Abstract

The absorption and emission spectra and the luminescence kinetics of Mn4+:YAlO3, the potential crystal for holographic recording and optical data storage, were studied at room and liquid-nitrogen temperatures. The spectroscopic properties of Mn:YAlO3 were compared with those of Mn:GdAlO3, Mn:Y3Al5O12, and Cr:YAlO3. It was found that a single-site occupancy of Mn4+ ions in YAlO3 and GdAlO3 at room temperature changes to a multisite occupancy at low temperature. Possible reasons for such a transformation are discussed. The parameters Dq and B in Mn4+:YAlO3 were determined to be 2115 and 680 cm-1, correspondingly.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. B. Loutts, M. Warren, L. Taylor, R. R. Rakhimov, H. R. Ries, G. Miller III, M. A. Noginov, M. Curley, N. Noginova, N. Kukhtarev, H. J. Caulfield, and P. Venkateswarlu, “Manganese-doped yttrium orthoaluminate: a potential material for holographic recording and data storage,” Phys. Rev. B 57, 3706–3709 (1998).
    [CrossRef]
  2. M. A. Noginov, N. Noginova, M. Curley, N. Kukhtarev, H. J. Caulfield, P. Venkateswarlu, and G. B. Loutts, “Optical characterization of Mn:YAlO3, material for holographic recording and data storage,” J. Opt. Soc. Am. B 15, 1463–1468 (1998).
    [CrossRef]
  3. R. R. Rakhimov, A. L. Wilkerson, G. B. Loutts, M. A. Noginov, N. Noginova, W. Lindsay, and H. R. Ries, “Spin and valence states of manganese ions in manganese-doped yttrium orthoaluminate,” Solid State Commun. 108, 549–555 (1998).
    [CrossRef]
  4. V. A. Antonov, P. A. Arsenev, Sh. A. Vakhidov, and E. M. Ibragimova, “Colour centers in yttrium aluminate crystals activated with transition metal ions,” Phys. Status Solidi A 22, 391–399 (1974).
    [CrossRef]
  5. V. A. Antonov, P. A. Arsenev, I. G. Linda, and V. L. Farshtendiker, “Studies of some point defects in YAlO3 and GdAlO3 single crystals,” Phys. Status Solidi A 15, K63–K68 (1973).
    [CrossRef]
  6. R. Diehl and G. Brant, “Crystal structure refinement of YAlO3, a promising laser material,” Mater. Res. Bull. 10, 85–90 (1975).
    [CrossRef]
  7. R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr., Sect. A: Found. Crystallogr. 32, 751–767 (1976).
    [CrossRef]
  8. P. Dorenbos, M. V. Korzhik, A. P. Kudryavtseva, S. V. Lyubetskii, B. I. Minkov, V. P. Pavlenko, and A. A. Fyodorov, “Influence of growth defects on the scintillation characteristics of YAlO3:Ce single crystals,” J. Appl. Spectrosc. 59, 633–638 (1993).
    [CrossRef]
  9. R. Korczak and C. B. Staff, “Czochralski growth of neodymium-doped yttrium orthoaluminate,” J. Cryst. Growth 20, 71–72 (1973).
    [CrossRef]
  10. S. Kück, S. Hartung, S. Hurling, K. Petermann, and G. Huber, “Optical transitions in Mn3+-doped garnets,” Phys. Rev. B 57, 2203–2216 (1998).
    [CrossRef]
  11. P. D. Dernier and R. G. Maines, “High pressure synthesis and crystal data of the rare earth orthoaluminates,” Mater. Res. Bull. 6, 433–440 (1971).
    [CrossRef]
  12. S. Geshwind, P. Kisliuk, M. P. Klein, J. P. Remeika, and D. L. Wood, “Sharp-line fluorescence, electron paramagnetic resonance, and thermoluminescence of Mn4+ in α-Al2O3,” Phys. Rev. 126, 1684–1686 (1962).
    [CrossRef]
  13. L. A. Riseberg and M. J. Weber, “Spectrum and anomalous temperature dependence of the 2E→4A2 emission in Y3Al5O12:Mn4+,” Solid State Commun. 9, 791–794 (1974).
    [CrossRef]
  14. K. Petermann and G. Huber, “Broad band fluorescence of transition metal doped garnets and tungstates,” J. Lumin. 31/32, 71–77 (1984).
    [CrossRef]
  15. J. F. Donegan, T. J. Glynn, G. F. Imbusch, and J. P. Remeika, “Luminescence and fluorescence narrowing studies of Y3Al5O12:Mn3+,” J. Lumin. 36, 93–100 (1986).
    [CrossRef]
  16. A. van Die, A. C. H. I. Leenaers, W. F. van der Weg, and G. Blasse, “A search for luminescence of the trivalent manganese ion in solid aluminates,” Mater. Res. Bull. 22, 781–787 (1987).
    [CrossRef]
  17. A. Brenier, C. Pedrini, C. Madej, G. Boulon, and A. Suchocki, “Mn4+ multisites and Mn4+→Tm3+ energy transfers in Gd3Ga5O12 garnet,” J. Phys. IV 1, C7–285–C7–288 (1991).
  18. A. Brenier, A. Suchoski, C. Pedrini, G. Boulon, and C. Madej, “Spectroscopy of Mn4+-doped Ga-substituted gadolinium gallium garnet,” Phys. Rev. B 46, 3219–3227 (1992).
    [CrossRef]
  19. N. V. Asafev, N. A. Eskov, V. V. Kochurikhin, V. A. Myzina, P. A. Ryabochkina, V. B. Sulaev, S. N. Ushakov, and L. I. Tsymbal, “Spectral studies of calcium-niobium-gallium-garnet single crystals doped with Mn ions,” Opt. Spectrosc. 69, 229–230 (1990).
  20. B. Henderson and G. F. Imbusch, Optical Spectroscopy of Inorganic Solids (Clarendon, Oxford, 1989).
  21. R. G. Burns, Mineralogical Applications of Crystal Field Theory, 2nd ed. (Cambridge U. Press, Cambridge, 1993).
  22. J. A. Mares, G. Boulon, A. Brenier, L. Lou, S. T. Rotman, and H. Lura, “Cr3+, Nd3+ multisites, pairs, and energy transfer processes in laser crystal YAlO3,” J. Phys. III 4, C-385–C4–388 (1994).
  23. Z. N. Zonn, V. A. Ioffe, and P. P. Feofilov, “Luminescence of chromium and manganese ions in lanthanum aluminate crystals,” Opt. Spectrosc. 19, 541–543 (1965).
  24. V. A. Antonov and P. A. Arsenev, “Properties of ions of the iron transition group in the lattice of single crystals of gadolinium aluminate,” Phys. Status Solidi A 20, K157–K161 (1973).
    [CrossRef]
  25. M. J. Weber and T. E. Varitimos, “Optical spectra and relaxation of Cr3+ ions in YAlO3,” J. Appl. Phys. 45, 810–816 (1974).
    [CrossRef]
  26. See, for example, E. V. Zharikov, in Redkozemel’nyye Scandievye Granaty: Voprosy Materialovedeniya (Rare Earth Scandium Garnets: The Materials Science Aspects), I. A. Shcherbakov, ed., Vol. 26 of Proceedings of the General Physics Institute (Nauka, Moscow, 1990).
  27. Th. Förster, “Zwischenmolekulare Energiewanderung und Fluoreszenz,” Ann. Phys. (Leipzig) 2, 55–75 (1948).
    [CrossRef]
  28. J. P. van der Ziel, “Spectrum of exchange coupled Cr3+ pairs in YAlO3,” J. Chem. Phys. 57, 2442–2450 (1972).
    [CrossRef]
  29. S. R. Rotman, E. Luria, J. A. Mares, G. Boulon, A. Brenier, and L. Lou, “Time decay of excited chromium- and neodymium-doped yttrium aluminum perovskite,” J. Appl. Phys. 80, 1094–1098 (1996).
    [CrossRef]

