Abstract

The finite-element approach to the eigenmode analysis of a photonic bandgap cavity by use of an anisotropic perfectly matched layer absorbing boundary is presented. This method rigorously calculates the resonant frequency, the field pattern, and the quality factor of the resonant mode of a finite-sized cavity in free space. The validity of the approach is examined through its application to two-dimensional photonic bandgap cavities. Analyses of numerical error for the resonant frequencies and the quality factor of the cavities demonstrate the accuracy and reliability of our approach, which used nonuniform grids, higher-order elements, and the perfectly matched layer. Far-field patterns of the resonant modes were obtained by simple transformation. Because the perfectly matched layer can represent the real boundary condition well, cavities of any size and shape can be analyzed with the desired accuracy.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (25)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription