, M. Kato, N. Kumegawa, M. Okunaka, and Y. Taniguchi, “Simple evaluation for second-order nonlinear optical materials in powder form,” Nonlinear Opt. 9, 223 (1995).

M. Kiguchi, M. Kato, M. Okunaka, and Y. Taniguchi, “New method of measuring second harmonic generation efficiency using powder crystals,” Appl. Phys. Lett. 60, 1933 (1992).
[CrossRef]

Perry, T. T.

S. K. Kurtz and T. T. Perry, “A powder technique for the evaluation of nonlinear optical materials,” J. Appl. Phys. 39, 3798 (1968).
[CrossRef]

Pershan, P. S.

N. Bloembergen and P. S. Pershan, “Light waves at the boundary of nonlinear media,” Phys. Rev. 128, 606 (1962).
[CrossRef]

Salin, F.

Tam, W.

J. D. Bierlein, L. K. Cheng, Y. Wang, and W. Tam, “Linear and nonlinear optical properties of 3-methyl-4-methoxy-4-nitrostilbene single crystals,” Appl. Phys. Lett. 56, 423 (1990).
[CrossRef]

Taniguchi, Y.

J. Kawamata, K. Inoue, T. Inabe, M. Kiguchi, M. Kato, and Y. Taniguchi, “Large second-harmonic generation coefficients of bis(benzylidene)cycloalkanones estimated by the second-harmonic wave generated with the evanescent wave technique,” Chem. Phys. Lett. 249, 29 (1996).
[CrossRef]

M. Kiguchi, M. Kato, N. Kumegawa, M. Okunaka, and Y. Taniguchi, “Simple evaluation for second-order nonlinear optical materials in powder form,” Nonlinear Opt. 9, 223 (1995).

M. Kiguchi, M. Kato, N. Kumegawa, and Y. Taniguchi, “Technique for evaluating second-order nonlinear optical materials in powder form,” J. Appl. Phys. 75, 4432 (1994).
[CrossRef]

M. Kiguchi, M. Kato, N. Kumegawa, and Y. Taniguchi, “A new measurement of second harmonic generation efficiency,” Mol. Cryst. Liq. Cryst. 227, 133 (1993).
[CrossRef]

M. Kiguchi, M. Kato, M. Okunaka, and Y. Taniguchi, “New method of measuring second harmonic generation efficiency using powder crystals,” Appl. Phys. Lett. 60, 1933 (1992).
[CrossRef]

Tripathy, S. K.

X. Zhu, Y. M. Chen, M. Kamath, R. J. Jeng, J. Kumar, and S. K. Tripathy, “Efficient Cerenkov second harmonic generation crosslinked poled polymer waveguides,” Nonlinear Opt. 4, 175 (1993).

Van Daele, P. P.

E. Van Tomme, P. P. Van Daele, R. G. Baets, and P. E. Lagasse, “Integrated optics devices based on nonlinear optical polymers,” IEEE J. Quantum Electron. 27, 778 (1991).
[CrossRef]

Van Tomme, E.

E. Van Tomme, P. P. Van Daele, R. G. Baets, and P. E. Lagasse, “Integrated optics devices based on nonlinear optical polymers,” IEEE J. Quantum Electron. 27, 778 (1991).
[CrossRef]

Vidakovic, P. V.

Wang, Y.

J. D. Bierlein, L. K. Cheng, Y. Wang, and W. Tam, “Linear and nonlinear optical properties of 3-methyl-4-methoxy-4-nitrostilbene single crystals,” Appl. Phys. Lett. 56, 423 (1990).
[CrossRef]

Wiess, S.

S. Dirr, A. Bohler, S. Wiess, H. H. Johannes, and W. Kowalsky, “Organic light emitting diodes with reduced spectral and spatial halfwidths,” Jpn. J. Appl. Phys., Part 1 37, 1457 (1998).
[CrossRef]

Zhu, X.

X. Zhu, Y. M. Chen, M. Kamath, R. J. Jeng, J. Kumar, and S. K. Tripathy, “Efficient Cerenkov second harmonic generation crosslinked poled polymer waveguides,” Nonlinear Opt. 4, 175 (1993).

Zyss, J.

J. Zyss, J. F. Nicoud, and M. Coquillay, “Chirality and hydrogen bonding in molecular crystals for phase-matched second-harmonic generation: N-(4-nitrophenyl)-(L)-prolinol (NPP),” J. Chem. Phys. 81, 4160 (1984).
[CrossRef]

J. Zyss, D. S. Chemla, and J. F. Nicoud, “Demonstration of efficient nonlinear optical crystals with vanishing molecular dipole moment: second harmonic generation in 3-methyl-4-nitropyridine-1-oxide,” J. Chem. Phys. 74, 4800 (1981).
[CrossRef]

Appl. Phys. Lett. (2)

M. Kiguchi, M. Kato, M. Okunaka, and Y. Taniguchi, “New method of measuring second harmonic generation efficiency using powder crystals,” Appl. Phys. Lett. 60, 1933 (1992).
[CrossRef]

J. D. Bierlein, L. K. Cheng, Y. Wang, and W. Tam, “Linear and nonlinear optical properties of 3-methyl-4-methoxy-4-nitrostilbene single crystals,” Appl. Phys. Lett. 56, 423 (1990).
[CrossRef]

Chem. Phys. Lett. (1)

J. Kawamata, K. Inoue, T. Inabe, M. Kiguchi, M. Kato, and Y. Taniguchi, “Large second-harmonic generation coefficients of bis(benzylidene)cycloalkanones estimated by the second-harmonic wave generated with the evanescent wave technique,” Chem. Phys. Lett. 249, 29 (1996).
[CrossRef]

IEEE J. Quantum Electron. (1)

E. Van Tomme, P. P. Van Daele, R. G. Baets, and P. E. Lagasse, “Integrated optics devices based on nonlinear optical polymers,” IEEE J. Quantum Electron. 27, 778 (1991).
[CrossRef]

J. Appl. Phys. (3)

J. Jerphagnon and S. K. Kurtz, “Maker fringes: a detailed comparison of theory and experiment for isotropic and uniaxial crystals,” J. Appl. Phys. 41, 1667 (1970).
[CrossRef]

S. K. Kurtz and T. T. Perry, “A powder technique for the evaluation of nonlinear optical materials,” J. Appl. Phys. 39, 3798 (1968).
[CrossRef]

M. Kiguchi, M. Kato, N. Kumegawa, and Y. Taniguchi, “Technique for evaluating second-order nonlinear optical materials in powder form,” J. Appl. Phys. 75, 4432 (1994).
[CrossRef]

J. Chem. Phys. (2)

J. Zyss, J. F. Nicoud, and M. Coquillay, “Chirality and hydrogen bonding in molecular crystals for phase-matched second-harmonic generation: N-(4-nitrophenyl)-(L)-prolinol (NPP),” J. Chem. Phys. 81, 4160 (1984).
[CrossRef]

J. Zyss, D. S. Chemla, and J. F. Nicoud, “Demonstration of efficient nonlinear optical crystals with vanishing molecular dipole moment: second harmonic generation in 3-methyl-4-nitropyridine-1-oxide,” J. Chem. Phys. 74, 4800 (1981).
[CrossRef]

J. Opt. Soc. Am. B (2)

Jpn. J. Appl. Phys., Part 1 (1)

S. Dirr, A. Bohler, S. Wiess, H. H. Johannes, and W. Kowalsky, “Organic light emitting diodes with reduced spectral and spatial halfwidths,” Jpn. J. Appl. Phys., Part 1 37, 1457 (1998).
[CrossRef]

Mol. Cryst. Liq. Cryst. (1)

M. Kiguchi, M. Kato, N. Kumegawa, and Y. Taniguchi, “A new measurement of second harmonic generation efficiency,” Mol. Cryst. Liq. Cryst. 227, 133 (1993).
[CrossRef]

Nonlinear Opt. (2)

X. Zhu, Y. M. Chen, M. Kamath, R. J. Jeng, J. Kumar, and S. K. Tripathy, “Efficient Cerenkov second harmonic generation crosslinked poled polymer waveguides,” Nonlinear Opt. 4, 175 (1993).

M. Kiguchi, M. Kato, N. Kumegawa, M. Okunaka, and Y. Taniguchi, “Simple evaluation for second-order nonlinear optical materials in powder form,” Nonlinear Opt. 9, 223 (1995).

Phys. Rev. (1)

N. Bloembergen and P. S. Pershan, “Light waves at the boundary of nonlinear media,” Phys. Rev. 128, 606 (1962).
[CrossRef]

Other (3)

R. L. Sutherland, Handbook of Nonlinear Optics (Marcel Dekker, New York, 1988).

S. Sottini, D. Grando, L. Palchetti, E. Ricceri, and G. Gabrielli, “Organic films for guided nonlinear optics,” Mater. Sci. Eng. C 5, 167 (1998).

D. Y. Chen, N. Okamoto, T. Sasaki, S. Tasaka, and R. Matsushima, “2nd harmonic-generation from mixtures of organic nonlinear materials MNA and PNA,” IEIC Trans. Commun. Electron. Inf. Sys. 74, 946 (1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic of a phase-matched SH wave under total reflection at the boundary between a linear (rutile prism) and a nonlinear medium. The SH wave propagates into the linear medium in the direction θm defined by Eq. (1). θS and θT are the propagation angles of the fundamental and the SH waves respectively, in the nonlinear medium. The incident wave is polarized parallel to the c axis of the prism.

Fig. 2
Fig. 2

Theoretical curve of SH power emanating from the boundary between linear and nonlinear media for TE-polarized fundamental and SH waves. θFTR is the angle of total reflection for the fundamental wave, and θSHTR is the angle of total reflection for the SH wave. Dashed curve, the SHEW signal observed for θincidentθFTR. This curve was calculated with npω=2.74 and np2ω=2.98 for the prism and nsω=1.906 and ns2ω=2.262 for the sample.

Fig. 3
Fig. 3

Experimental setup for the SHEW technique. The incident laser beam is focused upon powder. The goniometer is controlled by the computer. The angle of the detection unit is calculated from Eq. (1) to coincide with the SH output.

Fig. 4
Fig. 4

SH power observed on NPP at various incidence angles. For each fixed incidence angle, the detection unit measures the SH power on a wide range of detection angles (30°–60°). Two peaks are observed because of the birefringence of the rutile prism.

Fig. 5
Fig. 5

Phase-matching angles on NPP versus incidence angle for TE-polarized incident waves. TE- and TM-polarized SH waves are observed because of the birefringence of the rutile prism. The solid curves are calculated from Eq. (1).

Fig. 6
Fig. 6

SH power measured with the SHEW technique versus incident angles for NPP, POM, MMONS, and NPAN. Experimental data were fitted from relation (2) by the least-squares method.

Fig. 7
Fig. 7

Theoretical curves calculated with NPP parameters.

Fig. 8
Fig. 8

Example of fluctuations of SH power. The distribution of these fluctuations is determined by the random parameter Ri (R7 in this case). The data are fitted by the least-squares method from relation (2).

Fig. 9
Fig. 9

Angular range of measurement of the SHEW signal reduced on curves 3, 5, 7, and 10, respectively, by 3°, 5°, 7°, and 10° relative to the original curve, 0.

Tables (4)

Tables Icon

Table 1 Influence of Angle of Incidence Errors on Fit Resultsa

Tables Icon

Table 2 Influence of Incident Laser Power Fluctuations on Fit Resultsa

Tables Icon

Table 3 Influence of Angular Range Detection of SHEW Power after Total Reflection for a SH Wavea

Tables Icon

Table 4 Comparison between SHEW Results and Literature Values of Refractive Indices and Effective Nonlinear Coefficients of NPP, POM, MMONS, and NPAN

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

npω sin θin=np2ω sin θm,
P2ωdeffnpω cos θinnpω cos θin+[(nsω)2-(npω)2 sin2 θin]1/22{[(ns2ω)2-(npω)2 sin2 θin]1/2+[(nsω)2-(npω)2 sin2 θin]1/2}{[(ns2ω)2-(npω)2 sin2 θin]1/2+np2ω cos θm}2×cos θmcos θi,
sinθFTR=nsωnpω,
sinθSHTR=ns2ωnpω,
deff (sample)deff (NPP)
deff (sample)deff (NPP)

Metrics