1998 (4)

G. B. Loutts, M. Warren, L. Taylor, R. R. Rakhimov, H. R. Ries, G. Miller III, M. A. Noginov, M. Curley, N. Noginova, N. Kukhtarev, H. J. Caulfield, and P. Venkateswarlu, “Manganese-doped yttrium orthoaluminate: a potential material for holographic recording and data storage,” Phys. Rev. B 57, 3706–3709 (1998).
[CrossRef]

M. A. Noginov, N. Noginova, M. Curley, N. Kukhtarev, H. J. Caulfield, P. Venkateswarlu, and G. B. Loutts, “Optical characterization of Mn:YAlO3, material for holographic recording and data storage,” J. Opt. Soc. Am. B 15, 1463–1468 (1998).
[CrossRef]

R. R. Rakhimov, A. L. Wilkerson, G. B. Loutts, M. A. Noginov, N. Noginova, W. Lindsay, and H. R. Ries, “Spin and valence states of manganese ions in manganese-doped yttrium orthoaluminate,” Solid State Commun. 108, 549–555 (1998).
[CrossRef]

S. Kück, S. Hartung, S. Hurling, K. Petermann, and G. Huber, “Optical transitions in Mn3+-doped garnets,” Phys. Rev. B 57, 2203–2216 (1998).
[CrossRef]

1996 (1)

S. R. Rotman, E. Luria, J. A. Mares, G. Boulon, A. Brenier, and L. Lou, “Time decay of excited chromium- and neodymium-doped yttrium aluminum perovskite,” J. Appl. Phys. 80, 1094–1098 (1996).
[CrossRef]

1994 (1)

J. A. Mares, G. Boulon, A. Brenier, L. Lou, S. T. Rotman, and H. Lura, “Cr3+, Nd3+ multisites, pairs, and energy transfer processes in laser crystal YAlO3,” J. Phys. III 4, C-385–C4–388 (1994).

1993 (1)

P. Dorenbos, M. V. Korzhik, A. P. Kudryavtseva, S. V. Lyubetskii, B. I. Minkov, V. P. Pavlenko, and A. A. Fyodorov, “Influence of growth defects on the scintillation characteristics of YAlO3:Ce single crystals,” J. Appl. Spectrosc. 59, 633–638 (1993).
[CrossRef]

1992 (1)

A. Brenier, A. Suchoski, C. Pedrini, G. Boulon, and C. Madej, “Spectroscopy of Mn4+-doped Ga-substituted gadolinium gallium garnet,” Phys. Rev. B 46, 3219–3227 (1992).
[CrossRef]

1991 (1)

A. Brenier, C. Pedrini, C. Madej, G. Boulon, and A. Suchocki, “Mn4+ multisites and Mn4+→Tm3+ energy transfers in Gd3Ga5O12 garnet,” J. Phys. IV 1, C7–285–C7–288 (1991).

1990 (1)

N. V. Asafev, N. A. Eskov, V. V. Kochurikhin, V. A. Myzina, P. A. Ryabochkina, V. B. Sulaev, S. N. Ushakov, and L. I. Tsymbal, “Spectral studies of calcium-niobium-gallium-garnet single crystals doped with Mn ions,” Opt. Spectrosc. 69, 229–230 (1990).

1987 (1)

A. van Die, A. C. H. I. Leenaers, W. F. van der Weg, and G. Blasse, “A search for luminescence of the trivalent manganese ion in solid aluminates,” Mater. Res. Bull. 22, 781–787 (1987).
[CrossRef]

1986 (1)

J. F. Donegan, T. J. Glynn, G. F. Imbusch, and J. P. Remeika, “Luminescence and fluorescence narrowing studies of Y3Al5O12:Mn3+,” J. Lumin. 36, 93–100 (1986).
[CrossRef]

1984 (1)

K. Petermann and G. Huber, “Broad band fluorescence of transition metal doped garnets and tungstates,” J. Lumin. 31/32, 71–77 (1984).
[CrossRef]

1976 (1)

R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr., Sect. A: Found. Crystallogr. 32, 751–767 (1976).
[CrossRef]

1975 (1)

R. Diehl and G. Brant, “Crystal structure refinement of YAlO3, a promising laser material,” Mater. Res. Bull. 10, 85–90 (1975).
[CrossRef]

1974 (3)

V. A. Antonov, P. A. Arsenev, Sh. A. Vakhidov, and E. M. Ibragimova, “Colour centers in yttrium aluminate crystals activated with transition metal ions,” Phys. Status Solidi A 22, 391–399 (1974).
[CrossRef]

L. A. Riseberg and M. J. Weber, “Spectrum and anomalous temperature dependence of the 2E→4A2 emission in Y3Al5O12:Mn4+,” Solid State Commun. 9, 791–794 (1974).
[CrossRef]

M. J. Weber and T. E. Varitimos, “Optical spectra and relaxation of Cr3+ ions in YAlO3,” J. Appl. Phys. 45, 810–816 (1974).
[CrossRef]

1973 (3)

V. A. Antonov and P. A. Arsenev, “Properties of ions of the iron transition group in the lattice of single crystals of gadolinium aluminate,” Phys. Status Solidi A 20, K157–K161 (1973).
[CrossRef]

V. A. Antonov, P. A. Arsenev, I. G. Linda, and V. L. Farshtendiker, “Studies of some point defects in YAlO3 and GdAlO3 single crystals,” Phys. Status Solidi A 15, K63–K68 (1973).
[CrossRef]

R. Korczak and C. B. Staff, “Czochralski growth of neodymium-doped yttrium orthoaluminate,” J. Cryst. Growth 20, 71–72 (1973).
[CrossRef]

1972 (1)

J. P. van der Ziel, “Spectrum of exchange coupled Cr3+ pairs in YAlO3,” J. Chem. Phys. 57, 2442–2450 (1972).
[CrossRef]

1971 (1)

P. D. Dernier and R. G. Maines, “High pressure synthesis and crystal data of the rare earth orthoaluminates,” Mater. Res. Bull. 6, 433–440 (1971).
[CrossRef]

1965 (1)

Z. N. Zonn, V. A. Ioffe, and P. P. Feofilov, “Luminescence of chromium and manganese ions in lanthanum aluminate crystals,” Opt. Spectrosc. 19, 541–543 (1965).

1962 (1)

S. Geshwind, P. Kisliuk, M. P. Klein, J. P. Remeika, and D. L. Wood, “Sharp-line fluorescence, electron paramagnetic resonance, and thermoluminescence of Mn4+ in α-Al2O3,” Phys. Rev. 126, 1684–1686 (1962).
[CrossRef]

1948 (1)

Th. Förster, “Zwischenmolekulare Energiewanderung und Fluoreszenz,” Ann. Phys. (Leipzig) 2, 55–75 (1948).
[CrossRef]

Antonov, V. A.

V. A. Antonov, P. A. Arsenev, Sh. A. Vakhidov, and E. M. Ibragimova, “Colour centers in yttrium aluminate crystals activated with transition metal ions,” Phys. Status Solidi A 22, 391–399 (1974).
[CrossRef]

V. A. Antonov and P. A. Arsenev, “Properties of ions of the iron transition group in the lattice of single crystals of gadolinium aluminate,” Phys. Status Solidi A 20, K157–K161 (1973).
[CrossRef]

V. A. Antonov, P. A. Arsenev, I. G. Linda, and V. L. Farshtendiker, “Studies of some point defects in YAlO3 and GdAlO3 single crystals,” Phys. Status Solidi A 15, K63–K68 (1973).
[CrossRef]

Arsenev, P. A.

V. A. Antonov, P. A. Arsenev, Sh. A. Vakhidov, and E. M. Ibragimova, “Colour centers in yttrium aluminate crystals activated with transition metal ions,” Phys. Status Solidi A 22, 391–399 (1974).
[CrossRef]

V. A. Antonov, P. A. Arsenev, I. G. Linda, and V. L. Farshtendiker, “Studies of some point defects in YAlO3 and GdAlO3 single crystals,” Phys. Status Solidi A 15, K63–K68 (1973).
[CrossRef]

V. A. Antonov and P. A. Arsenev, “Properties of ions of the iron transition group in the lattice of single crystals of gadolinium aluminate,” Phys. Status Solidi A 20, K157–K161 (1973).
[CrossRef]

Asafev, N. V.

N. V. Asafev, N. A. Eskov, V. V. Kochurikhin, V. A. Myzina, P. A. Ryabochkina, V. B. Sulaev, S. N. Ushakov, and L. I. Tsymbal, “Spectral studies of calcium-niobium-gallium-garnet single crystals doped with Mn ions,” Opt. Spectrosc. 69, 229–230 (1990).

Blasse, G.

A. van Die, A. C. H. I. Leenaers, W. F. van der Weg, and G. Blasse, “A search for luminescence of the trivalent manganese ion in solid aluminates,” Mater. Res. Bull. 22, 781–787 (1987).
[CrossRef]

Boulon, G.

S. R. Rotman, E. Luria, J. A. Mares, G. Boulon, A. Brenier, and L. Lou, “Time decay of excited chromium- and neodymium-doped yttrium aluminum perovskite,” J. Appl. Phys. 80, 1094–1098 (1996).
[CrossRef]

J. A. Mares, G. Boulon, A. Brenier, L. Lou, S. T. Rotman, and H. Lura, “Cr3+, Nd3+ multisites, pairs, and energy transfer processes in laser crystal YAlO3,” J. Phys. III 4, C-385–C4–388 (1994).

A. Brenier, A. Suchoski, C. Pedrini, G. Boulon, and C. Madej, “Spectroscopy of Mn4+-doped Ga-substituted gadolinium gallium garnet,” Phys. Rev. B 46, 3219–3227 (1992).
[CrossRef]

A. Brenier, C. Pedrini, C. Madej, G. Boulon, and A. Suchocki, “Mn4+ multisites and Mn4+→Tm3+ energy transfers in Gd3Ga5O12 garnet,” J. Phys. IV 1, C7–285–C7–288 (1991).

Brant, G.

R. Diehl and G. Brant, “Crystal structure refinement of YAlO3, a promising laser material,” Mater. Res. Bull. 10, 85–90 (1975).
[CrossRef]

Brenier, A.

S. R. Rotman, E. Luria, J. A. Mares, G. Boulon, A. Brenier, and L. Lou, “Time decay of excited chromium- and neodymium-doped yttrium aluminum perovskite,” J. Appl. Phys. 80, 1094–1098 (1996).
[CrossRef]

J. A. Mares, G. Boulon, A. Brenier, L. Lou, S. T. Rotman, and H. Lura, “Cr3+, Nd3+ multisites, pairs, and energy transfer processes in laser crystal YAlO3,” J. Phys. III 4, C-385–C4–388 (1994).

A. Brenier, A. Suchoski, C. Pedrini, G. Boulon, and C. Madej, “Spectroscopy of Mn4+-doped Ga-substituted gadolinium gallium garnet,” Phys. Rev. B 46, 3219–3227 (1992).
[CrossRef]

A. Brenier, C. Pedrini, C. Madej, G. Boulon, and A. Suchocki, “Mn4+ multisites and Mn4+→Tm3+ energy transfers in Gd3Ga5O12 garnet,” J. Phys. IV 1, C7–285–C7–288 (1991).

Caulfield, H. J.

M. A. Noginov, N. Noginova, M. Curley, N. Kukhtarev, H. J. Caulfield, P. Venkateswarlu, and G. B. Loutts, “Optical characterization of Mn:YAlO3, material for holographic recording and data storage,” J. Opt. Soc. Am. B 15, 1463–1468 (1998).
[CrossRef]

G. B. Loutts, M. Warren, L. Taylor, R. R. Rakhimov, H. R. Ries, G. Miller III, M. A. Noginov, M. Curley, N. Noginova, N. Kukhtarev, H. J. Caulfield, and P. Venkateswarlu, “Manganese-doped yttrium orthoaluminate: a potential material for holographic recording and data storage,” Phys. Rev. B 57, 3706–3709 (1998).
[CrossRef]

Curley, M.

G. B. Loutts, M. Warren, L. Taylor, R. R. Rakhimov, H. R. Ries, G. Miller III, M. A. Noginov, M. Curley, N. Noginova, N. Kukhtarev, H. J. Caulfield, and P. Venkateswarlu, “Manganese-doped yttrium orthoaluminate: a potential material for holographic recording and data storage,” Phys. Rev. B 57, 3706–3709 (1998).
[CrossRef]

M. A. Noginov, N. Noginova, M. Curley, N. Kukhtarev, H. J. Caulfield, P. Venkateswarlu, and G. B. Loutts, “Optical characterization of Mn:YAlO3, material for holographic recording and data storage,” J. Opt. Soc. Am. B 15, 1463–1468 (1998).
[CrossRef]

Dernier, P. D.

P. D. Dernier and R. G. Maines, “High pressure synthesis and crystal data of the rare earth orthoaluminates,” Mater. Res. Bull. 6, 433–440 (1971).
[CrossRef]

Diehl, R.

R. Diehl and G. Brant, “Crystal structure refinement of YAlO3, a promising laser material,” Mater. Res. Bull. 10, 85–90 (1975).
[CrossRef]

Donegan, J. F.

J. F. Donegan, T. J. Glynn, G. F. Imbusch, and J. P. Remeika, “Luminescence and fluorescence narrowing studies of Y3Al5O12:Mn3+,” J. Lumin. 36, 93–100 (1986).
[CrossRef]

Dorenbos, P.

P. Dorenbos, M. V. Korzhik, A. P. Kudryavtseva, S. V. Lyubetskii, B. I. Minkov, V. P. Pavlenko, and A. A. Fyodorov, “Influence of growth defects on the scintillation characteristics of YAlO3:Ce single crystals,” J. Appl. Spectrosc. 59, 633–638 (1993).
[CrossRef]

Eskov, N. A.

N. V. Asafev, N. A. Eskov, V. V. Kochurikhin, V. A. Myzina, P. A. Ryabochkina, V. B. Sulaev, S. N. Ushakov, and L. I. Tsymbal, “Spectral studies of calcium-niobium-gallium-garnet single crystals doped with Mn ions,” Opt. Spectrosc. 69, 229–230 (1990).

Farshtendiker, V. L.

V. A. Antonov, P. A. Arsenev, I. G. Linda, and V. L. Farshtendiker, “Studies of some point defects in YAlO3 and GdAlO3 single crystals,” Phys. Status Solidi A 15, K63–K68 (1973).
[CrossRef]

Feofilov, P. P.

Z. N. Zonn, V. A. Ioffe, and P. P. Feofilov, “Luminescence of chromium and manganese ions in lanthanum aluminate crystals,” Opt. Spectrosc. 19, 541–543 (1965).

Förster, Th.

Th. Förster, “Zwischenmolekulare Energiewanderung und Fluoreszenz,” Ann. Phys. (Leipzig) 2, 55–75 (1948).
[CrossRef]

Fyodorov, A. A.

P. Dorenbos, M. V. Korzhik, A. P. Kudryavtseva, S. V. Lyubetskii, B. I. Minkov, V. P. Pavlenko, and A. A. Fyodorov, “Influence of growth defects on the scintillation characteristics of YAlO3:Ce single crystals,” J. Appl. Spectrosc. 59, 633–638 (1993).
[CrossRef]

Geshwind, S.

S. Geshwind, P. Kisliuk, M. P. Klein, J. P. Remeika, and D. L. Wood, “Sharp-line fluorescence, electron paramagnetic resonance, and thermoluminescence of Mn4+ in α-Al2O3,” Phys. Rev. 126, 1684–1686 (1962).
[CrossRef]

Glynn, T. J.

J. F. Donegan, T. J. Glynn, G. F. Imbusch, and J. P. Remeika, “Luminescence and fluorescence narrowing studies of Y3Al5O12:Mn3+,” J. Lumin. 36, 93–100 (1986).
[CrossRef]

Hartung, S.

S. Kück, S. Hartung, S. Hurling, K. Petermann, and G. Huber, “Optical transitions in Mn3+-doped garnets,” Phys. Rev. B 57, 2203–2216 (1998).
[CrossRef]

Huber, G.

S. Kück, S. Hartung, S. Hurling, K. Petermann, and G. Huber, “Optical transitions in Mn3+-doped garnets,” Phys. Rev. B 57, 2203–2216 (1998).
[CrossRef]

K. Petermann and G. Huber, “Broad band fluorescence of transition metal doped garnets and tungstates,” J. Lumin. 31/32, 71–77 (1984).
[CrossRef]

Hurling, S.

S. Kück, S. Hartung, S. Hurling, K. Petermann, and G. Huber, “Optical transitions in Mn3+-doped garnets,” Phys. Rev. B 57, 2203–2216 (1998).
[CrossRef]

Ibragimova, E. M.

V. A. Antonov, P. A. Arsenev, Sh. A. Vakhidov, and E. M. Ibragimova, “Colour centers in yttrium aluminate crystals activated with transition metal ions,” Phys. Status Solidi A 22, 391–399 (1974).
[CrossRef]

Imbusch, G. F.

J. F. Donegan, T. J. Glynn, G. F. Imbusch, and J. P. Remeika, “Luminescence and fluorescence narrowing studies of Y3Al5O12:Mn3+,” J. Lumin. 36, 93–100 (1986).
[CrossRef]

Ioffe, V. A.

Z. N. Zonn, V. A. Ioffe, and P. P. Feofilov, “Luminescence of chromium and manganese ions in lanthanum aluminate crystals,” Opt. Spectrosc. 19, 541–543 (1965).

Kisliuk, P.

S. Geshwind, P. Kisliuk, M. P. Klein, J. P. Remeika, and D. L. Wood, “Sharp-line fluorescence, electron paramagnetic resonance, and thermoluminescence of Mn4+ in α-Al2O3,” Phys. Rev. 126, 1684–1686 (1962).
[CrossRef]

Klein, M. P.

S. Geshwind, P. Kisliuk, M. P. Klein, J. P. Remeika, and D. L. Wood, “Sharp-line fluorescence, electron paramagnetic resonance, and thermoluminescence of Mn4+ in α-Al2O3,” Phys. Rev. 126, 1684–1686 (1962).
[CrossRef]

Kochurikhin, V. V.

N. V. Asafev, N. A. Eskov, V. V. Kochurikhin, V. A. Myzina, P. A. Ryabochkina, V. B. Sulaev, S. N. Ushakov, and L. I. Tsymbal, “Spectral studies of calcium-niobium-gallium-garnet single crystals doped with Mn ions,” Opt. Spectrosc. 69, 229–230 (1990).

Korczak, R.

R. Korczak and C. B. Staff, “Czochralski growth of neodymium-doped yttrium orthoaluminate,” J. Cryst. Growth 20, 71–72 (1973).
[CrossRef]

Korzhik, M. V.

P. Dorenbos, M. V. Korzhik, A. P. Kudryavtseva, S. V. Lyubetskii, B. I. Minkov, V. P. Pavlenko, and A. A. Fyodorov, “Influence of growth defects on the scintillation characteristics of YAlO3:Ce single crystals,” J. Appl. Spectrosc. 59, 633–638 (1993).
[CrossRef]

Kück, S.

S. Kück, S. Hartung, S. Hurling, K. Petermann, and G. Huber, “Optical transitions in Mn3+-doped garnets,” Phys. Rev. B 57, 2203–2216 (1998).
[CrossRef]

Kudryavtseva, A. P.

P. Dorenbos, M. V. Korzhik, A. P. Kudryavtseva, S. V. Lyubetskii, B. I. Minkov, V. P. Pavlenko, and A. A. Fyodorov, “Influence of growth defects on the scintillation characteristics of YAlO3:Ce single crystals,” J. Appl. Spectrosc. 59, 633–638 (1993).
[CrossRef]

Kukhtarev, N.

M. A. Noginov, N. Noginova, M. Curley, N. Kukhtarev, H. J. Caulfield, P. Venkateswarlu, and G. B. Loutts, “Optical characterization of Mn:YAlO3, material for holographic recording and data storage,” J. Opt. Soc. Am. B 15, 1463–1468 (1998).
[CrossRef]

G. B. Loutts, M. Warren, L. Taylor, R. R. Rakhimov, H. R. Ries, G. Miller III, M. A. Noginov, M. Curley, N. Noginova, N. Kukhtarev, H. J. Caulfield, and P. Venkateswarlu, “Manganese-doped yttrium orthoaluminate: a potential material for holographic recording and data storage,” Phys. Rev. B 57, 3706–3709 (1998).
[CrossRef]

Leenaers, A. C. H. I.

A. van Die, A. C. H. I. Leenaers, W. F. van der Weg, and G. Blasse, “A search for luminescence of the trivalent manganese ion in solid aluminates,” Mater. Res. Bull. 22, 781–787 (1987).
[CrossRef]

Linda, I. G.

V. A. Antonov, P. A. Arsenev, I. G. Linda, and V. L. Farshtendiker, “Studies of some point defects in YAlO3 and GdAlO3 single crystals,” Phys. Status Solidi A 15, K63–K68 (1973).
[CrossRef]

Lindsay, W.

R. R. Rakhimov, A. L. Wilkerson, G. B. Loutts, M. A. Noginov, N. Noginova, W. Lindsay, and H. R. Ries, “Spin and valence states of manganese ions in manganese-doped yttrium orthoaluminate,” Solid State Commun. 108, 549–555 (1998).
[CrossRef]

Lou, L.

S. R. Rotman, E. Luria, J. A. Mares, G. Boulon, A. Brenier, and L. Lou, “Time decay of excited chromium- and neodymium-doped yttrium aluminum perovskite,” J. Appl. Phys. 80, 1094–1098 (1996).
[CrossRef]

J. A. Mares, G. Boulon, A. Brenier, L. Lou, S. T. Rotman, and H. Lura, “Cr3+, Nd3+ multisites, pairs, and energy transfer processes in laser crystal YAlO3,” J. Phys. III 4, C-385–C4–388 (1994).

