Abstract

A general model is presented for coupling of high-Q whispering-gallery modes in optical microsphere resonators with coupler devices that possess a discrete and continuous spectrum of propagating modes. By contrast to conventional high-Q optical cavities, in microspheres the independence of high intrinsic quality-factor and controllable parameters of coupling via an evanescent field offer a variety of regimes similar to those that are already available in rf devices. The theory is applied to data reported earlier on different types of couplers to microsphere resonators and is complemented by the experimental demonstration of enhanced coupling efficiency (∼80%) and variable loading regimes with Q>108 fused-silica microspheres.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (61)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription