Abstract

The heat treatment of Ce, Eu-doped Sr0.61Ba0.39Nb2O6-δ (SBN) single crystals in an oxygen atmosphere, whereby samples are quenched after annealing to prevent any reaction during cooling, is discussed. We were able to obtain fairly good reproducibility with the quenching method. Photorefractive trap densities changed drastically as a result of the treatment, whereas absorption did not change significantly, and this is beneficial for volume multiplexing. For long-term data storage, we found that a lower annealing temperature was better. We discuss the effects of the treatment on the photorefractive properties of SBN in relation to oxygen vacancies.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Psaltis and F. Mok, “Holographic memories,” Sci. Am. 273(5), 70 (1995).
    [CrossRef]
  2. J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749 (1994).
    [CrossRef] [PubMed]
  3. R. R. Neurgaonkar and W. K. Cory, “Progress in photorefractive tungsten bronze crystals,” J. Opt. Soc. Am. B 3, 274 (1986).
    [CrossRef]
  4. K. Megumi, N. Nagatsuma, Y. Kishiwada, and Y. Furuhata, “The congruent melting composition of strontium barium niobate,” Appl. Phys. Lett. 30, 631 (1977).
    [CrossRef]
  5. K. Megumi, H. Kozuka, M. Kobayashi, and Y. Furuhata, “High-sensitive holographic storage in Ce-doped SBN,” Appl. Phys. Lett. 30, 631 (1977).
    [CrossRef]
  6. S. Yagi, T. Imai, and H. Yamazaki, “Measurement of carrier density in Ce doped SBN single crystals,” presented at the Japan–U.S. Workshop on Functional Fronts in Advanced Ceramics (Boundaries and Defects), Tsukuba, Japan, December 7, 1994.
  7. S. Ducharme and J. Feinberg, “Altering the photorefractive properties of BaTiO3 by reduction and oxidation at 650 °C,” J. Opt. Soc. Am. B 3, 283 (1986).
    [CrossRef]
  8. V. Leyva, A. Agranat, and A. Yariv, “Determination of the physical parameters controlling the photorefractive effect in KTa1-xNbxO3:Cu,V,” J. Opt. Soc. Am. B 8, 701 (1991).
    [CrossRef]
  9. W. Phillips and D. L. Staebler, “Control of the Fe2+ concentration in ion-doped lithium niobate,” J. Electron. Mater. 3, 601 (1974).
    [CrossRef]
  10. J. C. Brice, O. F. Hill, P. A. Whiffin, and J. A. Wilkinson, “The Czochralski growth of barium strontium niobate crystals,” J. Cryst. Growth 10, 133 (1971).
    [CrossRef]
  11. R. Hofmeister, A. Yariv, A. Kewitsch, and S. Yagi, “Simple methods of measuring the net photorefractive phase shift and coupling constant,” Opt. Lett. 18, 488 (1993).
    [CrossRef]
  12. For example, R. A. Swalin, Thermodynamics of Solids (Wiley, New York, 1962).
  13. S. Ducharme, J. Feinberg, and R. R. Neurgaonkar, “Electrooptic and piezoelectric measurements in photorefractive barium titanate and strontium barium niobate,” IEEE J. Quantum Electron. 23, 2116 (1987).
    [CrossRef]
  14. G. A. Brost, R. A. Motes, and J. R. Rotge, “Intensity-dependent absorption and photorefractive effects in barium titanate,” J. Opt. Soc. Am. B 5, 1879 (1988).
    [CrossRef]
  15. G. C. Valley and J. F. Lam, “Theory of photorefractive effects in electro-optic crystals,” in Photorefractive Materials and Their Applications I, P. Günter and J. P. Huignard, eds. (Springer-Verlag, Berlin, 1989), Chap. 3.
  16. K. Buse, U. van Stevendaal, R. Pankrath, and E. Kräzig, “Light-induced charge transport properties of Sr0.61Ba0.39Nb2O6:Ce crystals,” J. Opt. Soc. Am. B 13, 1461 (1996).
    [CrossRef]
  17. P. Tayebati and D. Mahgerefteh, “Theory of the photorefractive effect for Bi12SiO20 and BaTiO3 with shallow traps,” J. Opt. Soc. Am. B 8, 1053 (1991).
    [CrossRef]
  18. S. Orlov, M. Segev, A. Yariv, and R. Neurgaonkar, “Light-induced absorption in photorefractive strontium barium niobate,” Opt. Lett. 19, 1293 (1994).
    [CrossRef] [PubMed]
  19. R. Niemann, K. Buse, R. Pankrath, and M. Neumann, “XPS study of photorefractive Sr0.61Ba0.39Nb2O6:Ce crystals,” Solid State Commun. 98, 209 (1996).
    [CrossRef]
  20. P. Günter and J. P. Huignard, “Photorefractive effects and materials,” in Photorefractive Materials and Their Applications I, P. Günter and J. P. Huignard, eds. (Springer-Verlag, Berlin, 1989), Chap. 1.

1996 (2)

R. Niemann, K. Buse, R. Pankrath, and M. Neumann, “XPS study of photorefractive Sr0.61Ba0.39Nb2O6:Ce crystals,” Solid State Commun. 98, 209 (1996).
[CrossRef]

K. Buse, U. van Stevendaal, R. Pankrath, and E. Kräzig, “Light-induced charge transport properties of Sr0.61Ba0.39Nb2O6:Ce crystals,” J. Opt. Soc. Am. B 13, 1461 (1996).
[CrossRef]

1995 (1)

D. Psaltis and F. Mok, “Holographic memories,” Sci. Am. 273(5), 70 (1995).
[CrossRef]

1994 (2)

J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749 (1994).
[CrossRef] [PubMed]

S. Orlov, M. Segev, A. Yariv, and R. Neurgaonkar, “Light-induced absorption in photorefractive strontium barium niobate,” Opt. Lett. 19, 1293 (1994).
[CrossRef] [PubMed]

1993 (1)

1991 (2)

1988 (1)

1987 (1)

S. Ducharme, J. Feinberg, and R. R. Neurgaonkar, “Electrooptic and piezoelectric measurements in photorefractive barium titanate and strontium barium niobate,” IEEE J. Quantum Electron. 23, 2116 (1987).
[CrossRef]

1986 (2)

1977 (2)

K. Megumi, N. Nagatsuma, Y. Kishiwada, and Y. Furuhata, “The congruent melting composition of strontium barium niobate,” Appl. Phys. Lett. 30, 631 (1977).
[CrossRef]

K. Megumi, H. Kozuka, M. Kobayashi, and Y. Furuhata, “High-sensitive holographic storage in Ce-doped SBN,” Appl. Phys. Lett. 30, 631 (1977).
[CrossRef]

1974 (1)

W. Phillips and D. L. Staebler, “Control of the Fe2+ concentration in ion-doped lithium niobate,” J. Electron. Mater. 3, 601 (1974).
[CrossRef]

1971 (1)

J. C. Brice, O. F. Hill, P. A. Whiffin, and J. A. Wilkinson, “The Czochralski growth of barium strontium niobate crystals,” J. Cryst. Growth 10, 133 (1971).
[CrossRef]

Agranat, A.

Bashaw, M. C.

J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749 (1994).
[CrossRef] [PubMed]

Brice, J. C.

J. C. Brice, O. F. Hill, P. A. Whiffin, and J. A. Wilkinson, “The Czochralski growth of barium strontium niobate crystals,” J. Cryst. Growth 10, 133 (1971).
[CrossRef]

Brost, G. A.

Buse, K.

K. Buse, U. van Stevendaal, R. Pankrath, and E. Kräzig, “Light-induced charge transport properties of Sr0.61Ba0.39Nb2O6:Ce crystals,” J. Opt. Soc. Am. B 13, 1461 (1996).
[CrossRef]

R. Niemann, K. Buse, R. Pankrath, and M. Neumann, “XPS study of photorefractive Sr0.61Ba0.39Nb2O6:Ce crystals,” Solid State Commun. 98, 209 (1996).
[CrossRef]

Cory, W. K.

Ducharme, S.

S. Ducharme, J. Feinberg, and R. R. Neurgaonkar, “Electrooptic and piezoelectric measurements in photorefractive barium titanate and strontium barium niobate,” IEEE J. Quantum Electron. 23, 2116 (1987).
[CrossRef]

S. Ducharme and J. Feinberg, “Altering the photorefractive properties of BaTiO3 by reduction and oxidation at 650 °C,” J. Opt. Soc. Am. B 3, 283 (1986).
[CrossRef]

Feinberg, J.

S. Ducharme, J. Feinberg, and R. R. Neurgaonkar, “Electrooptic and piezoelectric measurements in photorefractive barium titanate and strontium barium niobate,” IEEE J. Quantum Electron. 23, 2116 (1987).
[CrossRef]

S. Ducharme and J. Feinberg, “Altering the photorefractive properties of BaTiO3 by reduction and oxidation at 650 °C,” J. Opt. Soc. Am. B 3, 283 (1986).
[CrossRef]

Furuhata, Y.

K. Megumi, N. Nagatsuma, Y. Kishiwada, and Y. Furuhata, “The congruent melting composition of strontium barium niobate,” Appl. Phys. Lett. 30, 631 (1977).
[CrossRef]

K. Megumi, H. Kozuka, M. Kobayashi, and Y. Furuhata, “High-sensitive holographic storage in Ce-doped SBN,” Appl. Phys. Lett. 30, 631 (1977).
[CrossRef]

Günter, P.

P. Günter and J. P. Huignard, “Photorefractive effects and materials,” in Photorefractive Materials and Their Applications I, P. Günter and J. P. Huignard, eds. (Springer-Verlag, Berlin, 1989), Chap. 1.

Heanue, J. F.

J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749 (1994).
[CrossRef] [PubMed]

Hesselink, L.

J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749 (1994).
[CrossRef] [PubMed]

Hill, O. F.

J. C. Brice, O. F. Hill, P. A. Whiffin, and J. A. Wilkinson, “The Czochralski growth of barium strontium niobate crystals,” J. Cryst. Growth 10, 133 (1971).
[CrossRef]

Hofmeister, R.

Huignard, J. P.

P. Günter and J. P. Huignard, “Photorefractive effects and materials,” in Photorefractive Materials and Their Applications I, P. Günter and J. P. Huignard, eds. (Springer-Verlag, Berlin, 1989), Chap. 1.

Imai, T.

S. Yagi, T. Imai, and H. Yamazaki, “Measurement of carrier density in Ce doped SBN single crystals,” presented at the Japan–U.S. Workshop on Functional Fronts in Advanced Ceramics (Boundaries and Defects), Tsukuba, Japan, December 7, 1994.

Kewitsch, A.

Kishiwada, Y.

K. Megumi, N. Nagatsuma, Y. Kishiwada, and Y. Furuhata, “The congruent melting composition of strontium barium niobate,” Appl. Phys. Lett. 30, 631 (1977).
[CrossRef]

Kobayashi, M.

K. Megumi, H. Kozuka, M. Kobayashi, and Y. Furuhata, “High-sensitive holographic storage in Ce-doped SBN,” Appl. Phys. Lett. 30, 631 (1977).
[CrossRef]

Kozuka, H.

K. Megumi, H. Kozuka, M. Kobayashi, and Y. Furuhata, “High-sensitive holographic storage in Ce-doped SBN,” Appl. Phys. Lett. 30, 631 (1977).
[CrossRef]

Kräzig, E.

Lam, J. F.

G. C. Valley and J. F. Lam, “Theory of photorefractive effects in electro-optic crystals,” in Photorefractive Materials and Their Applications I, P. Günter and J. P. Huignard, eds. (Springer-Verlag, Berlin, 1989), Chap. 3.

Leyva, V.

Mahgerefteh, D.

Megumi, K.

K. Megumi, H. Kozuka, M. Kobayashi, and Y. Furuhata, “High-sensitive holographic storage in Ce-doped SBN,” Appl. Phys. Lett. 30, 631 (1977).
[CrossRef]

K. Megumi, N. Nagatsuma, Y. Kishiwada, and Y. Furuhata, “The congruent melting composition of strontium barium niobate,” Appl. Phys. Lett. 30, 631 (1977).
[CrossRef]

Mok, F.

D. Psaltis and F. Mok, “Holographic memories,” Sci. Am. 273(5), 70 (1995).
[CrossRef]

Motes, R. A.

Nagatsuma, N.

K. Megumi, N. Nagatsuma, Y. Kishiwada, and Y. Furuhata, “The congruent melting composition of strontium barium niobate,” Appl. Phys. Lett. 30, 631 (1977).
[CrossRef]

Neumann, M.

R. Niemann, K. Buse, R. Pankrath, and M. Neumann, “XPS study of photorefractive Sr0.61Ba0.39Nb2O6:Ce crystals,” Solid State Commun. 98, 209 (1996).
[CrossRef]

Neurgaonkar, R.

Neurgaonkar, R. R.

S. Ducharme, J. Feinberg, and R. R. Neurgaonkar, “Electrooptic and piezoelectric measurements in photorefractive barium titanate and strontium barium niobate,” IEEE J. Quantum Electron. 23, 2116 (1987).
[CrossRef]

R. R. Neurgaonkar and W. K. Cory, “Progress in photorefractive tungsten bronze crystals,” J. Opt. Soc. Am. B 3, 274 (1986).
[CrossRef]

Niemann, R.

R. Niemann, K. Buse, R. Pankrath, and M. Neumann, “XPS study of photorefractive Sr0.61Ba0.39Nb2O6:Ce crystals,” Solid State Commun. 98, 209 (1996).
[CrossRef]

Orlov, S.

Pankrath, R.

K. Buse, U. van Stevendaal, R. Pankrath, and E. Kräzig, “Light-induced charge transport properties of Sr0.61Ba0.39Nb2O6:Ce crystals,” J. Opt. Soc. Am. B 13, 1461 (1996).
[CrossRef]

R. Niemann, K. Buse, R. Pankrath, and M. Neumann, “XPS study of photorefractive Sr0.61Ba0.39Nb2O6:Ce crystals,” Solid State Commun. 98, 209 (1996).
[CrossRef]

Phillips, W.

W. Phillips and D. L. Staebler, “Control of the Fe2+ concentration in ion-doped lithium niobate,” J. Electron. Mater. 3, 601 (1974).
[CrossRef]

Psaltis, D.

D. Psaltis and F. Mok, “Holographic memories,” Sci. Am. 273(5), 70 (1995).
[CrossRef]

Rotge, J. R.

Segev, M.

Staebler, D. L.

W. Phillips and D. L. Staebler, “Control of the Fe2+ concentration in ion-doped lithium niobate,” J. Electron. Mater. 3, 601 (1974).
[CrossRef]

Swalin, R. A.

For example, R. A. Swalin, Thermodynamics of Solids (Wiley, New York, 1962).

Tayebati, P.

Valley, G. C.

G. C. Valley and J. F. Lam, “Theory of photorefractive effects in electro-optic crystals,” in Photorefractive Materials and Their Applications I, P. Günter and J. P. Huignard, eds. (Springer-Verlag, Berlin, 1989), Chap. 3.

van Stevendaal, U.

Whiffin, P. A.

J. C. Brice, O. F. Hill, P. A. Whiffin, and J. A. Wilkinson, “The Czochralski growth of barium strontium niobate crystals,” J. Cryst. Growth 10, 133 (1971).
[CrossRef]

Wilkinson, J. A.

J. C. Brice, O. F. Hill, P. A. Whiffin, and J. A. Wilkinson, “The Czochralski growth of barium strontium niobate crystals,” J. Cryst. Growth 10, 133 (1971).
[CrossRef]

Yagi, S.

R. Hofmeister, A. Yariv, A. Kewitsch, and S. Yagi, “Simple methods of measuring the net photorefractive phase shift and coupling constant,” Opt. Lett. 18, 488 (1993).
[CrossRef]

S. Yagi, T. Imai, and H. Yamazaki, “Measurement of carrier density in Ce doped SBN single crystals,” presented at the Japan–U.S. Workshop on Functional Fronts in Advanced Ceramics (Boundaries and Defects), Tsukuba, Japan, December 7, 1994.

Yamazaki, H.

S. Yagi, T. Imai, and H. Yamazaki, “Measurement of carrier density in Ce doped SBN single crystals,” presented at the Japan–U.S. Workshop on Functional Fronts in Advanced Ceramics (Boundaries and Defects), Tsukuba, Japan, December 7, 1994.

Yariv, A.

Appl. Phys. Lett. (2)

K. Megumi, N. Nagatsuma, Y. Kishiwada, and Y. Furuhata, “The congruent melting composition of strontium barium niobate,” Appl. Phys. Lett. 30, 631 (1977).
[CrossRef]

K. Megumi, H. Kozuka, M. Kobayashi, and Y. Furuhata, “High-sensitive holographic storage in Ce-doped SBN,” Appl. Phys. Lett. 30, 631 (1977).
[CrossRef]

IEEE J. Quantum Electron. (1)

S. Ducharme, J. Feinberg, and R. R. Neurgaonkar, “Electrooptic and piezoelectric measurements in photorefractive barium titanate and strontium barium niobate,” IEEE J. Quantum Electron. 23, 2116 (1987).
[CrossRef]

J. Cryst. Growth (1)

J. C. Brice, O. F. Hill, P. A. Whiffin, and J. A. Wilkinson, “The Czochralski growth of barium strontium niobate crystals,” J. Cryst. Growth 10, 133 (1971).
[CrossRef]

J. Electron. Mater. (1)

W. Phillips and D. L. Staebler, “Control of the Fe2+ concentration in ion-doped lithium niobate,” J. Electron. Mater. 3, 601 (1974).
[CrossRef]

J. Opt. Soc. Am. B (6)

Opt. Lett. (2)

Sci. Am. (1)

D. Psaltis and F. Mok, “Holographic memories,” Sci. Am. 273(5), 70 (1995).
[CrossRef]

Science (1)

J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749 (1994).
[CrossRef] [PubMed]

Solid State Commun. (1)

R. Niemann, K. Buse, R. Pankrath, and M. Neumann, “XPS study of photorefractive Sr0.61Ba0.39Nb2O6:Ce crystals,” Solid State Commun. 98, 209 (1996).
[CrossRef]

Other (4)

P. Günter and J. P. Huignard, “Photorefractive effects and materials,” in Photorefractive Materials and Their Applications I, P. Günter and J. P. Huignard, eds. (Springer-Verlag, Berlin, 1989), Chap. 1.

For example, R. A. Swalin, Thermodynamics of Solids (Wiley, New York, 1962).

G. C. Valley and J. F. Lam, “Theory of photorefractive effects in electro-optic crystals,” in Photorefractive Materials and Their Applications I, P. Günter and J. P. Huignard, eds. (Springer-Verlag, Berlin, 1989), Chap. 3.

S. Yagi, T. Imai, and H. Yamazaki, “Measurement of carrier density in Ce doped SBN single crystals,” presented at the Japan–U.S. Workshop on Functional Fronts in Advanced Ceramics (Boundaries and Defects), Tsukuba, Japan, December 7, 1994.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Experimental setup for measuring trap densities. Although we occasionally vibrated the piezo mirror to examine the extent of coupling, it normally remained motionless to allow a steady-state grating to be built. PR, photorefractive crystal.

Fig. 2
Fig. 2

Absorption spectra of an undoped SBN single crystal annealed at 745 °C in air for 100 min and of the same crystal annealed at 1081 °C in air for 60 min. The light was not polarized.

Fig. 3
Fig. 3

Optical absorbance distribution, showing the oxidization process in an undoped SBN single crystal. The sample was reduced at 1081 °C before oxidization at 745 °C. The total duration of the sample oxidization is indicated for each curve. The horizontal axis shows the location along the c axis, and the two vertical dashed lines show the edges. As oxidization proceeds, the colorless region (low absorbance) expands from the surface toward the center, while the bluish gray core (large absorbance) shrinks.

Fig. 4
Fig. 4

Absorption spectra of a cerium-doped SBN sample annealed at various temperatures. For treatment temperatures below 1036 °C we obtain approximately the same spectra, regardless of treatment temperature in this wavelength region. Above 1060 °C the absorption in the visible region increases with the treatment temperature. Temperatures higher than 1200 °C cause infrared absorption. Compare with Fig. 2.

Fig. 5
Fig. 5

Absorption coefficient at 700 nm as a function of treatment temperature. The dashed line shows the value for the as-grown sample. Note that no absorption change occurs for different treatment temperatures if the temperature is below 1030 °C and the oxygen partial pressure is 1 atm. The fact that the curve crosses the dashed line at 1090 °C implies that defects such as oxygen vacancies at this high temperature were quenched to room temperature during cooling after growth.

Fig. 6
Fig. 6

Photorefractive effective trap density as a function of treatment temperature. The sample and the treatment conditions are the same as those for Figs. 4 and 5. The dashed line and the shaded area surrounding it show the as-grown trap density and its error. The errors of NT for the three point at high temperature were so small that the error bars are hidden by the plotting circles in this figure. Note that NT changes drastically below 1030 °C, whereas almost no changes in absorbance are observed in Fig. 5.

Fig. 7
Fig. 7

Photorefractive effective trap density as a function of atmospheric-oxygen partial pressure during heat treatment. The annealing temperature was 937 °C. The sample is the same as that used in Figs. 4 and 5. The definitions of the dashed line and the shaded area are the same as those in Fig. 6. The oxygen vacancy concentration is larger on the left-hand side, as it is in Fig. 6. Thus this figure qualitatively agrees with Fig. 6.

Fig. 8
Fig. 8

Treatment temperature dependence of r13. The data were estimated simultaneously with those for Fig. 6.

Fig. 9
Fig. 9

Dark-decay curves, showing an annealing effect. The squares and circles show results for heat treatment at the temperatures indicated. The oxygen partial pressure was 1 atm during annealing. The measurements were made at 60 °C. The diffraction efficiencies were normalized with those immediately after writing. Note the fast initial decay for 984 °C.

Fig. 10
Fig. 10

Difference absorption spectra of cerium-doped SBN for short wavelengths. The absorptions for heat treatment at 742 °C were subtracted from those for each treatment temperature. Slight absorption increases with temperature can be seen even below 1036 °C.

Fig. 11
Fig. 11

Difference values between difference absorption at 440 nm and that at 626 nm, plotted against annealing temperature.

Fig. 12
Fig. 12

Logarithmic plot of difference values between difference absorption at 440 nm and that at 626 nm against oxygen partial pressure during heat treatment.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

A=I(l)I(0)-1=tanhπλ0 cos θ n03reff kBTKqNTεkBTK2+q2NT l,
yKtanh-1(A)=ελ0 cos θπn03refflqNT K2+q2NTεkBT.
a(x, t)ln T(x, 80)-ln T(x, t).
OOVO2++½O2(gas)+2e-,
[VO2+]pO2-1/6 exp ΔSRexp-ΔHRT,
Δα(T)=α(T)-α(742).
δα(T)α(T)|440nm-α(742)|626nm.
NT=NANDNA+ND,

Metrics