Loutts, G. B.

M. A. Noginov, N. Noginova, M. Curley, N. Kukhtarev, H. J. Caulfield, P. Venkateswarlu, and G. B. Loutts, “Optical characterization of Mn:YAlO3, material for holographic recording and data storage,” J. Opt. Soc. Am. B 15, 1463–1468 (1998).
[CrossRef]

R. R. Rakhimov, A. L. Wilkerson, G. B. Loutts, M. A. Noginov, N. Noginova, W. Lindsay, and H. R. Ries, “Spin and valence states of manganese ions in manganese-doped yttrium orthoaluminate,” Solid State Commun. 108, 549–555 (1998).
[CrossRef]

G. B. Loutts, M. Warren, L. Taylor, R. R. Rakhimov, H. R. Ries, G. Miller III, M. A. Noginov, M. Curley, N. Noginova, N. Kukhtarev, H. J. Caulfield, and P. Venkateswarlu, “Manganese-doped yttrium orthoaluminate: a potential material for holographic recording and data storage,” Phys. Rev. B 57, 3706–3709 (1998).
[CrossRef]

Lura, H.

J. A. Mares, G. Boulon, A. Brenier, L. Lou, S. T. Rotman, and H. Lura, “Cr3+, Nd3+ multisites, pairs, and energy transfer processes in laser crystal YAlO3,” J. Phys. III 4, C-385–C4–388 (1994).

Luria, E.

S. R. Rotman, E. Luria, J. A. Mares, G. Boulon, A. Brenier, and L. Lou, “Time decay of excited chromium- and neodymium-doped yttrium aluminum perovskite,” J. Appl. Phys. 80, 1094–1098 (1996).
[CrossRef]

Lyubetskii, S. V.

P. Dorenbos, M. V. Korzhik, A. P. Kudryavtseva, S. V. Lyubetskii, B. I. Minkov, V. P. Pavlenko, and A. A. Fyodorov, “Influence of growth defects on the scintillation characteristics of YAlO3:Ce single crystals,” J. Appl. Spectrosc. 59, 633–638 (1993).
[CrossRef]

Madej, C.

A. Brenier, A. Suchoski, C. Pedrini, G. Boulon, and C. Madej, “Spectroscopy of Mn4+-doped Ga-substituted gadolinium gallium garnet,” Phys. Rev. B 46, 3219–3227 (1992).
[CrossRef]

A. Brenier, C. Pedrini, C. Madej, G. Boulon, and A. Suchocki, “Mn4+ multisites and Mn4+→Tm3+ energy transfers in Gd3Ga5O12 garnet,” J. Phys. IV 1, C7–285–C7–288 (1991).

Maines, R. G.

P. D. Dernier and R. G. Maines, “High pressure synthesis and crystal data of the rare earth orthoaluminates,” Mater. Res. Bull. 6, 433–440 (1971).
[CrossRef]

Mares, J. A.

S. R. Rotman, E. Luria, J. A. Mares, G. Boulon, A. Brenier, and L. Lou, “Time decay of excited chromium- and neodymium-doped yttrium aluminum perovskite,” J. Appl. Phys. 80, 1094–1098 (1996).
[CrossRef]

J. A. Mares, G. Boulon, A. Brenier, L. Lou, S. T. Rotman, and H. Lura, “Cr3+, Nd3+ multisites, pairs, and energy transfer processes in laser crystal YAlO3,” J. Phys. III 4, C-385–C4–388 (1994).

Miller III, G.

G. B. Loutts, M. Warren, L. Taylor, R. R. Rakhimov, H. R. Ries, G. Miller III, M. A. Noginov, M. Curley, N. Noginova, N. Kukhtarev, H. J. Caulfield, and P. Venkateswarlu, “Manganese-doped yttrium orthoaluminate: a potential material for holographic recording and data storage,” Phys. Rev. B 57, 3706–3709 (1998).
[CrossRef]

Minkov, B. I.

P. Dorenbos, M. V. Korzhik, A. P. Kudryavtseva, S. V. Lyubetskii, B. I. Minkov, V. P. Pavlenko, and A. A. Fyodorov, “Influence of growth defects on the scintillation characteristics of YAlO3:Ce single crystals,” J. Appl. Spectrosc. 59, 633–638 (1993).
[CrossRef]

Myzina, V. A.

N. V. Asafev, N. A. Eskov, V. V. Kochurikhin, V. A. Myzina, P. A. Ryabochkina, V. B. Sulaev, S. N. Ushakov, and L. I. Tsymbal, “Spectral studies of calcium-niobium-gallium-garnet single crystals doped with Mn ions,” Opt. Spectrosc. 69, 229–230 (1990).

Noginov, M. A.

M. A. Noginov, N. Noginova, M. Curley, N. Kukhtarev, H. J. Caulfield, P. Venkateswarlu, and G. B. Loutts, “Optical characterization of Mn:YAlO3, material for holographic recording and data storage,” J. Opt. Soc. Am. B 15, 1463–1468 (1998).
[CrossRef]

G. B. Loutts, M. Warren, L. Taylor, R. R. Rakhimov, H. R. Ries, G. Miller III, M. A. Noginov, M. Curley, N. Noginova, N. Kukhtarev, H. J. Caulfield, and P. Venkateswarlu, “Manganese-doped yttrium orthoaluminate: a potential material for holographic recording and data storage,” Phys. Rev. B 57, 3706–3709 (1998).
[CrossRef]

R. R. Rakhimov, A. L. Wilkerson, G. B. Loutts, M. A. Noginov, N. Noginova, W. Lindsay, and H. R. Ries, “Spin and valence states of manganese ions in manganese-doped yttrium orthoaluminate,” Solid State Commun. 108, 549–555 (1998).
[CrossRef]

Noginova, N.

R. R. Rakhimov, A. L. Wilkerson, G. B. Loutts, M. A. Noginov, N. Noginova, W. Lindsay, and H. R. Ries, “Spin and valence states of manganese ions in manganese-doped yttrium orthoaluminate,” Solid State Commun. 108, 549–555 (1998).
[CrossRef]

G. B. Loutts, M. Warren, L. Taylor, R. R. Rakhimov, H. R. Ries, G. Miller III, M. A. Noginov, M. Curley, N. Noginova, N. Kukhtarev, H. J. Caulfield, and P. Venkateswarlu, “Manganese-doped yttrium orthoaluminate: a potential material for holographic recording and data storage,” Phys. Rev. B 57, 3706–3709 (1998).
[CrossRef]

M. A. Noginov, N. Noginova, M. Curley, N. Kukhtarev, H. J. Caulfield, P. Venkateswarlu, and G. B. Loutts, “Optical characterization of Mn:YAlO3, material for holographic recording and data storage,” J. Opt. Soc. Am. B 15, 1463–1468 (1998).
[CrossRef]

Pavlenko, V. P.

P. Dorenbos, M. V. Korzhik, A. P. Kudryavtseva, S. V. Lyubetskii, B. I. Minkov, V. P. Pavlenko, and A. A. Fyodorov, “Influence of growth defects on the scintillation characteristics of YAlO3:Ce single crystals,” J. Appl. Spectrosc. 59, 633–638 (1993).
[CrossRef]

Pedrini, C.

A. Brenier, A. Suchoski, C. Pedrini, G. Boulon, and C. Madej, “Spectroscopy of Mn4+-doped Ga-substituted gadolinium gallium garnet,” Phys. Rev. B 46, 3219–3227 (1992).
[CrossRef]

A. Brenier, C. Pedrini, C. Madej, G. Boulon, and A. Suchocki, “Mn4+ multisites and Mn4+→Tm3+ energy transfers in Gd3Ga5O12 garnet,” J. Phys. IV 1, C7–285–C7–288 (1991).

Petermann, K.

S. Kück, S. Hartung, S. Hurling, K. Petermann, and G. Huber, “Optical transitions in Mn3+-doped garnets,” Phys. Rev. B 57, 2203–2216 (1998).
[CrossRef]

K. Petermann and G. Huber, “Broad band fluorescence of transition metal doped garnets and tungstates,” J. Lumin. 31/32, 71–77 (1984).
[CrossRef]

Rakhimov, R. R.

R. R. Rakhimov, A. L. Wilkerson, G. B. Loutts, M. A. Noginov, N. Noginova, W. Lindsay, and H. R. Ries, “Spin and valence states of manganese ions in manganese-doped yttrium orthoaluminate,” Solid State Commun. 108, 549–555 (1998).
[CrossRef]

G. B. Loutts, M. Warren, L. Taylor, R. R. Rakhimov, H. R. Ries, G. Miller III, M. A. Noginov, M. Curley, N. Noginova, N. Kukhtarev, H. J. Caulfield, and P. Venkateswarlu, “Manganese-doped yttrium orthoaluminate: a potential material for holographic recording and data storage,” Phys. Rev. B 57, 3706–3709 (1998).
[CrossRef]

Remeika, J. P.

J. F. Donegan, T. J. Glynn, G. F. Imbusch, and J. P. Remeika, “Luminescence and fluorescence narrowing studies of Y3Al5O12:Mn3+,” J. Lumin. 36, 93–100 (1986).
[CrossRef]

S. Geshwind, P. Kisliuk, M. P. Klein, J. P. Remeika, and D. L. Wood, “Sharp-line fluorescence, electron paramagnetic resonance, and thermoluminescence of Mn4+ in α-Al2O3,” Phys. Rev. 126, 1684–1686 (1962).
[CrossRef]

Ries, H. R.

R. R. Rakhimov, A. L. Wilkerson, G. B. Loutts, M. A. Noginov, N. Noginova, W. Lindsay, and H. R. Ries, “Spin and valence states of manganese ions in manganese-doped yttrium orthoaluminate,” Solid State Commun. 108, 549–555 (1998).
[CrossRef]

G. B. Loutts, M. Warren, L. Taylor, R. R. Rakhimov, H. R. Ries, G. Miller III, M. A. Noginov, M. Curley, N. Noginova, N. Kukhtarev, H. J. Caulfield, and P. Venkateswarlu, “Manganese-doped yttrium orthoaluminate: a potential material for holographic recording and data storage,” Phys. Rev. B 57, 3706–3709 (1998).
[CrossRef]

Riseberg, L. A.

L. A. Riseberg and M. J. Weber, “Spectrum and anomalous temperature dependence of the 2E→4A2 emission in Y3Al5O12:Mn4+,” Solid State Commun. 9, 791–794 (1974).
[CrossRef]

Rotman, S. R.

S. R. Rotman, E. Luria, J. A. Mares, G. Boulon, A. Brenier, and L. Lou, “Time decay of excited chromium- and neodymium-doped yttrium aluminum perovskite,” J. Appl. Phys. 80, 1094–1098 (1996).
[CrossRef]

Rotman, S. T.

J. A. Mares, G. Boulon, A. Brenier, L. Lou, S. T. Rotman, and H. Lura, “Cr3+, Nd3+ multisites, pairs, and energy transfer processes in laser crystal YAlO3,” J. Phys. III 4, C-385–C4–388 (1994).

Ryabochkina, P. A.

N. V. Asafev, N. A. Eskov, V. V. Kochurikhin, V. A. Myzina, P. A. Ryabochkina, V. B. Sulaev, S. N. Ushakov, and L. I. Tsymbal, “Spectral studies of calcium-niobium-gallium-garnet single crystals doped with Mn ions,” Opt. Spectrosc. 69, 229–230 (1990).

Shannon, R. D.

R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr., Sect. A: Found. Crystallogr. 32, 751–767 (1976).
[CrossRef]

Staff, C. B.

R. Korczak and C. B. Staff, “Czochralski growth of neodymium-doped yttrium orthoaluminate,” J. Cryst. Growth 20, 71–72 (1973).
[CrossRef]

Suchocki, A.

A. Brenier, C. Pedrini, C. Madej, G. Boulon, and A. Suchocki, “Mn4+ multisites and Mn4+→Tm3+ energy transfers in Gd3Ga5O12 garnet,” J. Phys. IV 1, C7–285–C7–288 (1991).

Suchoski, A.

A. Brenier, A. Suchoski, C. Pedrini, G. Boulon, and C. Madej, “Spectroscopy of Mn4+-doped Ga-substituted gadolinium gallium garnet,” Phys. Rev. B 46, 3219–3227 (1992).
[CrossRef]

Sulaev, V. B.

N. V. Asafev, N. A. Eskov, V. V. Kochurikhin, V. A. Myzina, P. A. Ryabochkina, V. B. Sulaev, S. N. Ushakov, and L. I. Tsymbal, “Spectral studies of calcium-niobium-gallium-garnet single crystals doped with Mn ions,” Opt. Spectrosc. 69, 229–230 (1990).

Taylor, L.

G. B. Loutts, M. Warren, L. Taylor, R. R. Rakhimov, H. R. Ries, G. Miller III, M. A. Noginov, M. Curley, N. Noginova, N. Kukhtarev, H. J. Caulfield, and P. Venkateswarlu, “Manganese-doped yttrium orthoaluminate: a potential material for holographic recording and data storage,” Phys. Rev. B 57, 3706–3709 (1998).
[CrossRef]

Tsymbal, L. I.

N. V. Asafev, N. A. Eskov, V. V. Kochurikhin, V. A. Myzina, P. A. Ryabochkina, V. B. Sulaev, S. N. Ushakov, and L. I. Tsymbal, “Spectral studies of calcium-niobium-gallium-garnet single crystals doped with Mn ions,” Opt. Spectrosc. 69, 229–230 (1990).

Ushakov, S. N.

N. V. Asafev, N. A. Eskov, V. V. Kochurikhin, V. A. Myzina, P. A. Ryabochkina, V. B. Sulaev, S. N. Ushakov, and L. I. Tsymbal, “Spectral studies of calcium-niobium-gallium-garnet single crystals doped with Mn ions,” Opt. Spectrosc. 69, 229–230 (1990).

Vakhidov, Sh. A.

V. A. Antonov, P. A. Arsenev, Sh. A. Vakhidov, and E. M. Ibragimova, “Colour centers in yttrium aluminate crystals activated with transition metal ions,” Phys. Status Solidi A 22, 391–399 (1974).
[CrossRef]

van der Weg, W. F.

A. van Die, A. C. H. I. Leenaers, W. F. van der Weg, and G. Blasse, “A search for luminescence of the trivalent manganese ion in solid aluminates,” Mater. Res. Bull. 22, 781–787 (1987).
[CrossRef]

van der Ziel, J. P.

J. P. van der Ziel, “Spectrum of exchange coupled Cr3+ pairs in YAlO3,” J. Chem. Phys. 57, 2442–2450 (1972).
[CrossRef]

van Die, A.

A. van Die, A. C. H. I. Leenaers, W. F. van der Weg, and G. Blasse, “A search for luminescence of the trivalent manganese ion in solid aluminates,” Mater. Res. Bull. 22, 781–787 (1987).
[CrossRef]

Varitimos, T. E.

M. J. Weber and T. E. Varitimos, “Optical spectra and relaxation of Cr3+ ions in YAlO3,” J. Appl. Phys. 45, 810–816 (1974).
[CrossRef]

Venkateswarlu, P.

M. A. Noginov, N. Noginova, M. Curley, N. Kukhtarev, H. J. Caulfield, P. Venkateswarlu, and G. B. Loutts, “Optical characterization of Mn:YAlO3, material for holographic recording and data storage,” J. Opt. Soc. Am. B 15, 1463–1468 (1998).
[CrossRef]

G. B. Loutts, M. Warren, L. Taylor, R. R. Rakhimov, H. R. Ries, G. Miller III, M. A. Noginov, M. Curley, N. Noginova, N. Kukhtarev, H. J. Caulfield, and P. Venkateswarlu, “Manganese-doped yttrium orthoaluminate: a potential material for holographic recording and data storage,” Phys. Rev. B 57, 3706–3709 (1998).
[CrossRef]

Warren, M.

G. B. Loutts, M. Warren, L. Taylor, R. R. Rakhimov, H. R. Ries, G. Miller III, M. A. Noginov, M. Curley, N. Noginova, N. Kukhtarev, H. J. Caulfield, and P. Venkateswarlu, “Manganese-doped yttrium orthoaluminate: a potential material for holographic recording and data storage,” Phys. Rev. B 57, 3706–3709 (1998).
[CrossRef]

Weber, M. J.

L. A. Riseberg and M. J. Weber, “Spectrum and anomalous temperature dependence of the 2E→4A2 emission in Y3Al5O12:Mn4+,” Solid State Commun. 9, 791–794 (1974).
[CrossRef]

M. J. Weber and T. E. Varitimos, “Optical spectra and relaxation of Cr3+ ions in YAlO3,” J. Appl. Phys. 45, 810–816 (1974).
[CrossRef]

Wilkerson, A. L.

R. R. Rakhimov, A. L. Wilkerson, G. B. Loutts, M. A. Noginov, N. Noginova, W. Lindsay, and H. R. Ries, “Spin and valence states of manganese ions in manganese-doped yttrium orthoaluminate,” Solid State Commun. 108, 549–555 (1998).
[CrossRef]

Wood, D. L.

S. Geshwind, P. Kisliuk, M. P. Klein, J. P. Remeika, and D. L. Wood, “Sharp-line fluorescence, electron paramagnetic resonance, and thermoluminescence of Mn4+ in α-Al2O3,” Phys. Rev. 126, 1684–1686 (1962).
[CrossRef]

Zonn, Z. N.

Z. N. Zonn, V. A. Ioffe, and P. P. Feofilov, “Luminescence of chromium and manganese ions in lanthanum aluminate crystals,” Opt. Spectrosc. 19, 541–543 (1965).

Acta Crystallogr., Sect. A: Found. Crystallogr. (1)

R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr., Sect. A: Found. Crystallogr. 32, 751–767 (1976).
[CrossRef]

Ann. Phys. (Leipzig) (1)

Th. Förster, “Zwischenmolekulare Energiewanderung und Fluoreszenz,” Ann. Phys. (Leipzig) 2, 55–75 (1948).
[CrossRef]

J. Appl. Phys. (2)

S. R. Rotman, E. Luria, J. A. Mares, G. Boulon, A. Brenier, and L. Lou, “Time decay of excited chromium- and neodymium-doped yttrium aluminum perovskite,” J. Appl. Phys. 80, 1094–1098 (1996).
[CrossRef]

M. J. Weber and T. E. Varitimos, “Optical spectra and relaxation of Cr3+ ions in YAlO3,” J. Appl. Phys. 45, 810–816 (1974).
[CrossRef]

J. Appl. Spectrosc. (1)

P. Dorenbos, M. V. Korzhik, A. P. Kudryavtseva, S. V. Lyubetskii, B. I. Minkov, V. P. Pavlenko, and A. A. Fyodorov, “Influence of growth defects on the scintillation characteristics of YAlO3:Ce single crystals,” J. Appl. Spectrosc. 59, 633–638 (1993).
[CrossRef]

J. Chem. Phys. (1)

J. P. van der Ziel, “Spectrum of exchange coupled Cr3+ pairs in YAlO3,” J. Chem. Phys. 57, 2442–2450 (1972).
[CrossRef]

J. Cryst. Growth (1)

R. Korczak and C. B. Staff, “Czochralski growth of neodymium-doped yttrium orthoaluminate,” J. Cryst. Growth 20, 71–72 (1973).
[CrossRef]

J. Lumin. (2)

K. Petermann and G. Huber, “Broad band fluorescence of transition metal doped garnets and tungstates,” J. Lumin. 31/32, 71–77 (1984).
[CrossRef]

J. F. Donegan, T. J. Glynn, G. F. Imbusch, and J. P. Remeika, “Luminescence and fluorescence narrowing studies of Y3Al5O12:Mn3+,” J. Lumin. 36, 93–100 (1986).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. III (1)

J. A. Mares, G. Boulon, A. Brenier, L. Lou, S. T. Rotman, and H. Lura, “Cr3+, Nd3+ multisites, pairs, and energy transfer processes in laser crystal YAlO3,” J. Phys. III 4, C-385–C4–388 (1994).

J. Phys. IV (1)

A. Brenier, C. Pedrini, C. Madej, G. Boulon, and A. Suchocki, “Mn4+ multisites and Mn4+→Tm3+ energy transfers in Gd3Ga5O12 garnet,” J. Phys. IV 1, C7–285–C7–288 (1991).

Mater. Res. Bull. (3)

A. van Die, A. C. H. I. Leenaers, W. F. van der Weg, and G. Blasse, “A search for luminescence of the trivalent manganese ion in solid aluminates,” Mater. Res. Bull. 22, 781–787 (1987).
[CrossRef]

P. D. Dernier and R. G. Maines, “High pressure synthesis and crystal data of the rare earth orthoaluminates,” Mater. Res. Bull. 6, 433–440 (1971).
[CrossRef]

R. Diehl and G. Brant, “Crystal structure refinement of YAlO3, a promising laser material,” Mater. Res. Bull. 10, 85–90 (1975).
[CrossRef]

Opt. Spectrosc. (2)

N. V. Asafev, N. A. Eskov, V. V. Kochurikhin, V. A. Myzina, P. A. Ryabochkina, V. B. Sulaev, S. N. Ushakov, and L. I. Tsymbal, “Spectral studies of calcium-niobium-gallium-garnet single crystals doped with Mn ions,” Opt. Spectrosc. 69, 229–230 (1990).

Z. N. Zonn, V. A. Ioffe, and P. P. Feofilov, “Luminescence of chromium and manganese ions in lanthanum aluminate crystals,” Opt. Spectrosc. 19, 541–543 (1965).

