Abstract

We propose a simple atomic-beam collimator consisting of a blue-detuned cylindrical-hollow (doughnut) laser beam. Cold atoms from a magneto-optical trap are loaded into the doughnut beam and guided in the propagation direction of the doughnut beam. The cold atoms experience efficient Sisyphus cooling induced by the doughnut beam and a weak repumping beam and are collimated in the transverse direction. In the longitudinal direction the cold atoms experience small accelerations that are due to the absorption-induced heating of the doughnut beam and the repumping beam. The cooling, heating, and loss mechanisms in this atomic collimator are analyzed. Our study shows that an intense cold atomic beam with a minimum transverse velocity of 2 cm s-1 (a minimum transverse temperature of ∼1.4 μK) and a brightness of approximately 2×1013 atoms (sr-1 cm-2 s-1) can be obtained from the collimator.

© 1998 Optical Society of America

Full Article  |  PDF Article
Related Articles
Theory of atom guidance in a hollow laser beam: dressed-atom approach

Xinye Xu, Yuzhu Wang, and Wonho Jhe
J. Opt. Soc. Am. B 17(6) 1039-1050 (2000)

Optical molasses

P. D. Lett, W. D. Phillips, S. L. Rolston, C. E. Tanner, R. N. Watts, and C. I. Westbrook
J. Opt. Soc. Am. B 6(11) 2084-2107 (1989)

Sisyphus cooling of a bound atom

D. J. Wineland, J. Dalibard, and C. Cohen-Tannoudji
J. Opt. Soc. Am. B 9(1) 32-42 (1992)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (15)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription