Abstract

We investigate the engraving of spectral holograms in porphyrin-derivative-doped solids, where a tautomerization process gives rise to persistent spectral hole burning at low temperature. Starting with a microscopic model of this process, we build a theory that connects conventional narrow-band hole burning with the engraving and retrieval of broadband holograms, in samples with possibly large optical density. The theory is consistent with the experiment that we designed to check it.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Rätsep, M. Tian, I. Lorgeré, F. Grelet, and J.-L. Le Gouët, “Fast random access to frequency-selective optical memories,” Opt. Lett. 21, 83 (1996).
    [CrossRef] [PubMed]
  2. M. Tian, F. Grelet, D. Pavolini, J.-P. Galaup, and J.-L. Le Gouët, “Four-wave hole-burning spectroscopy with a broadband laser source,” Chem. Phys. Lett. 274, 518 (1997).
    [CrossRef]
  3. S. Völker and R. M. Macfarlane, “Photochemical hole-burning in free-base porphyrin and chlorin in n-alkane matrices,” IBM J. Res. Dev. 23, 547 (1979).
    [CrossRef]
  4. I.-J. Lee, G. J. Small, and J. M. Hayes, “Photochemical hole-burning of porphine in amorphous matrices,” J. Phys. Chem. 94, 3376 (1990).
    [CrossRef]
  5. A. J. Meixner, A. Renn, and U. P. Wild, “Spectral hole burning and holography. I. Transmission and holographic detection of spectral holes,” J. Chem. Phys. 91, 67286736 (1989).
    [CrossRef]
  6. A. Renn, A. J. Meixner, and U. P. Wild, “Spectral hole burning and holography. II. Diffraction properties of two spectrally adjacent holograms,” J. Chem. Phys. 92, 2748–2755 (1990).
    [CrossRef]
  7. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909 (1969).
    [CrossRef]
  8. P. Saari, R. Kaarli, and A. Rebane, “Picosecond time- and space-domain holography by photochemical hole-burning,” J. Opt. Soc. Am. B 3, 527 (1986).
    [CrossRef]
  9. H. Sonajalg and P. Saari, “Diffraction efficiency in space- and time-domain holography,” J. Opt. Soc. Am. B 11, 372 (1994).
    [CrossRef]
  10. M. Gouterman, “Spectra of porphyrins,” J. Mol. Spectrosc. Spectrom. 6, 138 (1961).
    [CrossRef]
  11. J. G. Radziszewski, J. Waluk, and J. Michl, “Site-population conserving and site-population altering photo-orientation of matrix-isolated free-base porphine by double proton transfer: IR dichromism and vibrational symmetry assignments,” Chem. Phys. 136, 165 (1989).
    [CrossRef]
  12. J. G. Radziszewski, F. A. Burhalter, and J. Michl, “Nondestructive photo-orientation by generalized pseudo-orientation: a quantitative treatment,” J. Am. Chem. Soc. 109, 61 (1987).
    [CrossRef]
  13. A. M. Weiner, J. P. Heritage, and E. M. Kirschner, “High resolution femtosecond pulse shaping,” J. Opt. Soc. Am. B 5, 1563 (1988).
    [CrossRef]

1997 (1)

M. Tian, F. Grelet, D. Pavolini, J.-P. Galaup, and J.-L. Le Gouët, “Four-wave hole-burning spectroscopy with a broadband laser source,” Chem. Phys. Lett. 274, 518 (1997).
[CrossRef]

1996 (1)

1994 (1)

1990 (2)

I.-J. Lee, G. J. Small, and J. M. Hayes, “Photochemical hole-burning of porphine in amorphous matrices,” J. Phys. Chem. 94, 3376 (1990).
[CrossRef]

A. Renn, A. J. Meixner, and U. P. Wild, “Spectral hole burning and holography. II. Diffraction properties of two spectrally adjacent holograms,” J. Chem. Phys. 92, 2748–2755 (1990).
[CrossRef]

1989 (2)

J. G. Radziszewski, J. Waluk, and J. Michl, “Site-population conserving and site-population altering photo-orientation of matrix-isolated free-base porphine by double proton transfer: IR dichromism and vibrational symmetry assignments,” Chem. Phys. 136, 165 (1989).
[CrossRef]

A. J. Meixner, A. Renn, and U. P. Wild, “Spectral hole burning and holography. I. Transmission and holographic detection of spectral holes,” J. Chem. Phys. 91, 67286736 (1989).
[CrossRef]

1988 (1)

1987 (1)

J. G. Radziszewski, F. A. Burhalter, and J. Michl, “Nondestructive photo-orientation by generalized pseudo-orientation: a quantitative treatment,” J. Am. Chem. Soc. 109, 61 (1987).
[CrossRef]

1986 (1)

1979 (1)

S. Völker and R. M. Macfarlane, “Photochemical hole-burning in free-base porphyrin and chlorin in n-alkane matrices,” IBM J. Res. Dev. 23, 547 (1979).
[CrossRef]

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909 (1969).
[CrossRef]

1961 (1)

M. Gouterman, “Spectra of porphyrins,” J. Mol. Spectrosc. Spectrom. 6, 138 (1961).
[CrossRef]

Burhalter, F. A.

J. G. Radziszewski, F. A. Burhalter, and J. Michl, “Nondestructive photo-orientation by generalized pseudo-orientation: a quantitative treatment,” J. Am. Chem. Soc. 109, 61 (1987).
[CrossRef]

Galaup, J.-P.

M. Tian, F. Grelet, D. Pavolini, J.-P. Galaup, and J.-L. Le Gouët, “Four-wave hole-burning spectroscopy with a broadband laser source,” Chem. Phys. Lett. 274, 518 (1997).
[CrossRef]

Gouterman, M.

M. Gouterman, “Spectra of porphyrins,” J. Mol. Spectrosc. Spectrom. 6, 138 (1961).
[CrossRef]

Grelet, F.

M. Tian, F. Grelet, D. Pavolini, J.-P. Galaup, and J.-L. Le Gouët, “Four-wave hole-burning spectroscopy with a broadband laser source,” Chem. Phys. Lett. 274, 518 (1997).
[CrossRef]

M. Rätsep, M. Tian, I. Lorgeré, F. Grelet, and J.-L. Le Gouët, “Fast random access to frequency-selective optical memories,” Opt. Lett. 21, 83 (1996).
[CrossRef] [PubMed]

Hayes, J. M.

I.-J. Lee, G. J. Small, and J. M. Hayes, “Photochemical hole-burning of porphine in amorphous matrices,” J. Phys. Chem. 94, 3376 (1990).
[CrossRef]

Heritage, J. P.

Kaarli, R.

Kirschner, E. M.

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909 (1969).
[CrossRef]

Le Gouët, J.-L.

M. Tian, F. Grelet, D. Pavolini, J.-P. Galaup, and J.-L. Le Gouët, “Four-wave hole-burning spectroscopy with a broadband laser source,” Chem. Phys. Lett. 274, 518 (1997).
[CrossRef]

M. Rätsep, M. Tian, I. Lorgeré, F. Grelet, and J.-L. Le Gouët, “Fast random access to frequency-selective optical memories,” Opt. Lett. 21, 83 (1996).
[CrossRef] [PubMed]

Lee, I.-J.

I.-J. Lee, G. J. Small, and J. M. Hayes, “Photochemical hole-burning of porphine in amorphous matrices,” J. Phys. Chem. 94, 3376 (1990).
[CrossRef]

Lorgeré, I.

Macfarlane, R. M.

S. Völker and R. M. Macfarlane, “Photochemical hole-burning in free-base porphyrin and chlorin in n-alkane matrices,” IBM J. Res. Dev. 23, 547 (1979).
[CrossRef]

Meixner, A. J.

A. Renn, A. J. Meixner, and U. P. Wild, “Spectral hole burning and holography. II. Diffraction properties of two spectrally adjacent holograms,” J. Chem. Phys. 92, 2748–2755 (1990).
[CrossRef]

A. J. Meixner, A. Renn, and U. P. Wild, “Spectral hole burning and holography. I. Transmission and holographic detection of spectral holes,” J. Chem. Phys. 91, 67286736 (1989).
[CrossRef]

Michl, J.

J. G. Radziszewski, J. Waluk, and J. Michl, “Site-population conserving and site-population altering photo-orientation of matrix-isolated free-base porphine by double proton transfer: IR dichromism and vibrational symmetry assignments,” Chem. Phys. 136, 165 (1989).
[CrossRef]

J. G. Radziszewski, F. A. Burhalter, and J. Michl, “Nondestructive photo-orientation by generalized pseudo-orientation: a quantitative treatment,” J. Am. Chem. Soc. 109, 61 (1987).
[CrossRef]

Pavolini, D.

M. Tian, F. Grelet, D. Pavolini, J.-P. Galaup, and J.-L. Le Gouët, “Four-wave hole-burning spectroscopy with a broadband laser source,” Chem. Phys. Lett. 274, 518 (1997).
[CrossRef]

Radziszewski, J. G.

J. G. Radziszewski, J. Waluk, and J. Michl, “Site-population conserving and site-population altering photo-orientation of matrix-isolated free-base porphine by double proton transfer: IR dichromism and vibrational symmetry assignments,” Chem. Phys. 136, 165 (1989).
[CrossRef]

J. G. Radziszewski, F. A. Burhalter, and J. Michl, “Nondestructive photo-orientation by generalized pseudo-orientation: a quantitative treatment,” J. Am. Chem. Soc. 109, 61 (1987).
[CrossRef]

Rätsep, M.

Rebane, A.

Renn, A.

A. Renn, A. J. Meixner, and U. P. Wild, “Spectral hole burning and holography. II. Diffraction properties of two spectrally adjacent holograms,” J. Chem. Phys. 92, 2748–2755 (1990).
[CrossRef]

A. J. Meixner, A. Renn, and U. P. Wild, “Spectral hole burning and holography. I. Transmission and holographic detection of spectral holes,” J. Chem. Phys. 91, 67286736 (1989).
[CrossRef]

Saari, P.

Small, G. J.

I.-J. Lee, G. J. Small, and J. M. Hayes, “Photochemical hole-burning of porphine in amorphous matrices,” J. Phys. Chem. 94, 3376 (1990).
[CrossRef]

Sonajalg, H.

Tian, M.

M. Tian, F. Grelet, D. Pavolini, J.-P. Galaup, and J.-L. Le Gouët, “Four-wave hole-burning spectroscopy with a broadband laser source,” Chem. Phys. Lett. 274, 518 (1997).
[CrossRef]

M. Rätsep, M. Tian, I. Lorgeré, F. Grelet, and J.-L. Le Gouët, “Fast random access to frequency-selective optical memories,” Opt. Lett. 21, 83 (1996).
[CrossRef] [PubMed]

Völker, S.

S. Völker and R. M. Macfarlane, “Photochemical hole-burning in free-base porphyrin and chlorin in n-alkane matrices,” IBM J. Res. Dev. 23, 547 (1979).
[CrossRef]

Waluk, J.

J. G. Radziszewski, J. Waluk, and J. Michl, “Site-population conserving and site-population altering photo-orientation of matrix-isolated free-base porphine by double proton transfer: IR dichromism and vibrational symmetry assignments,” Chem. Phys. 136, 165 (1989).
[CrossRef]

Weiner, A. M.

Wild, U. P.

A. Renn, A. J. Meixner, and U. P. Wild, “Spectral hole burning and holography. II. Diffraction properties of two spectrally adjacent holograms,” J. Chem. Phys. 92, 2748–2755 (1990).
[CrossRef]

A. J. Meixner, A. Renn, and U. P. Wild, “Spectral hole burning and holography. I. Transmission and holographic detection of spectral holes,” J. Chem. Phys. 91, 67286736 (1989).
[CrossRef]

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909 (1969).
[CrossRef]

Chem. Phys. (1)

J. G. Radziszewski, J. Waluk, and J. Michl, “Site-population conserving and site-population altering photo-orientation of matrix-isolated free-base porphine by double proton transfer: IR dichromism and vibrational symmetry assignments,” Chem. Phys. 136, 165 (1989).
[CrossRef]

Chem. Phys. Lett. (1)

M. Tian, F. Grelet, D. Pavolini, J.-P. Galaup, and J.-L. Le Gouët, “Four-wave hole-burning spectroscopy with a broadband laser source,” Chem. Phys. Lett. 274, 518 (1997).
[CrossRef]

IBM J. Res. Dev. (1)

S. Völker and R. M. Macfarlane, “Photochemical hole-burning in free-base porphyrin and chlorin in n-alkane matrices,” IBM J. Res. Dev. 23, 547 (1979).
[CrossRef]

J. Am. Chem. Soc. (1)

J. G. Radziszewski, F. A. Burhalter, and J. Michl, “Nondestructive photo-orientation by generalized pseudo-orientation: a quantitative treatment,” J. Am. Chem. Soc. 109, 61 (1987).
[CrossRef]

J. Chem. Phys. (2)

A. J. Meixner, A. Renn, and U. P. Wild, “Spectral hole burning and holography. I. Transmission and holographic detection of spectral holes,” J. Chem. Phys. 91, 67286736 (1989).
[CrossRef]

A. Renn, A. J. Meixner, and U. P. Wild, “Spectral hole burning and holography. II. Diffraction properties of two spectrally adjacent holograms,” J. Chem. Phys. 92, 2748–2755 (1990).
[CrossRef]

J. Mol. Spectrosc. Spectrom. (1)

M. Gouterman, “Spectra of porphyrins,” J. Mol. Spectrosc. Spectrom. 6, 138 (1961).
[CrossRef]

J. Opt. Soc. Am. B (3)

J. Phys. Chem. (1)

I.-J. Lee, G. J. Small, and J. M. Hayes, “Photochemical hole-burning of porphine in amorphous matrices,” J. Phys. Chem. 94, 3376 (1990).
[CrossRef]

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Switching of the optical dipole orientation in the tautomerization transform of a porphyrin derivative. (b) Euler angles, laboratory frame (i, j, k), and molecule frame (X, Y, Z). The molecular frame is oriented in such a way that the optical dipole is directed along OX or OY. The Euler angle sets (ϕ, θ, ψ) and (ϕ, θ, ψ+π/2), respectively, define these two directions.

Fig. 2
Fig. 2

Diagram of the energy levels of a molecule embedded in an amorphous matrix. The molecule stands in a stable ground state. Resonantly excited at frequency ν, the molecule may undergo a tautomerization transform in the upper electronic state so that its resonant frequency is changed to ν.

Fig. 3
Fig. 3

Space–time holography. The reference, object, probe, and signal pulses propagate along k1, k2, k3, and k4, respectively. A time separation τ is set between the reference and the object pulses.

Fig. 4
Fig. 4

Computed diffraction efficiency as a function of the burning dose βY0. The recording bandwidth is set equal to (a) 0.02 Γin and (b) 0.4 Γin.

Fig. 5
Fig. 5

Experimental setup. In the engraving step the shutters Sh1 and Sh2 are opened and closed, respectively. In the inset the two-grating device is adjusted for readout. The moving slit is used to scan the frequency of the probe beam. In the readout step the shutters Sh1 and Sh2 are closed and opened, respectively.

Fig. 6
Fig. 6

Spectral analysis of the diffracted energy on narrow-band and broadband holograms. The spectral density of burning energy is set equal to 11.3 mJ/THz.

Fig. 7
Fig. 7

Hole depth as a function of the spectral density of burning energy at 618.7 nm, with a 80-GHz-wide burning source.

Fig. 8
Fig. 8

Diffraction efficiency versus incident dose. The solid curves represent computed results for holograms engraved over (a) 80 GHz, (b) 1.56 THz, and (c) resulting from successive burnings over 80 GHz and 1.56 THz. Square dots, circles, and crosses, respectively, represent measured diffraction on 80-GHz-wide and 1.56-THz-wide holograms, and on holograms resulting from mixed burning.

Equations (51)

Equations on this page are rendered with MathJax. Learn more.

ek=sin θ sin ψsin θ cos ψcos θ(eX, eY, eZ).
dn(Ω, r, ν|ν)dt=-κ(Ω, r, ν)n(Ω, r, ν|ν)+κ(Ω, r, ν)n(Ω, r, ν|ν).
κ(Ω, r, ν)=σ|E(r, ν)P|2=β(ν)I(r, ν)sin2 θ sin2 ψ,
κ(Ω, r, ν)=β(ν)I(r, ν)sin2 θ cos2 ψ,
n(Ω, r, ν|ν)+n(Ω, r, ν|ν)=n0(ν|ν)+n0(ν|ν),
dn(Ω, r, ν|ν)dt=κ(Ω, r, ν)[n0(ν|ν)+n0(ν|ν)]-[κ(Ω, r, ν)+κ(Ω, r, ν)]×n(Ω, r, ν|ν).
n(Ω, r, ν)=n(Ω, r, ν|ν)dν.
α(r, ν)=α0n(Ω, r, ν)(eXek)2Ω/[(eXek)2Ωn0(ν0|ν)dν],
n0(ν|ν)=n0(ν)n0(ν)/n0(ν)dν,
n0(ν)=exp-4 ln 2ν-ν0Γin2,
εr(z, x, ν)=1-ik-11+i νν0 Hˆα(z, x, ν),
Hˆ[f(ν)]=1π  f(ν)ν-ν dν.
ΔE˜(r, ν)+εr(r, ν)k2E˜(r, ν)=0.
α(z, x, ν)=pα˜(p)(z, ν)exp(-ipKx),
α˜(p)(z, ν)=K2π 2π/Kα(z, x, ν)exp(ipKx)dx
E˜(r, ν)=pE_˜(p)(z, ν)exp[-i(k1r+pKx)],
E_˜(p)(z, ν)=K2π 2π/KE˜(r, ν)exp[i(k1r+pKx)]dx.
cos(θ/2) z E_˜(p)(z, ν)+12 1+i νν0 Hˆα˜(0)(z, ν)
×E_˜(p)(z, ν)-i (k1+pK)2-k22k E_˜(p)(z, ν)
=-12 q01+i νν0 Hˆα˜(q)(z, ν)E_˜(p-q)(z, ν),
W(z, x, ν, m)=|E˜(z, x, ν, m)|2τL,
W(z=0, x, ν, m)=W0rectν-νLΔ(1+cos φ),
rect[x]=1|x|1/20|x|1/2
1/τΔ.
p(p-1)Lθ2/λ1
E_˜(z, x, ν, m)z+12 (1+iHˆ)α(z, x,ν, m-1)
×E_˜(z, x, ν, m)=0,
E_˜(z, x, ν, m)=E˜(z, x, ν, m)exp(ik1r).
Lθ2/λ1.
z W(z, x, ν, m)+α(z, x, ν, m-1)W(z, x, ν, m)
=0,
α˜(p)(z, ν)=exp(2ipπντ)2πα(z, x, ν)exp(-ipφ)dφ/2π,
(1+iHˆ)α˜(p)(z, ν)=2α˜(p)(z, ν)ifp>00ifp<0α˜(p)(z, ν)ifp=0.
z E_˜(p)(z, ν)+12 α˜(0)(z, ν)E_˜(p)(z, ν)
-i (k1+pK)2-k022k0 E_˜(p)(z, ν)
=-q>0α˜(q)(z, ν)E_˜(p-q)(z, ν).
z E_˜(0)(z, ν)+12 α˜(0)(z, ν)E_˜(0)(z, ν)=0,
z E_˜(1)(z, ν)+12 α˜(0)(z, ν)E_˜(1)(z, ν)
+α˜(1)(z, ν)E_˜(0)(z, ν)=0,
E_˜(p)(0, ν)=E˜L(ν)δ0p,
E_˜(0)(z, ν)=E˜L(ν)exp-12 A˜(0)(ν),
E_˜(1)(z, ν)=-E˜L(ν)A˜(1)(ν)exp-12 A˜(0)(ν),
A˜(p)(ν)=K2π 2π/KA(x, ν)exp(-ipKx)dx.
A(x, ν)=0Lα(z, x, ν)dz.
η(ν)=|A˜(1)(ν)|2 exp[-A˜(0)(ν)].
ΔW=-W0[(r-1)δz, x, ν]α(rδz, x, ν)δz
Δn=2β(ν)W0[(r-1)δz, x, ν]sin2 θ cos2 ψn0(ν|ν)-β(ν)sin2 θ{W0[(r-1)δz, x, ν]sin2 ψ+W0[(r-1)δz, x, ν]cos2 ψ}n(Ω, rδz, x, ν|ν).
Qexp=15w0t/Δ(J/THz).
A(ν)=A0(ν)-35 βY0{1-exp[-A0(ν)]},
Δ(OD)=1ln 10 log TafterTbefore.
Qexp/(βY0)=0.99 mJ/THz.

Metrics