Phys. Rev. (1)

S. Geshwind, P. Kisliuk, M. P. Klein, J. P. Remeika, and D. L. Wood, “Sharp-line fluorescence, electron paramagnetic resonance, and thermoluminescence of Mn4+ in α-Al2O3,” Phys. Rev. 126, 1684–1686 (1962).
[CrossRef]

Phys. Rev. B (3)

A. Brenier, A. Suchoski, C. Pedrini, G. Boulon, and C. Madej, “Spectroscopy of Mn4+-doped Ga-substituted gadolinium gallium garnet,” Phys. Rev. B 46, 3219–3227 (1992).
[CrossRef]

S. Kück, S. Hartung, S. Hurling, K. Petermann, and G. Huber, “Optical transitions in Mn3+-doped garnets,” Phys. Rev. B 57, 2203–2216 (1998).
[CrossRef]

G. B. Loutts, M. Warren, L. Taylor, R. R. Rakhimov, H. R. Ries, G. Miller III, M. A. Noginov, M. Curley, N. Noginova, N. Kukhtarev, H. J. Caulfield, and P. Venkateswarlu, “Manganese-doped yttrium orthoaluminate: a potential material for holographic recording and data storage,” Phys. Rev. B 57, 3706–3709 (1998).
[CrossRef]

Phys. Status Solidi A (3)

V. A. Antonov and P. A. Arsenev, “Properties of ions of the iron transition group in the lattice of single crystals of gadolinium aluminate,” Phys. Status Solidi A 20, K157–K161 (1973).
[CrossRef]

V. A. Antonov, P. A. Arsenev, Sh. A. Vakhidov, and E. M. Ibragimova, “Colour centers in yttrium aluminate crystals activated with transition metal ions,” Phys. Status Solidi A 22, 391–399 (1974).
[CrossRef]

V. A. Antonov, P. A. Arsenev, I. G. Linda, and V. L. Farshtendiker, “Studies of some point defects in YAlO3 and GdAlO3 single crystals,” Phys. Status Solidi A 15, K63–K68 (1973).
[CrossRef]

Solid State Commun. (2)

R. R. Rakhimov, A. L. Wilkerson, G. B. Loutts, M. A. Noginov, N. Noginova, W. Lindsay, and H. R. Ries, “Spin and valence states of manganese ions in manganese-doped yttrium orthoaluminate,” Solid State Commun. 108, 549–555 (1998).
[CrossRef]

L. A. Riseberg and M. J. Weber, “Spectrum and anomalous temperature dependence of the 2E→4A2 emission in Y3Al5O12:Mn4+,” Solid State Commun. 9, 791–794 (1974).
[CrossRef]

Other (3)

B. Henderson and G. F. Imbusch, Optical Spectroscopy of Inorganic Solids (Clarendon, Oxford, 1989).

R. G. Burns, Mineralogical Applications of Crystal Field Theory, 2nd ed. (Cambridge U. Press, Cambridge, 1993).

See, for example, E. V. Zharikov, in Redkozemel’nyye Scandievye Granaty: Voprosy Materialovedeniya (Rare Earth Scandium Garnets: The Materials Science Aspects), I. A. Shcherbakov, ed., Vol. 26 of Proceedings of the General Physics Institute (Nauka, Moscow, 1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Room-temperature absorption spectra of an as-grown Mn:YAlO3 crystal cut along the crystallographic axes a, b, and c. The six traces correspond to three different polarizations of the electric field (along the crystallographic axes) and two different light-propagation directions for each polarization.

Fig. 2
Fig. 2

Room-temperature emission spectra of Mn4+ in YAlO3 (trace 1), Mn4+ in Y3Al5O12 (trace 2), and Mn3+ in Y3Al5O12 (trace 3). All spectra are unpolarized. The short-wavelength shoulder in trace 2, marked with the arrow, is due to the presence of Mn3+ ions that occur in the crystal because of insufficient charge compensation.

Fig. 3
Fig. 3

Luminescence kinetics of as-grown Mn:YAlO3 under (weak) Q-switched 532-nm laser pumping. (a) Trace 1, room temperature, λ = 715 nm. Traces 2–7, liquid-nitrogen temperature. Trace 2, λ = 700.5 nm; trace 3, λ = 714.5 nm; trace 4, λ = 709.5 nm; trace 5, λ = 711.5 nm; trace 6, λ = 719.5 nm; trace 7, λ = 706.5 nm. (b) Liquid-nitrogen temperature. Trace 1, λ = 711.5 nm; trace 2, λ = 719.5 nm; trace 3, λ = 770 nm; trace 4, λ = 738.7 nm; trace 5, time response of the detection system. (c) Liquid-nitrogen temperature. Trace 1, λ = 724 nm; trace 2, λ = 738.7 nm.

Fig. 4
Fig. 4

Tanabe–Sugano energy-level diagram of a 3d3 system in an octahedral crystal field (calculated in Ref. 20 for C/B = 4.8).

Fig. 5
Fig. 5

UV absorption spectra of the thin (l=0.27 mm) YAlO3 sample. Trace 1, unexposed; trace 2, sunlight exposed; trace 3, weakly exposed to an Ar+ laser; trace 4, strongly exposed to an Ar+ laser. Trace 5 is the difference between traces 1 and 4.

Fig. 6
Fig. 6

Polarized absorption spectra of an as-grown Mn:YAlO3 crystal at 77 K (traces 1–3). Trace 1, polarization of electric field Ea, propagation of light kb; trace 2, Ec, kb; trace 3, Eb, kc. Trace 4, room-temperature absorption spectrum of the same crystal at Ea and kb (taken after 77-K measurements were made).

Fig. 7
Fig. 7

Liquid-nitrogen-temperature emission spectrum of an as-grown Mn:YAlO3 crystal recorded at 1, 0.5-ms and 2, 3-ms delay between the laser pulse and the data acquisition (gate delay of the boxcar integrator). Trace 3, room-temperature emission spectrum of as-grown Mn:YAlO3. Spectra 1 and 3 are normalized to unity. Spectrum 2 is in scale with spectrum 1. All spectra are unpolarized. The spectral resolution is ≈1.2 nm. Positions of the peaks are marked in nanometers.

Fig. 8
Fig. 8

Room-temperature absorption spectrum of as-grown Mn:GdAlO3.

Fig. 9
Fig. 9

Trace 1, room-temperature emission spectra of as-grown Mn:GdAlO3. Traces 2 and 3, liquid-nitrogen-temperature emission spectra of an as-grown Mn:GdAlO3 crystal recorded at 2, 0.1-ms and 3, 3-ms delay between the laser pulse and the data acquisition (gate delay of the boxcar integrator). Spectra 1 and 2 are normalized to unity. Spectrum 3 is in scale with spectrum 2. All spectra are unpolarized. The spectral resolution is ≈1.2 nm. The positions of the peaks are marked in nanometers.

Fig. 10
Fig. 10

Luminescence kinetics of as-grown Mn:GdAlO3 under (weak) Q-switched 532-nm laser pumping. (a) Trace 1, room temperature; λ = 699 nm. Traces 2–5, liquid-nitrogen temperature. Trace 2, λ=697 nm; trace 3, λ = 704 nm; trace 4, λ = 714 nm; trace 5, λ = 709 nm. (b) Liquid-nitrogen temperature. Trace 1, λ = 704 nm; trace 2, λ = 709 nm; trace 3, λ = 714.2 nm; trace 4, λ = 718 nm. (c) Liquid-nitrogen temperature. Trace 1, λ = 800 nm; trace 2, λ = 750 nm. (d) Liquid-nitrogen temperature. Trace 1, 729 nm; trace 2, 750 nm.

Fig. 11
Fig. 11

Luminescence decay kinetics in as-grown (yellowish) Mn4+:YAlO3 (trace 1), in photoexposed (dark bluish-grayish) Mn4+:YAlO3 (trace 2), and in Mn4+:Y3Al5O12 (traces 3 and 4). The kinetics of traces 1–3 were taken at weak pumping (532 nm Q-switched laser), and the kinetics in trace 4 was taken at high-density pumping.

Tables (1)

Tables Icon

Table 1 Crystal Field Parameters Dq and Racah Parameter B in Four Crystals

Metrics