Abstract

We measure the spectral reflectivity of a Cat (so named because its first conjugated image was that of a cat) self-pumped conjugator. We find that the transmission and the phase-conjugate reflectivity of the conjugator always vary periodically with wavelength and that the periodicity is caused by a resonator loop that springs up and self-adjusts inside the crystal. Depending on the spectral width of the incident beam, the conjugator will have either a minimum or a maximum reflectivity at the center of the writing spectrum. We show that the sign of the coherence function after one round trip of the internal resonator determines the spectral behavior of the conjugator, and we experimentally map out the dependence of the conjugator’s reflectivity and transmission on the spectral content of the incident beam.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Feinberg, “Self-pumped, continuous-wave phase conjugator using internal reflection,” Opt. Lett. 7, 486–488 (1982).
    [CrossRef] [PubMed]
  2. K. R. MacDonald and J. Feinberg, “Theory of self-pumped phase conjugator with two coupled interaction regions,” J. Opt. Soc. Am. 73, 548–553 (1983).
    [CrossRef]
  3. G. Salamo, M. J. Miller, W. W. Clark III, G. L. Wood, and E. J. Sharp, “Strontium barium niobate as a self-pumped phase conjugator,” Opt. Commun. 59, 417–422 (1986).
    [CrossRef]
  4. G. W. Ross, P. Hribek, R. W. Eason, M. H. Garrett, and D. Rytz, “Impurity enhanced self-pumped phase conjugation in the near infrared in ‘blue’ BaTiO3,” Opt. Commun. 101, 60–64 (1993).
    [CrossRef]
  5. R. K. Jain and K. Stenersen, “Picosecond pulse operation of a dye laser containing a phase-conjugate mirror,” Opt. Lett. 9, 546–548 (1984).
    [CrossRef] [PubMed]
  6. M. C. Gower and P. Hribek, “Mechanisms for internally self-pumped phase-conjugate emission from BaTiO3 crystals,” J. Opt. Soc. Am. B 5, 1750–1757 (1988).
    [CrossRef]
  7. T. Aoyama, S. Mizuta, S. Kurimura, Y. Uesu, and I. Seo, “Emission characteristics of internally self-pumped phase-conjugate wave in photorefractive KNbO3:Fe and BaTiO3 crystals,” Jpn. J. Appl. Phys., Part 1 32, 4307–4310 (1993).
    [CrossRef]
  8. D. Mahgerefteh and J. Feinberg, “Erasure rate and coasting in photorefractive barium titanate at high optical power,” Opt. Lett. 13, 1111–1113 (1988).
    [CrossRef] [PubMed]
  9. S. W. James and R. W. Eason, “Extraordinary-polarized light does not always yield the highest reflectivity in self-pumped BaTiO3,” Opt. Lett. 16, 633–635 (1991).
    [CrossRef] [PubMed]
  10. T. Honda and H. Matsumoto, “Improvement of response speed of a BaTiO3 self-pumped phase-conjugate mirror by crystal heating and beam focusing,” Opt. Commun. 91, 390–394 (1992).
    [CrossRef]
  11. F. C. Jahoda, P. G. Weber, and J. Feinberg, “Optical feedback, wavelength response, and interference effects of self-pumped phase conjugation in BaTiO3,” Opt. Lett. 9, 362–364 (1984).
    [CrossRef] [PubMed]
  12. T. Suzuki and T. Sato, “Improvement of response time with an additional bias beam in a BaTiO3 self-pumped phase-conjugate mirror,” Appl. Opt. 32, 3959–3961 (1993).
    [CrossRef] [PubMed]
  13. T. Honda and H. Matsumoto, “Time response of a BaTiO3 self-pumped phase-conjugate mirror for two mutually coherent inputs,” Opt. Commun. 81, 242–246 (1991).
    [CrossRef]
  14. G. J. Dunning, D. M. Pepper, and M. B. Klein, “Control of self-pumped phase-conjugate reflectivity using incoherent erasure,” Opt. Lett. 15, 99–101 (1990).
    [CrossRef] [PubMed]
  15. P. S. Brody, “Grating structure in self-pumping barium titanate by local erasure,” Appl. Phys. Lett. 53, 262–264 (1988).
    [CrossRef]
  16. D. M. Pepper, “Observation of diminished specular reflectivity from phase-conjugate mirrors,” Phys. Rev. Lett. 62, 2945–2948 (1989).
    [CrossRef] [PubMed]
  17. D. J. Gauthier, P. Narum, and R. W. Boyd, “Observation of deterministic chaos in a phase-conjugate mirror,” Phys. Rev. Lett. 58, 1640–1643 (1987).
    [CrossRef] [PubMed]
  18. J. Rodriguez, A. Siahmakoun, and G. Salamo, “Bistability and optical switching in a total internal reflection phase conjugator,” Appl. Opt. 26, 2263–2265 (1987).
    [CrossRef] [PubMed]
  19. P. Gunter, E. Voit, M. Z. Zha, and J. Albers, “Self-pulsation and optical chaos in self-pumped photorefractive BaTiO3,” Opt. Commun. 55, 210–214 (1985).
    [CrossRef]
  20. R. W. Eason and A. M. C. Smout, “Bistability and noncommutative behavior of multiple-beam self-pulsing and self-pumping in BaTiO3,” Opt. Lett. 12, 51–53 (1987).
    [CrossRef] [PubMed]
  21. Z. Y. Ou, S. Bali, and L. Mandel, “Response of a phase-conjugate mirror to an incident photon,” Phys. Rev. A 39, 2509–2513 (1989).
    [CrossRef] [PubMed]
  22. J. O. White, “Response of a BaTiO3 phase conjugate mirror to broadband and narrowband radiation,” Appl. Phys. A: Solids Surf. 55, 82–90 (1992).
    [CrossRef]
  23. A. A. Zozulya, M. Saffman, and D. Z. Anderson, “Propagation of light beams in photorefractive media: fanning, self-bending, and formation of self-pumped four-wave-mixing phase conjugation geometries,” Phys. Rev. Lett. 73, 818–821 (1994).
    [CrossRef] [PubMed]
  24. K. R. MacDonald and J. Feinberg, “Enhanced four-wave mixing by use of frequency-shifted optical waves in photorefractive BaTiO3,” Phys. Rev. Lett. 55, 821–823 (1985).
    [CrossRef] [PubMed]
  25. J. Feinberg and G. D. Bacher, “Self-scanning of a continuous-wave dye laser having a phase-conjugating resonator cavity,” Opt. Lett. 9, 420–422 (1984).
    [CrossRef] [PubMed]
  26. W. B. Whitten and J. M. Ramsey, “Self-scanning of a dye laser due to a feedback from a BaTiO3 phase-conjugate reflector,” Opt. Lett. 9, 44–46 (1984).
    [CrossRef] [PubMed]
  27. M. C. Gower, “Photoinduced voltages and frequency shifts in a self-pumped phase-conjugating BaTiO3 crystal,” Opt. Lett. 11, 458–460 (1986).
    [CrossRef] [PubMed]
  28. M. Cronin-Colomb and A. Yariv, “Self-induced frequency scanning and distributed Bragg reflection in semiconductor lasers with phase-conjugate feedback,” Opt. Lett. 11, 455–457 (1986).
    [CrossRef]
  29. J. M. Ramsey and W. B. Whitten, “Phase-conjugate feedback into a continuous-wave ring dye laser,” Opt. Lett. 10, 362–364 (1985).
    [CrossRef] [PubMed]
  30. P. Lambelet, R. P. Salathe, M. H. Garrett, and D. Rytz, “Characterization of a photorefractive phase conjugator by optical low-coherence reflectometry,” Appl. Phys. Lett. 64, 1079–1081 (1994).
    [CrossRef]
  31. M. D. Ewbank and P. Yeh, “Frequency shift and cavity length in photorefractive resonators,” Opt. Lett. 10, 496–498 (1985).
    [CrossRef] [PubMed]
  32. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
    [CrossRef]
  33. J. Feinberg, D. Heiman, A. R. Tanguay, Jr., and R. W. Hellwarth, “Photorefractive effects and light-induced charge migration in barium titanate,” J. Appl. Phys. 51, 1297–1305 (1980); erratum 52, 537 (1981).
    [CrossRef]

1994 (2)

A. A. Zozulya, M. Saffman, and D. Z. Anderson, “Propagation of light beams in photorefractive media: fanning, self-bending, and formation of self-pumped four-wave-mixing phase conjugation geometries,” Phys. Rev. Lett. 73, 818–821 (1994).
[CrossRef] [PubMed]

P. Lambelet, R. P. Salathe, M. H. Garrett, and D. Rytz, “Characterization of a photorefractive phase conjugator by optical low-coherence reflectometry,” Appl. Phys. Lett. 64, 1079–1081 (1994).
[CrossRef]

1993 (3)

G. W. Ross, P. Hribek, R. W. Eason, M. H. Garrett, and D. Rytz, “Impurity enhanced self-pumped phase conjugation in the near infrared in ‘blue’ BaTiO3,” Opt. Commun. 101, 60–64 (1993).
[CrossRef]

T. Aoyama, S. Mizuta, S. Kurimura, Y. Uesu, and I. Seo, “Emission characteristics of internally self-pumped phase-conjugate wave in photorefractive KNbO3:Fe and BaTiO3 crystals,” Jpn. J. Appl. Phys., Part 1 32, 4307–4310 (1993).
[CrossRef]

T. Suzuki and T. Sato, “Improvement of response time with an additional bias beam in a BaTiO3 self-pumped phase-conjugate mirror,” Appl. Opt. 32, 3959–3961 (1993).
[CrossRef] [PubMed]

1992 (2)

J. O. White, “Response of a BaTiO3 phase conjugate mirror to broadband and narrowband radiation,” Appl. Phys. A: Solids Surf. 55, 82–90 (1992).
[CrossRef]

T. Honda and H. Matsumoto, “Improvement of response speed of a BaTiO3 self-pumped phase-conjugate mirror by crystal heating and beam focusing,” Opt. Commun. 91, 390–394 (1992).
[CrossRef]

1991 (2)

S. W. James and R. W. Eason, “Extraordinary-polarized light does not always yield the highest reflectivity in self-pumped BaTiO3,” Opt. Lett. 16, 633–635 (1991).
[CrossRef] [PubMed]

T. Honda and H. Matsumoto, “Time response of a BaTiO3 self-pumped phase-conjugate mirror for two mutually coherent inputs,” Opt. Commun. 81, 242–246 (1991).
[CrossRef]

1990 (1)

1989 (2)

D. M. Pepper, “Observation of diminished specular reflectivity from phase-conjugate mirrors,” Phys. Rev. Lett. 62, 2945–2948 (1989).
[CrossRef] [PubMed]

Z. Y. Ou, S. Bali, and L. Mandel, “Response of a phase-conjugate mirror to an incident photon,” Phys. Rev. A 39, 2509–2513 (1989).
[CrossRef] [PubMed]

1988 (3)

1987 (3)

1986 (3)

1985 (4)

P. Gunter, E. Voit, M. Z. Zha, and J. Albers, “Self-pulsation and optical chaos in self-pumped photorefractive BaTiO3,” Opt. Commun. 55, 210–214 (1985).
[CrossRef]

J. M. Ramsey and W. B. Whitten, “Phase-conjugate feedback into a continuous-wave ring dye laser,” Opt. Lett. 10, 362–364 (1985).
[CrossRef] [PubMed]

M. D. Ewbank and P. Yeh, “Frequency shift and cavity length in photorefractive resonators,” Opt. Lett. 10, 496–498 (1985).
[CrossRef] [PubMed]

K. R. MacDonald and J. Feinberg, “Enhanced four-wave mixing by use of frequency-shifted optical waves in photorefractive BaTiO3,” Phys. Rev. Lett. 55, 821–823 (1985).
[CrossRef] [PubMed]

1984 (4)

1983 (1)

1982 (1)

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Albers, J.

P. Gunter, E. Voit, M. Z. Zha, and J. Albers, “Self-pulsation and optical chaos in self-pumped photorefractive BaTiO3,” Opt. Commun. 55, 210–214 (1985).
[CrossRef]

Anderson, D. Z.

A. A. Zozulya, M. Saffman, and D. Z. Anderson, “Propagation of light beams in photorefractive media: fanning, self-bending, and formation of self-pumped four-wave-mixing phase conjugation geometries,” Phys. Rev. Lett. 73, 818–821 (1994).
[CrossRef] [PubMed]

Aoyama, T.

T. Aoyama, S. Mizuta, S. Kurimura, Y. Uesu, and I. Seo, “Emission characteristics of internally self-pumped phase-conjugate wave in photorefractive KNbO3:Fe and BaTiO3 crystals,” Jpn. J. Appl. Phys., Part 1 32, 4307–4310 (1993).
[CrossRef]

Bacher, G. D.

Bali, S.

Z. Y. Ou, S. Bali, and L. Mandel, “Response of a phase-conjugate mirror to an incident photon,” Phys. Rev. A 39, 2509–2513 (1989).
[CrossRef] [PubMed]

Boyd, R. W.

D. J. Gauthier, P. Narum, and R. W. Boyd, “Observation of deterministic chaos in a phase-conjugate mirror,” Phys. Rev. Lett. 58, 1640–1643 (1987).
[CrossRef] [PubMed]

Brody, P. S.

P. S. Brody, “Grating structure in self-pumping barium titanate by local erasure,” Appl. Phys. Lett. 53, 262–264 (1988).
[CrossRef]

Clark III, W. W.

G. Salamo, M. J. Miller, W. W. Clark III, G. L. Wood, and E. J. Sharp, “Strontium barium niobate as a self-pumped phase conjugator,” Opt. Commun. 59, 417–422 (1986).
[CrossRef]

Cronin-Colomb, M.

Dunning, G. J.

Eason, R. W.

Ewbank, M. D.

Feinberg, J.

Garrett, M. H.

P. Lambelet, R. P. Salathe, M. H. Garrett, and D. Rytz, “Characterization of a photorefractive phase conjugator by optical low-coherence reflectometry,” Appl. Phys. Lett. 64, 1079–1081 (1994).
[CrossRef]

G. W. Ross, P. Hribek, R. W. Eason, M. H. Garrett, and D. Rytz, “Impurity enhanced self-pumped phase conjugation in the near infrared in ‘blue’ BaTiO3,” Opt. Commun. 101, 60–64 (1993).
[CrossRef]

Gauthier, D. J.

D. J. Gauthier, P. Narum, and R. W. Boyd, “Observation of deterministic chaos in a phase-conjugate mirror,” Phys. Rev. Lett. 58, 1640–1643 (1987).
[CrossRef] [PubMed]

Gower, M. C.

Gunter, P.

P. Gunter, E. Voit, M. Z. Zha, and J. Albers, “Self-pulsation and optical chaos in self-pumped photorefractive BaTiO3,” Opt. Commun. 55, 210–214 (1985).
[CrossRef]

Honda, T.

T. Honda and H. Matsumoto, “Improvement of response speed of a BaTiO3 self-pumped phase-conjugate mirror by crystal heating and beam focusing,” Opt. Commun. 91, 390–394 (1992).
[CrossRef]

T. Honda and H. Matsumoto, “Time response of a BaTiO3 self-pumped phase-conjugate mirror for two mutually coherent inputs,” Opt. Commun. 81, 242–246 (1991).
[CrossRef]

Hribek, P.

G. W. Ross, P. Hribek, R. W. Eason, M. H. Garrett, and D. Rytz, “Impurity enhanced self-pumped phase conjugation in the near infrared in ‘blue’ BaTiO3,” Opt. Commun. 101, 60–64 (1993).
[CrossRef]

M. C. Gower and P. Hribek, “Mechanisms for internally self-pumped phase-conjugate emission from BaTiO3 crystals,” J. Opt. Soc. Am. B 5, 1750–1757 (1988).
[CrossRef]

Jahoda, F. C.

Jain, R. K.

James, S. W.

Klein, M. B.

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Kurimura, S.

T. Aoyama, S. Mizuta, S. Kurimura, Y. Uesu, and I. Seo, “Emission characteristics of internally self-pumped phase-conjugate wave in photorefractive KNbO3:Fe and BaTiO3 crystals,” Jpn. J. Appl. Phys., Part 1 32, 4307–4310 (1993).
[CrossRef]

Lambelet, P.

P. Lambelet, R. P. Salathe, M. H. Garrett, and D. Rytz, “Characterization of a photorefractive phase conjugator by optical low-coherence reflectometry,” Appl. Phys. Lett. 64, 1079–1081 (1994).
[CrossRef]

MacDonald, K. R.

K. R. MacDonald and J. Feinberg, “Enhanced four-wave mixing by use of frequency-shifted optical waves in photorefractive BaTiO3,” Phys. Rev. Lett. 55, 821–823 (1985).
[CrossRef] [PubMed]

K. R. MacDonald and J. Feinberg, “Theory of self-pumped phase conjugator with two coupled interaction regions,” J. Opt. Soc. Am. 73, 548–553 (1983).
[CrossRef]

Mahgerefteh, D.

Mandel, L.

Z. Y. Ou, S. Bali, and L. Mandel, “Response of a phase-conjugate mirror to an incident photon,” Phys. Rev. A 39, 2509–2513 (1989).
[CrossRef] [PubMed]

Matsumoto, H.

T. Honda and H. Matsumoto, “Improvement of response speed of a BaTiO3 self-pumped phase-conjugate mirror by crystal heating and beam focusing,” Opt. Commun. 91, 390–394 (1992).
[CrossRef]

T. Honda and H. Matsumoto, “Time response of a BaTiO3 self-pumped phase-conjugate mirror for two mutually coherent inputs,” Opt. Commun. 81, 242–246 (1991).
[CrossRef]

Miller, M. J.

G. Salamo, M. J. Miller, W. W. Clark III, G. L. Wood, and E. J. Sharp, “Strontium barium niobate as a self-pumped phase conjugator,” Opt. Commun. 59, 417–422 (1986).
[CrossRef]

Mizuta, S.

T. Aoyama, S. Mizuta, S. Kurimura, Y. Uesu, and I. Seo, “Emission characteristics of internally self-pumped phase-conjugate wave in photorefractive KNbO3:Fe and BaTiO3 crystals,” Jpn. J. Appl. Phys., Part 1 32, 4307–4310 (1993).
[CrossRef]

Narum, P.

D. J. Gauthier, P. Narum, and R. W. Boyd, “Observation of deterministic chaos in a phase-conjugate mirror,” Phys. Rev. Lett. 58, 1640–1643 (1987).
[CrossRef] [PubMed]

Ou, Z. Y.

Z. Y. Ou, S. Bali, and L. Mandel, “Response of a phase-conjugate mirror to an incident photon,” Phys. Rev. A 39, 2509–2513 (1989).
[CrossRef] [PubMed]

Pepper, D. M.

G. J. Dunning, D. M. Pepper, and M. B. Klein, “Control of self-pumped phase-conjugate reflectivity using incoherent erasure,” Opt. Lett. 15, 99–101 (1990).
[CrossRef] [PubMed]

D. M. Pepper, “Observation of diminished specular reflectivity from phase-conjugate mirrors,” Phys. Rev. Lett. 62, 2945–2948 (1989).
[CrossRef] [PubMed]

Ramsey, J. M.

Rodriguez, J.

Ross, G. W.

G. W. Ross, P. Hribek, R. W. Eason, M. H. Garrett, and D. Rytz, “Impurity enhanced self-pumped phase conjugation in the near infrared in ‘blue’ BaTiO3,” Opt. Commun. 101, 60–64 (1993).
[CrossRef]

Rytz, D.

P. Lambelet, R. P. Salathe, M. H. Garrett, and D. Rytz, “Characterization of a photorefractive phase conjugator by optical low-coherence reflectometry,” Appl. Phys. Lett. 64, 1079–1081 (1994).
[CrossRef]

G. W. Ross, P. Hribek, R. W. Eason, M. H. Garrett, and D. Rytz, “Impurity enhanced self-pumped phase conjugation in the near infrared in ‘blue’ BaTiO3,” Opt. Commun. 101, 60–64 (1993).
[CrossRef]

Saffman, M.

A. A. Zozulya, M. Saffman, and D. Z. Anderson, “Propagation of light beams in photorefractive media: fanning, self-bending, and formation of self-pumped four-wave-mixing phase conjugation geometries,” Phys. Rev. Lett. 73, 818–821 (1994).
[CrossRef] [PubMed]

Salamo, G.

J. Rodriguez, A. Siahmakoun, and G. Salamo, “Bistability and optical switching in a total internal reflection phase conjugator,” Appl. Opt. 26, 2263–2265 (1987).
[CrossRef] [PubMed]

G. Salamo, M. J. Miller, W. W. Clark III, G. L. Wood, and E. J. Sharp, “Strontium barium niobate as a self-pumped phase conjugator,” Opt. Commun. 59, 417–422 (1986).
[CrossRef]

Salathe, R. P.

P. Lambelet, R. P. Salathe, M. H. Garrett, and D. Rytz, “Characterization of a photorefractive phase conjugator by optical low-coherence reflectometry,” Appl. Phys. Lett. 64, 1079–1081 (1994).
[CrossRef]

Sato, T.

Seo, I.

T. Aoyama, S. Mizuta, S. Kurimura, Y. Uesu, and I. Seo, “Emission characteristics of internally self-pumped phase-conjugate wave in photorefractive KNbO3:Fe and BaTiO3 crystals,” Jpn. J. Appl. Phys., Part 1 32, 4307–4310 (1993).
[CrossRef]

Sharp, E. J.

G. Salamo, M. J. Miller, W. W. Clark III, G. L. Wood, and E. J. Sharp, “Strontium barium niobate as a self-pumped phase conjugator,” Opt. Commun. 59, 417–422 (1986).
[CrossRef]

Siahmakoun, A.

Smout, A. M. C.

Stenersen, K.

Suzuki, T.

Uesu, Y.

T. Aoyama, S. Mizuta, S. Kurimura, Y. Uesu, and I. Seo, “Emission characteristics of internally self-pumped phase-conjugate wave in photorefractive KNbO3:Fe and BaTiO3 crystals,” Jpn. J. Appl. Phys., Part 1 32, 4307–4310 (1993).
[CrossRef]

Voit, E.

P. Gunter, E. Voit, M. Z. Zha, and J. Albers, “Self-pulsation and optical chaos in self-pumped photorefractive BaTiO3,” Opt. Commun. 55, 210–214 (1985).
[CrossRef]

Weber, P. G.

White, J. O.

J. O. White, “Response of a BaTiO3 phase conjugate mirror to broadband and narrowband radiation,” Appl. Phys. A: Solids Surf. 55, 82–90 (1992).
[CrossRef]

Whitten, W. B.

Wood, G. L.

G. Salamo, M. J. Miller, W. W. Clark III, G. L. Wood, and E. J. Sharp, “Strontium barium niobate as a self-pumped phase conjugator,” Opt. Commun. 59, 417–422 (1986).
[CrossRef]

Yariv, A.

Yeh, P.

Zha, M. Z.

P. Gunter, E. Voit, M. Z. Zha, and J. Albers, “Self-pulsation and optical chaos in self-pumped photorefractive BaTiO3,” Opt. Commun. 55, 210–214 (1985).
[CrossRef]

Zozulya, A. A.

A. A. Zozulya, M. Saffman, and D. Z. Anderson, “Propagation of light beams in photorefractive media: fanning, self-bending, and formation of self-pumped four-wave-mixing phase conjugation geometries,” Phys. Rev. Lett. 73, 818–821 (1994).
[CrossRef] [PubMed]

Appl. Opt. (2)

Appl. Phys. A: Solids Surf. (1)

J. O. White, “Response of a BaTiO3 phase conjugate mirror to broadband and narrowband radiation,” Appl. Phys. A: Solids Surf. 55, 82–90 (1992).
[CrossRef]

Appl. Phys. Lett. (2)

P. S. Brody, “Grating structure in self-pumping barium titanate by local erasure,” Appl. Phys. Lett. 53, 262–264 (1988).
[CrossRef]

P. Lambelet, R. P. Salathe, M. H. Garrett, and D. Rytz, “Characterization of a photorefractive phase conjugator by optical low-coherence reflectometry,” Appl. Phys. Lett. 64, 1079–1081 (1994).
[CrossRef]

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys., Part 1 (1)

T. Aoyama, S. Mizuta, S. Kurimura, Y. Uesu, and I. Seo, “Emission characteristics of internally self-pumped phase-conjugate wave in photorefractive KNbO3:Fe and BaTiO3 crystals,” Jpn. J. Appl. Phys., Part 1 32, 4307–4310 (1993).
[CrossRef]

Opt. Commun. (5)

G. Salamo, M. J. Miller, W. W. Clark III, G. L. Wood, and E. J. Sharp, “Strontium barium niobate as a self-pumped phase conjugator,” Opt. Commun. 59, 417–422 (1986).
[CrossRef]

G. W. Ross, P. Hribek, R. W. Eason, M. H. Garrett, and D. Rytz, “Impurity enhanced self-pumped phase conjugation in the near infrared in ‘blue’ BaTiO3,” Opt. Commun. 101, 60–64 (1993).
[CrossRef]

P. Gunter, E. Voit, M. Z. Zha, and J. Albers, “Self-pulsation and optical chaos in self-pumped photorefractive BaTiO3,” Opt. Commun. 55, 210–214 (1985).
[CrossRef]

T. Honda and H. Matsumoto, “Time response of a BaTiO3 self-pumped phase-conjugate mirror for two mutually coherent inputs,” Opt. Commun. 81, 242–246 (1991).
[CrossRef]

T. Honda and H. Matsumoto, “Improvement of response speed of a BaTiO3 self-pumped phase-conjugate mirror by crystal heating and beam focusing,” Opt. Commun. 91, 390–394 (1992).
[CrossRef]

Opt. Lett. (13)

F. C. Jahoda, P. G. Weber, and J. Feinberg, “Optical feedback, wavelength response, and interference effects of self-pumped phase conjugation in BaTiO3,” Opt. Lett. 9, 362–364 (1984).
[CrossRef] [PubMed]

G. J. Dunning, D. M. Pepper, and M. B. Klein, “Control of self-pumped phase-conjugate reflectivity using incoherent erasure,” Opt. Lett. 15, 99–101 (1990).
[CrossRef] [PubMed]

R. W. Eason and A. M. C. Smout, “Bistability and noncommutative behavior of multiple-beam self-pulsing and self-pumping in BaTiO3,” Opt. Lett. 12, 51–53 (1987).
[CrossRef] [PubMed]

R. K. Jain and K. Stenersen, “Picosecond pulse operation of a dye laser containing a phase-conjugate mirror,” Opt. Lett. 9, 546–548 (1984).
[CrossRef] [PubMed]

D. Mahgerefteh and J. Feinberg, “Erasure rate and coasting in photorefractive barium titanate at high optical power,” Opt. Lett. 13, 1111–1113 (1988).
[CrossRef] [PubMed]

S. W. James and R. W. Eason, “Extraordinary-polarized light does not always yield the highest reflectivity in self-pumped BaTiO3,” Opt. Lett. 16, 633–635 (1991).
[CrossRef] [PubMed]

M. D. Ewbank and P. Yeh, “Frequency shift and cavity length in photorefractive resonators,” Opt. Lett. 10, 496–498 (1985).
[CrossRef] [PubMed]

J. Feinberg, “Self-pumped, continuous-wave phase conjugator using internal reflection,” Opt. Lett. 7, 486–488 (1982).
[CrossRef] [PubMed]

J. Feinberg and G. D. Bacher, “Self-scanning of a continuous-wave dye laser having a phase-conjugating resonator cavity,” Opt. Lett. 9, 420–422 (1984).
[CrossRef] [PubMed]

W. B. Whitten and J. M. Ramsey, “Self-scanning of a dye laser due to a feedback from a BaTiO3 phase-conjugate reflector,” Opt. Lett. 9, 44–46 (1984).
[CrossRef] [PubMed]

M. C. Gower, “Photoinduced voltages and frequency shifts in a self-pumped phase-conjugating BaTiO3 crystal,” Opt. Lett. 11, 458–460 (1986).
[CrossRef] [PubMed]

M. Cronin-Colomb and A. Yariv, “Self-induced frequency scanning and distributed Bragg reflection in semiconductor lasers with phase-conjugate feedback,” Opt. Lett. 11, 455–457 (1986).
[CrossRef]

J. M. Ramsey and W. B. Whitten, “Phase-conjugate feedback into a continuous-wave ring dye laser,” Opt. Lett. 10, 362–364 (1985).
[CrossRef] [PubMed]

Phys. Rev. A (1)

Z. Y. Ou, S. Bali, and L. Mandel, “Response of a phase-conjugate mirror to an incident photon,” Phys. Rev. A 39, 2509–2513 (1989).
[CrossRef] [PubMed]

Phys. Rev. Lett. (4)

D. M. Pepper, “Observation of diminished specular reflectivity from phase-conjugate mirrors,” Phys. Rev. Lett. 62, 2945–2948 (1989).
[CrossRef] [PubMed]

D. J. Gauthier, P. Narum, and R. W. Boyd, “Observation of deterministic chaos in a phase-conjugate mirror,” Phys. Rev. Lett. 58, 1640–1643 (1987).
[CrossRef] [PubMed]

A. A. Zozulya, M. Saffman, and D. Z. Anderson, “Propagation of light beams in photorefractive media: fanning, self-bending, and formation of self-pumped four-wave-mixing phase conjugation geometries,” Phys. Rev. Lett. 73, 818–821 (1994).
[CrossRef] [PubMed]

K. R. MacDonald and J. Feinberg, “Enhanced four-wave mixing by use of frequency-shifted optical waves in photorefractive BaTiO3,” Phys. Rev. Lett. 55, 821–823 (1985).
[CrossRef] [PubMed]

Other (1)

J. Feinberg, D. Heiman, A. R. Tanguay, Jr., and R. W. Hellwarth, “Photorefractive effects and light-induced charge migration in barium titanate,” J. Appl. Phys. 51, 1297–1305 (1980); erratum 52, 537 (1981).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

The phase-conjugate and transmitted beam intensities are monitored with the two detectors. ND, neutral density.

Fig. 2
Fig. 2

Typical reflectivity of a Cat phase-conjugate mirror created by light with a narrow spectral width, Δλ=0.0092 nm. (In this and subsequent figures, 1 Å=0.1 nm.) The width of the writing spectrum is represented by the markers on the horizontal axis. The central spike is due to the presence of 2k gratings.

Fig. 3
Fig. 3

Typical transmission through a Cat phase-conjugate mirror created by light of narrow spectral width, Δλ=0.0092nm. The width of the writing spectrum is represented by the markers on the horizontal axis. Note the minimum at the central writing frequency.

Fig. 4
Fig. 4

Reflectivity of a Cat phase-conjugate mirror created by light with a broader spectral width, Δλ=0.0204 nm. The width of the writing spectrum is represented by the markers on the horizontal axis. Note the dip in reflectivity at the center of the writing beam’s spectrum.

Fig. 5
Fig. 5

Typical transmission through a Cat phase-conjugate mirror created by light with a broader spectrum, Δλ=0.0204 nm. The width of the writing spectrum is represented by the markers on the horizontal axis. Note the maximum at the central writing frequency.

Fig. 6
Fig. 6

Reflectivity of a Cat phase-conjugate mirror created by light with a very broad spectrum, Δλ=0.0318 nm. The width of the writing spectrum is represented by the markers on the horizontal axis. The central spike is almost totally suppressed. Note that the reflectivity is once again a maximum at the central writing frequency.

Fig. 7
Fig. 7

Typical transmission through a Cat phase-conjugate mirror created by light with a very broad spectrum, Δλ=0.0318 nm. The width of the writing spectrum is represented by the markers on the horizontal axis. Note the minimum at the central writing frequency.

Fig. 8
Fig. 8

Time evolution of the reflectivity and the transmission of a Cat phase conjugator. These data show that reflection gratings are not the cause of observed spectral oscillations because even after the reflection gratings have decayed the spectral oscillations remain.

Fig. 9
Fig. 9

Contributions to the phase-conjugate beam according to the two four-wave-mixing regions model. Undiffracted fractions of beams 2 and 3 create a ring resonator.

Fig. 10
Fig. 10

Coherence function Γ(x) calculated for two experimental values of spectral width. For the case of a narrow spectral width (point A), the length of the crystal resonator corresponds to a positive value of Γ(x), whereas for the wider spectral width (point B) Γ(x) has become negative.

Fig. 11
Fig. 11

Measured amplitude of spectral oscillations in the Cat’s transmission spectrum. The theoretical curve is a sinc function with a length of a resonator as a free parameter. The best fit length of the resonator Lsinc fit=50.8±2.8 mm is close to the measured length Lactual=51.3±0.5 mm.

Fig. 12
Fig. 12

Measured reflectivity of the Cat phase conjugator as a function of wavelength and spectral width of the writing light. Reflection gratings cause the big peak seen for small writing bandwidths. Note the wavelike spread of resonator-related oscillations.

Fig. 13
Fig. 13

Measured transmission through the Cat phase conjugator as a function of wavelength and spectral width of the writing light. The peaks and valleys of the transmission are seen to be complimentary to those of the reflectivity seen in Fig. 12.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

ΔλΔI=0.0023nm/mA.
transmissiondata=const.×sin2πλΛ.
Λ=0.0130±0.0001nm.
Lresonator=λ2Λ=(817nm)20.013nm=51.3±0.5mm.
Lactual=2ne[(length)2+(width)2]1/2=52.6±0.1mm,
L=Nλprobe,
Γ(x)=sin(πx/Lcoherence)(πx/Lcoherence),
Lcoherence=λ02/Δλ.
Lcoherence>Lresonator,
0.5Lresonator<Lcoherence<Lresonator.
sinc(Δλ)=A sin(πΔλLsinc/λ02)πΔλLsinc/λ02,

Metrics