Abstract

We report on non-steady-state photocurrent measurements of photorefractive sillenites grown in an oxygen-free atmosphere. A sufficient increase in the photoconductivity of crystals grown in an argon atmosphere in the red region of the spectrum (λ=633 nm) was observed. We attribute such changes to the high density of oxygen vacancies, and we present investigations of the influence of oxygen vacancies on the energy spectrum and on the parameters of photoinduced carriers in photorefractive sillenites.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. B. Lauer, “Electron effective mass and conduction-band effective density of states in Bi12SiO20,” J. Appl. Phys. 45, 1794–1797 (1974).
    [CrossRef]
  2. F. P. Strohkendl, “Light-induced dark decays of photorefractive gratings and their observation in Bi12SiO20,” J. Appl. Phys. 65, 3773–3780 (1989).
    [CrossRef]
  3. S. L. Hou, R. B. Lauer, and R. E. Aldrich, “Transport processes of photoinduced carriers in Bi12SiO20,” J. Appl. Phys. 44, 2652–2658 (1973).
    [CrossRef]
  4. O. A. Gudaev, V. A. Gusev, V. A. Detinenko, A. P. Eliseev, and V. K. Malinovsky, “Energy levels in the forbidden band of Bi12GeO20, Bi12SiO20,” Autometria 5, 38–46 (1981).
  5. E. V. Mokrushina, A. A. Nechitailov, and V. V. Prokofiev, “Effect of a low chromium impurity on properties of photoinduced charge carriers in Bi12TiO20 and Bi12SiO20 single crystals,” Opt. Commun. 123, 592–596 (1996).
    [CrossRef]
  6. V. I. Berezkin, A. A. Petrov, Yu. B. Afanasiev, and I. V. Mikheeva, “Growth of bismuth silicate and bismuth titanate in different atmospheres,” in Proceedings of the All-Union Meeting “Crystal Growth by the Stepanov Method” (Ioffe Physical-Technical Institute, Leningrad (1986), pp. 149–152 (in Russian).
  7. A. A. Petrov, G. I. Dolivo-Dobrovol’skaya, V. V. Zhdanova, and Yu. B. Afanasiev, “Growth of Bi12SiO20 and Bi12TiO20 single crystals and investigation of the defect’s structure,” Izv. Akad. Nauk SSSR, Neorg. Mater. 20, 266–270 (1984).
  8. S. M. Ryvkin, Photoelectric Effects in Semiconductors (Consultants Bureau, New York, 1964).
  9. M. P. Petrov, I. A. Sokolov, S. I. Stepanov, and G. S. Trofimov, “Non-steady-state photoelectromotive-force induced by dynamic gratings in partially compensated photoconductors,” J. Appl. Phys. 68, 2216–2225 (1990).
    [CrossRef]
  10. I. A. Sokolov and S. I. Stepanov, “Non-steady photovoltage in crystals with long relaxation time of photoconductivity,” Electron. Lett. 26, 1275–1277 (1990).
    [CrossRef]
  11. I. A. Sokolov and S. I. Stepanov, “Intensity-dependent non-steady-state photoelectromotive force in crystals with long photoelectron lifetimes,” Optik (Stuttgart) 93, 175–182 (1993).
  12. R. Grousson, M. Henry, and S. Mallick, “Transport properties of photoelectrons in Bi12SiO20,” J. Appl. Phys. 56, 224–229 (1984).
    [CrossRef]
  13. M. P. Petrov, S. I. Stepanov, and A. V. Khomenko, Photorefractive Crystals in Coherent Optical Systems, T. Tamir, ed., Vol. 59 of Springer Series in Optical Sciences (Springer-Verlag, Berlin, 1991).
    [CrossRef]
  14. S. I. Stepanov, I. A. Sokolov, G. S. Trofimov, V. I. Vlad, D. Popa, and I. Apostol, “Measuring vibration amplitudes in the picometer range using moving light gratings in photoconductive GaAs:Cr,” Opt. Lett. 15, 1239–1241 (1990).
    [CrossRef] [PubMed]
  15. I. A. Sokolov, V. V. Khorenko, and S. I. Stepanov, “Monitoring bending motion amplitudes of piezoceramic plates with homodyne interferometer based on adaptive photodetector,” Ferroelectrics 160, 317–322 (1994).
    [CrossRef]
  16. D. M. Pepper, “The emergence of nonlinear optics in the factory,” Opt. Photonics News 8(5), 33–40 (1997).
    [CrossRef]

1997 (1)

D. M. Pepper, “The emergence of nonlinear optics in the factory,” Opt. Photonics News 8(5), 33–40 (1997).
[CrossRef]

1996 (1)

E. V. Mokrushina, A. A. Nechitailov, and V. V. Prokofiev, “Effect of a low chromium impurity on properties of photoinduced charge carriers in Bi12TiO20 and Bi12SiO20 single crystals,” Opt. Commun. 123, 592–596 (1996).
[CrossRef]

1994 (1)

I. A. Sokolov, V. V. Khorenko, and S. I. Stepanov, “Monitoring bending motion amplitudes of piezoceramic plates with homodyne interferometer based on adaptive photodetector,” Ferroelectrics 160, 317–322 (1994).
[CrossRef]

1993 (1)

I. A. Sokolov and S. I. Stepanov, “Intensity-dependent non-steady-state photoelectromotive force in crystals with long photoelectron lifetimes,” Optik (Stuttgart) 93, 175–182 (1993).

1990 (3)

S. I. Stepanov, I. A. Sokolov, G. S. Trofimov, V. I. Vlad, D. Popa, and I. Apostol, “Measuring vibration amplitudes in the picometer range using moving light gratings in photoconductive GaAs:Cr,” Opt. Lett. 15, 1239–1241 (1990).
[CrossRef] [PubMed]

M. P. Petrov, I. A. Sokolov, S. I. Stepanov, and G. S. Trofimov, “Non-steady-state photoelectromotive-force induced by dynamic gratings in partially compensated photoconductors,” J. Appl. Phys. 68, 2216–2225 (1990).
[CrossRef]

I. A. Sokolov and S. I. Stepanov, “Non-steady photovoltage in crystals with long relaxation time of photoconductivity,” Electron. Lett. 26, 1275–1277 (1990).
[CrossRef]

1989 (1)

F. P. Strohkendl, “Light-induced dark decays of photorefractive gratings and their observation in Bi12SiO20,” J. Appl. Phys. 65, 3773–3780 (1989).
[CrossRef]

1984 (2)

A. A. Petrov, G. I. Dolivo-Dobrovol’skaya, V. V. Zhdanova, and Yu. B. Afanasiev, “Growth of Bi12SiO20 and Bi12TiO20 single crystals and investigation of the defect’s structure,” Izv. Akad. Nauk SSSR, Neorg. Mater. 20, 266–270 (1984).

R. Grousson, M. Henry, and S. Mallick, “Transport properties of photoelectrons in Bi12SiO20,” J. Appl. Phys. 56, 224–229 (1984).
[CrossRef]

1981 (1)

O. A. Gudaev, V. A. Gusev, V. A. Detinenko, A. P. Eliseev, and V. K. Malinovsky, “Energy levels in the forbidden band of Bi12GeO20, Bi12SiO20,” Autometria 5, 38–46 (1981).

1974 (1)

R. B. Lauer, “Electron effective mass and conduction-band effective density of states in Bi12SiO20,” J. Appl. Phys. 45, 1794–1797 (1974).
[CrossRef]

1973 (1)

S. L. Hou, R. B. Lauer, and R. E. Aldrich, “Transport processes of photoinduced carriers in Bi12SiO20,” J. Appl. Phys. 44, 2652–2658 (1973).
[CrossRef]

Afanasiev, Yu. B.

A. A. Petrov, G. I. Dolivo-Dobrovol’skaya, V. V. Zhdanova, and Yu. B. Afanasiev, “Growth of Bi12SiO20 and Bi12TiO20 single crystals and investigation of the defect’s structure,” Izv. Akad. Nauk SSSR, Neorg. Mater. 20, 266–270 (1984).

Aldrich, R. E.

S. L. Hou, R. B. Lauer, and R. E. Aldrich, “Transport processes of photoinduced carriers in Bi12SiO20,” J. Appl. Phys. 44, 2652–2658 (1973).
[CrossRef]

Apostol, I.

Detinenko, V. A.

O. A. Gudaev, V. A. Gusev, V. A. Detinenko, A. P. Eliseev, and V. K. Malinovsky, “Energy levels in the forbidden band of Bi12GeO20, Bi12SiO20,” Autometria 5, 38–46 (1981).

Dolivo-Dobrovol’skaya, G. I.

A. A. Petrov, G. I. Dolivo-Dobrovol’skaya, V. V. Zhdanova, and Yu. B. Afanasiev, “Growth of Bi12SiO20 and Bi12TiO20 single crystals and investigation of the defect’s structure,” Izv. Akad. Nauk SSSR, Neorg. Mater. 20, 266–270 (1984).

Eliseev, A. P.

O. A. Gudaev, V. A. Gusev, V. A. Detinenko, A. P. Eliseev, and V. K. Malinovsky, “Energy levels in the forbidden band of Bi12GeO20, Bi12SiO20,” Autometria 5, 38–46 (1981).

Grousson, R.

R. Grousson, M. Henry, and S. Mallick, “Transport properties of photoelectrons in Bi12SiO20,” J. Appl. Phys. 56, 224–229 (1984).
[CrossRef]

Gudaev, O. A.

O. A. Gudaev, V. A. Gusev, V. A. Detinenko, A. P. Eliseev, and V. K. Malinovsky, “Energy levels in the forbidden band of Bi12GeO20, Bi12SiO20,” Autometria 5, 38–46 (1981).

Gusev, V. A.

O. A. Gudaev, V. A. Gusev, V. A. Detinenko, A. P. Eliseev, and V. K. Malinovsky, “Energy levels in the forbidden band of Bi12GeO20, Bi12SiO20,” Autometria 5, 38–46 (1981).

Henry, M.

R. Grousson, M. Henry, and S. Mallick, “Transport properties of photoelectrons in Bi12SiO20,” J. Appl. Phys. 56, 224–229 (1984).
[CrossRef]

Hou, S. L.

S. L. Hou, R. B. Lauer, and R. E. Aldrich, “Transport processes of photoinduced carriers in Bi12SiO20,” J. Appl. Phys. 44, 2652–2658 (1973).
[CrossRef]

Khorenko, V. V.

I. A. Sokolov, V. V. Khorenko, and S. I. Stepanov, “Monitoring bending motion amplitudes of piezoceramic plates with homodyne interferometer based on adaptive photodetector,” Ferroelectrics 160, 317–322 (1994).
[CrossRef]

Lauer, R. B.

R. B. Lauer, “Electron effective mass and conduction-band effective density of states in Bi12SiO20,” J. Appl. Phys. 45, 1794–1797 (1974).
[CrossRef]

S. L. Hou, R. B. Lauer, and R. E. Aldrich, “Transport processes of photoinduced carriers in Bi12SiO20,” J. Appl. Phys. 44, 2652–2658 (1973).
[CrossRef]

Malinovsky, V. K.

O. A. Gudaev, V. A. Gusev, V. A. Detinenko, A. P. Eliseev, and V. K. Malinovsky, “Energy levels in the forbidden band of Bi12GeO20, Bi12SiO20,” Autometria 5, 38–46 (1981).

Mallick, S.

R. Grousson, M. Henry, and S. Mallick, “Transport properties of photoelectrons in Bi12SiO20,” J. Appl. Phys. 56, 224–229 (1984).
[CrossRef]

Mokrushina, E. V.

E. V. Mokrushina, A. A. Nechitailov, and V. V. Prokofiev, “Effect of a low chromium impurity on properties of photoinduced charge carriers in Bi12TiO20 and Bi12SiO20 single crystals,” Opt. Commun. 123, 592–596 (1996).
[CrossRef]

Nechitailov, A. A.

E. V. Mokrushina, A. A. Nechitailov, and V. V. Prokofiev, “Effect of a low chromium impurity on properties of photoinduced charge carriers in Bi12TiO20 and Bi12SiO20 single crystals,” Opt. Commun. 123, 592–596 (1996).
[CrossRef]

Pepper, D. M.

D. M. Pepper, “The emergence of nonlinear optics in the factory,” Opt. Photonics News 8(5), 33–40 (1997).
[CrossRef]

Petrov, A. A.

A. A. Petrov, G. I. Dolivo-Dobrovol’skaya, V. V. Zhdanova, and Yu. B. Afanasiev, “Growth of Bi12SiO20 and Bi12TiO20 single crystals and investigation of the defect’s structure,” Izv. Akad. Nauk SSSR, Neorg. Mater. 20, 266–270 (1984).

Petrov, M. P.

M. P. Petrov, I. A. Sokolov, S. I. Stepanov, and G. S. Trofimov, “Non-steady-state photoelectromotive-force induced by dynamic gratings in partially compensated photoconductors,” J. Appl. Phys. 68, 2216–2225 (1990).
[CrossRef]

Popa, D.

Prokofiev, V. V.

E. V. Mokrushina, A. A. Nechitailov, and V. V. Prokofiev, “Effect of a low chromium impurity on properties of photoinduced charge carriers in Bi12TiO20 and Bi12SiO20 single crystals,” Opt. Commun. 123, 592–596 (1996).
[CrossRef]

Sokolov, I. A.

I. A. Sokolov, V. V. Khorenko, and S. I. Stepanov, “Monitoring bending motion amplitudes of piezoceramic plates with homodyne interferometer based on adaptive photodetector,” Ferroelectrics 160, 317–322 (1994).
[CrossRef]

I. A. Sokolov and S. I. Stepanov, “Intensity-dependent non-steady-state photoelectromotive force in crystals with long photoelectron lifetimes,” Optik (Stuttgart) 93, 175–182 (1993).

I. A. Sokolov and S. I. Stepanov, “Non-steady photovoltage in crystals with long relaxation time of photoconductivity,” Electron. Lett. 26, 1275–1277 (1990).
[CrossRef]

S. I. Stepanov, I. A. Sokolov, G. S. Trofimov, V. I. Vlad, D. Popa, and I. Apostol, “Measuring vibration amplitudes in the picometer range using moving light gratings in photoconductive GaAs:Cr,” Opt. Lett. 15, 1239–1241 (1990).
[CrossRef] [PubMed]

M. P. Petrov, I. A. Sokolov, S. I. Stepanov, and G. S. Trofimov, “Non-steady-state photoelectromotive-force induced by dynamic gratings in partially compensated photoconductors,” J. Appl. Phys. 68, 2216–2225 (1990).
[CrossRef]

Stepanov, S. I.

I. A. Sokolov, V. V. Khorenko, and S. I. Stepanov, “Monitoring bending motion amplitudes of piezoceramic plates with homodyne interferometer based on adaptive photodetector,” Ferroelectrics 160, 317–322 (1994).
[CrossRef]

I. A. Sokolov and S. I. Stepanov, “Intensity-dependent non-steady-state photoelectromotive force in crystals with long photoelectron lifetimes,” Optik (Stuttgart) 93, 175–182 (1993).

I. A. Sokolov and S. I. Stepanov, “Non-steady photovoltage in crystals with long relaxation time of photoconductivity,” Electron. Lett. 26, 1275–1277 (1990).
[CrossRef]

S. I. Stepanov, I. A. Sokolov, G. S. Trofimov, V. I. Vlad, D. Popa, and I. Apostol, “Measuring vibration amplitudes in the picometer range using moving light gratings in photoconductive GaAs:Cr,” Opt. Lett. 15, 1239–1241 (1990).
[CrossRef] [PubMed]

M. P. Petrov, I. A. Sokolov, S. I. Stepanov, and G. S. Trofimov, “Non-steady-state photoelectromotive-force induced by dynamic gratings in partially compensated photoconductors,” J. Appl. Phys. 68, 2216–2225 (1990).
[CrossRef]

Strohkendl, F. P.

F. P. Strohkendl, “Light-induced dark decays of photorefractive gratings and their observation in Bi12SiO20,” J. Appl. Phys. 65, 3773–3780 (1989).
[CrossRef]

Trofimov, G. S.

M. P. Petrov, I. A. Sokolov, S. I. Stepanov, and G. S. Trofimov, “Non-steady-state photoelectromotive-force induced by dynamic gratings in partially compensated photoconductors,” J. Appl. Phys. 68, 2216–2225 (1990).
[CrossRef]

S. I. Stepanov, I. A. Sokolov, G. S. Trofimov, V. I. Vlad, D. Popa, and I. Apostol, “Measuring vibration amplitudes in the picometer range using moving light gratings in photoconductive GaAs:Cr,” Opt. Lett. 15, 1239–1241 (1990).
[CrossRef] [PubMed]

Vlad, V. I.

Zhdanova, V. V.

A. A. Petrov, G. I. Dolivo-Dobrovol’skaya, V. V. Zhdanova, and Yu. B. Afanasiev, “Growth of Bi12SiO20 and Bi12TiO20 single crystals and investigation of the defect’s structure,” Izv. Akad. Nauk SSSR, Neorg. Mater. 20, 266–270 (1984).

Autometria (1)

O. A. Gudaev, V. A. Gusev, V. A. Detinenko, A. P. Eliseev, and V. K. Malinovsky, “Energy levels in the forbidden band of Bi12GeO20, Bi12SiO20,” Autometria 5, 38–46 (1981).

Electron. Lett. (1)

I. A. Sokolov and S. I. Stepanov, “Non-steady photovoltage in crystals with long relaxation time of photoconductivity,” Electron. Lett. 26, 1275–1277 (1990).
[CrossRef]

Ferroelectrics (1)

I. A. Sokolov, V. V. Khorenko, and S. I. Stepanov, “Monitoring bending motion amplitudes of piezoceramic plates with homodyne interferometer based on adaptive photodetector,” Ferroelectrics 160, 317–322 (1994).
[CrossRef]

Izv. Akad. Nauk SSSR, Neorg. Mater. (1)

A. A. Petrov, G. I. Dolivo-Dobrovol’skaya, V. V. Zhdanova, and Yu. B. Afanasiev, “Growth of Bi12SiO20 and Bi12TiO20 single crystals and investigation of the defect’s structure,” Izv. Akad. Nauk SSSR, Neorg. Mater. 20, 266–270 (1984).

J. Appl. Phys. (5)

R. B. Lauer, “Electron effective mass and conduction-band effective density of states in Bi12SiO20,” J. Appl. Phys. 45, 1794–1797 (1974).
[CrossRef]

F. P. Strohkendl, “Light-induced dark decays of photorefractive gratings and their observation in Bi12SiO20,” J. Appl. Phys. 65, 3773–3780 (1989).
[CrossRef]

S. L. Hou, R. B. Lauer, and R. E. Aldrich, “Transport processes of photoinduced carriers in Bi12SiO20,” J. Appl. Phys. 44, 2652–2658 (1973).
[CrossRef]

R. Grousson, M. Henry, and S. Mallick, “Transport properties of photoelectrons in Bi12SiO20,” J. Appl. Phys. 56, 224–229 (1984).
[CrossRef]

M. P. Petrov, I. A. Sokolov, S. I. Stepanov, and G. S. Trofimov, “Non-steady-state photoelectromotive-force induced by dynamic gratings in partially compensated photoconductors,” J. Appl. Phys. 68, 2216–2225 (1990).
[CrossRef]

Opt. Commun. (1)

E. V. Mokrushina, A. A. Nechitailov, and V. V. Prokofiev, “Effect of a low chromium impurity on properties of photoinduced charge carriers in Bi12TiO20 and Bi12SiO20 single crystals,” Opt. Commun. 123, 592–596 (1996).
[CrossRef]

Opt. Lett. (1)

Opt. Photonics News (1)

D. M. Pepper, “The emergence of nonlinear optics in the factory,” Opt. Photonics News 8(5), 33–40 (1997).
[CrossRef]

Optik (Stuttgart) (1)

I. A. Sokolov and S. I. Stepanov, “Intensity-dependent non-steady-state photoelectromotive force in crystals with long photoelectron lifetimes,” Optik (Stuttgart) 93, 175–182 (1993).

Other (3)

S. M. Ryvkin, Photoelectric Effects in Semiconductors (Consultants Bureau, New York, 1964).

V. I. Berezkin, A. A. Petrov, Yu. B. Afanasiev, and I. V. Mikheeva, “Growth of bismuth silicate and bismuth titanate in different atmospheres,” in Proceedings of the All-Union Meeting “Crystal Growth by the Stepanov Method” (Ioffe Physical-Technical Institute, Leningrad (1986), pp. 149–152 (in Russian).

M. P. Petrov, S. I. Stepanov, and A. V. Khomenko, Photorefractive Crystals in Coherent Optical Systems, T. Tamir, ed., Vol. 59 of Springer Series in Optical Sciences (Springer-Verlag, Berlin, 1991).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Absorption spectra of the investigated crystals. The absorption spectrum of the BTO crystal grown in air is shown in (b) by a dashed curve.

Fig. 2
Fig. 2

Frequency dependence of the photoconductivity of BSO crystals grown in argon and in air.

Fig. 3
Fig. 3

Frequency dependence of the BSO-a crystal’s photoconductivity measured for several light intensities (λ=633 nm).

Fig. 4
Fig. 4

Dependence on light intensity of the BSO-a crystal’s parameters (parameters obtained from Fig. 3): (a) photoconductivity dependence σ(I), (b) dependence of lifetime of photocarriers τ and of the product μβ.

Fig. 5
Fig. 5

Frequency transfer functions of the non-steady-state photocurrent measured for two photorefractive sillenites grown in argon (BSO-a) and air (BSO-u) atmospheres. λ=633 nm, K=0.5 µm-1. BSO-a: S=0.15 cm2, m=0.67, Δ=0.2; BSO-u: S=0.04 cm2, m=0.9, Δ=0.1. Theoretical curves for BSO-a and BSO-u were calculated from Eqs. (2) and (3) for q=3.5 and q=9, respectively.

Fig. 6
Fig. 6

(a) Frequency dependence of the non-steady-state photocurrent measured for a BTO-a crystal for several illumination levels (λ=633 nm, K=0.035 µm-1, m=0.67, Δ=0.2). (b) Intensity dependence of the BTO-a crystal photoconductivity as well as characteristic times (τ, τI, τM) calculated from the data of (a).

Tables (3)

Tables Icon

Table 1 Material Parameters of Photorefractive Sillenites

Tables Icon

Table 2 Parameters of BSO Crystals

Tables Icon

Table 3 Calculated Parameters of BSO Crystal

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

τsc=τM(1+K2LD2),
σ=I0hναβτμ[1+(2πτf)2]1/2e,
|Jω|max=SΔσ0Ed2pm2,
Jω=ωq{[1+(ω)2]2+(ω)2q}1/2,
ωm2=1ττM1+τ+τMK2Ld2τI,
q=1ωm1τM+1+K2Ld2τ+1τI,
p=qωmωm2τ2τM,
ωm2=ω1ω2,
q2=(ω12+ω22)/ω1ω2-6,

Metrics