Abstract

By numerically solving the generalized nonlinear Schrödinger equation, we show that soliton-effect compression of ultrashort pulses in optical fibers can be significantly improved by use of the combined effect of negative third-order dispersion and Raman self-scattering. The effect of Raman self-scattering leads to redshifting of the pulse spectrum, whereas negative third-order dispersion tends to broaden the redshifted spectrum, which results in a significant increase of both the optimum compression ratio and the peak power of the compressed pulse. We also show that, for a given input pulse, there is an optimum negative third-order dispersion at which the improvement in the pulse compression is maximum and that there exists a range of initial pulse widths only within which can the improvement in pulse compression take place.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, Boston, Mass., 1995), Chap. 6.
  2. L. F. Mollenauer, R. H. Stolen, J. P. Gordon, and W. J. Tomlinson, “Extreme picosecond pulse narrowing by means of soliton effect in single-mode optical fibers,” Opt. Lett. 8, 289–291 (1983).
    [CrossRef] [PubMed]
  3. P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron. QE-23, 1938–1946 (1987).
    [CrossRef]
  4. G. P. Agrawal, “Effect of intrapulse stimulated Raman scattering on soliton-effect pulse compression in optical fibers,” Opt. Lett. 15, 224–226 (1990).
    [CrossRef] [PubMed]
  5. E. M. Dianov, Z. S. Nikonova, and V. N. Serkin, “Two stage fiber-optic schemes for dispersion and soliton compression of ultrashort light pulses,” Sov. J. Quantum Electron. 19, 937–939 (1989).
    [CrossRef]
  6. K. Tai and A. Tomita, “1100× optical fiber pulse compression using grating pair and soliton effect at 1.319 μm,” Appl. Phys. Lett. 48, 1033–1035 (1986).
    [CrossRef]
  7. A. S. Gouveia-Neto, A. S. L. Gomes, and J. R. Taylor, “Generation of 33-fsec pulses at 1.32 μm through a higher-order soliton effect in a single-mode optical fiber,” Opt. Lett. 12, 395–397 (1987).
    [CrossRef] [PubMed]
  8. K. C. Chan and H. F. Liu, “Effect of third-order dispersion on soliton-effect pulse compression,” Opt. Lett. 19, 49–51 (1994).
    [CrossRef] [PubMed]
  9. Y. Kodama, M. Romagnoli, S. Wabnitz, and M. Midrio, “Role of third-order dispersion on soliton instabilities and interactions in optical fibers,” Opt. Lett. 19, 165–167 (1994).
    [CrossRef] [PubMed]
  10. V. V. Afanasjev, Y. S. Kivshar, and C. R. Menyuk, “Effect of third-order dispersion on dark solitons,” Opt. Lett. 21, 1975–1977 (1996).
    [CrossRef] [PubMed]
  11. M. Yu and C. J. Mckinstrie, “Modulational instability in dispersion-flattened fibers,” presented at the Optical Society of America 1994 Annual Meeting, Dallas, Texas, October 2–7, 1994.
  12. C. G. Goedde, W. L. Kath, and P. Kumar, “Periodic amplification and conjugation of optical solitons,” Opt. Lett. 20, 1365–1367 (1995).
    [CrossRef] [PubMed]
  13. S. V. Chernikov and P. V. Mamyshev, “Femtosecond soliton propagation in fibers with slowly decreasing dispersion,” J. Opt. Soc. Am. B 8, 1633–1641 (1991).
    [CrossRef]

1996 (1)

1995 (1)

1994 (2)

1991 (1)

1990 (1)

1989 (1)

E. M. Dianov, Z. S. Nikonova, and V. N. Serkin, “Two stage fiber-optic schemes for dispersion and soliton compression of ultrashort light pulses,” Sov. J. Quantum Electron. 19, 937–939 (1989).
[CrossRef]

1987 (2)

P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron. QE-23, 1938–1946 (1987).
[CrossRef]

A. S. Gouveia-Neto, A. S. L. Gomes, and J. R. Taylor, “Generation of 33-fsec pulses at 1.32 μm through a higher-order soliton effect in a single-mode optical fiber,” Opt. Lett. 12, 395–397 (1987).
[CrossRef] [PubMed]

1986 (1)

K. Tai and A. Tomita, “1100× optical fiber pulse compression using grating pair and soliton effect at 1.319 μm,” Appl. Phys. Lett. 48, 1033–1035 (1986).
[CrossRef]

1983 (1)

Afanasjev, V. V.

Agrawal, G. P.

Beaud, P.

P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron. QE-23, 1938–1946 (1987).
[CrossRef]

Chan, K. C.

Chernikov, S. V.

Dianov, E. M.

E. M. Dianov, Z. S. Nikonova, and V. N. Serkin, “Two stage fiber-optic schemes for dispersion and soliton compression of ultrashort light pulses,” Sov. J. Quantum Electron. 19, 937–939 (1989).
[CrossRef]

Goedde, C. G.

Gomes, A. S. L.

Gordon, J. P.

Gouveia-Neto, A. S.

Hodel, W.

P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron. QE-23, 1938–1946 (1987).
[CrossRef]

Kath, W. L.

Kivshar, Y. S.

Kodama, Y.

Kumar, P.

Liu, H. F.

Mamyshev, P. V.

Menyuk, C. R.

Midrio, M.

Mollenauer, L. F.

Nikonova, Z. S.

E. M. Dianov, Z. S. Nikonova, and V. N. Serkin, “Two stage fiber-optic schemes for dispersion and soliton compression of ultrashort light pulses,” Sov. J. Quantum Electron. 19, 937–939 (1989).
[CrossRef]

Romagnoli, M.

Serkin, V. N.

E. M. Dianov, Z. S. Nikonova, and V. N. Serkin, “Two stage fiber-optic schemes for dispersion and soliton compression of ultrashort light pulses,” Sov. J. Quantum Electron. 19, 937–939 (1989).
[CrossRef]

Stolen, R. H.

Tai, K.

K. Tai and A. Tomita, “1100× optical fiber pulse compression using grating pair and soliton effect at 1.319 μm,” Appl. Phys. Lett. 48, 1033–1035 (1986).
[CrossRef]

Taylor, J. R.

Tomita, A.

K. Tai and A. Tomita, “1100× optical fiber pulse compression using grating pair and soliton effect at 1.319 μm,” Appl. Phys. Lett. 48, 1033–1035 (1986).
[CrossRef]

Tomlinson, W. J.

Wabnitz, S.

Weber, H. P.

P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron. QE-23, 1938–1946 (1987).
[CrossRef]

Zysset, B.

P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron. QE-23, 1938–1946 (1987).
[CrossRef]

Appl. Phys. Lett. (1)

K. Tai and A. Tomita, “1100× optical fiber pulse compression using grating pair and soliton effect at 1.319 μm,” Appl. Phys. Lett. 48, 1033–1035 (1986).
[CrossRef]

IEEE J. Quantum Electron. (1)

P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron. QE-23, 1938–1946 (1987).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (7)

Sov. J. Quantum Electron. (1)

E. M. Dianov, Z. S. Nikonova, and V. N. Serkin, “Two stage fiber-optic schemes for dispersion and soliton compression of ultrashort light pulses,” Sov. J. Quantum Electron. 19, 937–939 (1989).
[CrossRef]

Other (2)

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, Boston, Mass., 1995), Chap. 6.

M. Yu and C. J. Mckinstrie, “Modulational instability in dispersion-flattened fibers,” presented at the Optical Society of America 1994 Annual Meeting, Dallas, Texas, October 2–7, 1994.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Evolution of the 1-ps sixth-order soliton in a conventional fiber with parameters τR=0.01, δ=0.0015, and s=0.0026. (a) Temporal evolution over the range ξ=00.188. (b) Spectral evolution over the range ξ=0.0940.188. The five curves in (b) represent, respectively, the spectra of the last five pulse shapes in (a).

Fig. 2
Fig. 2

Same as in Fig. 1, except that TOD is negative with δ=-0.002. The optimum fiber length at which the compression is maximum is a little shorter than that of Fig. 1.

Fig. 3
Fig. 3

Spectral evolution of the sixth-order soliton over the range ξ=00.3 when (a) all higher-order effects are neglected at a setting of τR=δ=s=0 and (b) only negative TOD is taken into account with δ=-0.1 and τR=s=0.

Fig. 4
Fig. 4

Pulse shapes at ξ=0.162, 0.167, 0.171 during the pulse evolution in Fig. 2(a). The physical fiber lengths are 259, 267, and 274 cm, respectively.

Fig. 5
Fig. 5

Optimally compressed pulse shapes of the 1-ps sixth-order soliton for δ=-0.003, -0.0025, -0.002, -0.0015. The other parameters are identical to those of Fig. 2.

Fig. 6
Fig. 6

Optimally compressed pulse shapes of sixth-order solitons with initial widths TFWHM as shown. Solid curves, results obtained from fibers with optimum negative TOD; dashed curves, results obtained from the conventional fiber.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

i Uξ+12 2Uτ2-iδ 3Uτ3
=-N2|U|2U+is τ (|U|2U)-τRU |U|2τ,
ξ=|β2|zT02,τ=t-z/vgT0,N2=n2ω0P0T02cAeff|β2|,
δ=β36|β2|T0,s=2ω0T0,τR=TRT0.

Metrics