Abstract

We have systematically investigated soliton amplification and reshaping by a nonlinear optical amplifier consisting of an active second-harmonic-generating element and a piece of passive dechirping fiber with a dispersion different from that in the system fiber. In the active element the fundamental harmonic is damped by enhanced losses, whereas the second harmonic is amplified through the external pumping. By selecting the length of the dechirping fiber we find it possible to achieve practically ideal soliton amplification, viz., low-power input (fundamental) solitons are amplified and then released into the system fiber as virtually unchirped high-power fundamental solitons. We have found that a power gain for the soliton of as much as 20–25 dB can be readily achieved; the length or the dispersion of the dechirping fiber is not critical for the degree of soliton amplification. The dispersion of this fiber can be merely twice that of the standard system fiber, and its length can be <10 km. Moreover, we have found that the dechirping fiber is not always needed, although the effective power gain in these cases is smaller, 10–12 dB. We have further investigated the influence of a random amplitude noise added to the input soliton. We found that the soliton amplification and reshaping scheme proposed is reasonably stable against this noise, especially when the dechirping fiber is not used.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (12)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription