Abstract

The complex coupling constant of a photorefractive polymer was measured as a function of an applied electric field by use of a modified ac phase modulation technique. We determined that both a photorefractive index grating and a nonphotorefractive absorption grating were present. The electric field dependencies of the amplitude and the phase of the photorefractive gain coefficient were accurately described by standard photorefractive theory. The accuracy of the photorefractive phase shift as measured by this phase-modulation technique was ±1° near phase shifts of 90° and ±3° near phase shifts of 45°.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. B. Bylsma, D. H. Olson, and A. M. Glass, “Photochromic gratings in photorefractive materials,” Opt. Lett. 13, 853 (1988).
    [Crossref] [PubMed]
  2. R. S. Cudney, R. M. Pierce, G. D. Bacher, and J. Feinberg, “Absorption gratings in photorefractive crystals with multiple levels,” J. Opt. Soc. Am. B 8, 1326 (1991).
    [Crossref]
  3. M. Z. Zha, P. Amrhein, and P. Günter, “Measurement of phase shift of photorefractive gratings by a novel method,” IEEE J. Quantum Electron. 26, 788 (1990).
    [Crossref]
  4. P. A. M. D. Santos, L. Cescato, and J. Frejlich, “Interference-term real-time measurement for self-stabilized two-wave mixing in photorefractive crystals,” Opt. Lett. 13, 1014 (1988).
    [Crossref] [PubMed]
  5. P. M. Garcia, L. Cescato, and J. Frejlich, “Phase-shift measurement in photorefractive holographic recording,” J. Appl. Phys. 66, 47 (1989).
    [Crossref]
  6. P. N. Ilinykh, O. P. Nestiorkin, and B. Ya. Zel’dovich, “Phase shift in nondegenerate coupling of waves in the photorefractive crystal,” Opt. Commun. 80, 249 (1991).
    [Crossref]
  7. R. Hofmeister, A. Yariv, A. Kewitsch, and S. Yagi, “Simple methods of measuring the net photorefractive phase shift and coupling constant,” Opt. Lett. 18, 488 (1993).
    [Crossref]
  8. R. K. Ing and J.-P. Monchalin, “Measurement of the photorefractive phase shift by polarization interferometry,” Opt. Lett. 18, 852 (1993).
    [Crossref] [PubMed]
  9. J. Frejlich, “Real-time photorefractive hologram phase-shift measurement and self-diffraction effects,” Opt. Commun. 107, 260 (1994).
    [Crossref]
  10. M. Gehrtz, J. Pinsl, and C. Bräuchle, “Sensitive detection of phase and absorption gratings: phase-modulated, homodyne detected holography,” Appl. Phys. B 43, 61 (1987).
    [Crossref]
  11. R. S. Cudney, G. D. Bacher, R. M. Pierce, and J. Feinberg, “Measurement of the photorefractive phase shift,” Opt. Lett. 17, 67 (1992).
    [Crossref] [PubMed]
  12. R. M. Montgomery and M. R. Lange, “Amplitude and phase measurement technique for photorefractive gratings,” J. Appl. Phys. 68, 4782 (1990).
    [Crossref]
  13. W. B. Lawler, C. J. Sherman, and M. G. Moharam, “Direct measurement of the amplitude and the phase of photorefractive fields in KNbO3:Ta and BaTiO3,” J. Opt. Soc. Am. B 8, 2190 (1991).
    [Crossref]
  14. P. N. Ilinykh, O. P. Nestiorkin, and B. Ya. Zel’dovich, “Recording a static hologram with laser beams of different frequencies in photorefractive crystals,” J. Opt. Soc. Am. B 8, 1042 (1991).
    [Crossref]
  15. D. G. Gray, M. G. Moharam, and T. M. Ayres, “Heterodyne technique for the direct measurement of the amplitude and phase of photorefractive space-charge fields,” J. Opt. Soc. Am. B 11, 470 (1994).
    [Crossref]
  16. V. Kondilenko, V. Markov, S. G. Odulov, and M. Soskin, “Diffraction of coupled waves and determination of phase mismatch between holographic grating and fringe pattern,” Opt. Acta 26, 239 (1979).
    [Crossref]
  17. R. Kapoor, M. Moghbel, and P. Venkateswarlu, “Energy-transfer measurement and determination of the phase shift between the holographic grating and the fringe pattern in photorefractive materials,” Opt. Lett. 18, 696 (1993).
    [Crossref] [PubMed]
  18. V. Markov, S. Odulov, and M. Soskin, “Properties of the three-dimensional phase holograms in activated and reduced LiNbO3 crystals,” Bull. Acad. Sci. USSR Phys. Ser. 41, 144 (1977).
  19. K. Sutter and P. Günter, “Photorefractive gratings in the organic crystal 2-cyclooctylamino-5-nitropyridine doped with 7,7,8,8-tetracyanoquinodimethane,” J. Opt. Soc. Am. B 7, 2274 (1990).
    [Crossref]
  20. C. A. Walsh and W. E. Moerner, “Two-beam coupling measurements of grating phase in a photorefractive polymer,” J. Opt. Soc. Am. B 9, 1642 (1992).
    [Crossref]
  21. A. Grunnet-Jepsen, C. I. Thompson, and W. E. Moerner, “Measurement of the spatial phase shift in high-gain photorefractive materials,” Opt. Lett. 22, 874 (1997).
    [Crossref] [PubMed]
  22. B. E. Jones, S. Ducharme, A. Goonesekera, M. Liphardt, R. V. Athalye, L. Zhang, and J. M. Takacs, “Photoconductivity and grating response time of a photorefractive polymer,” J. Opt. Soc. Am. B 11, 1064 (1994).
    [Crossref]
  23. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909 (1969).
    [Crossref]
  24. M. Liphardt, A. Goonesekera, S. Ducharme, J. M. Takacs, and L. Zhang, “Effect of beam attenuation on photorefractive grating erasure,” J. Opt. Soc. Am. B 13, 2252 (1996).
    [Crossref]
  25. N. V. Kukhtarev, “Kinetics of hologram recording and erasure in electro-optic crystals,” Sov. Tech. Phys. Lett. 2, 438 (1976).
  26. P. Günter and F. Micheron, “Photorefractive effects and photocurrents in KNbO3:Fe,” Ferroelectrics 18, 27 (1978).
    [Crossref]
  27. W. E. Moerner, S. M. Silence, F. Hache, and G. C. Bjorklund, “Orientationally enhanced photorefractive effect in polymers,” J. Opt. Soc. Am. B 11, 320 (1994).
    [Crossref]
  28. A. Goonesekera, M. Liphardt, S. Ducharme, J. M. Takacs, and L. Zhang, “The role of photoconductivity in molecularly doped photorefractive polymers,” in Xerographic Photoreceptors and Photorefractive Polymers, S. Ducharme and P. M. Borsenberger, eds., Proc. SPIE2526, 109 (1995).
    [Crossref]
  29. Measured by P. Snyder by means of a J. A. Woollam Company spectroscopic ellipsometer.
  30. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. I. Steady state,” Ferroelectrics 22, 949 (1979).
    [Crossref]
  31. A. Twarowski, “Geminate recombination in photorefractive crystals,” J. Appl. Phys. 65, 2833 (1989).
    [Crossref]
  32. J. S. Schildkraut and A. V. Buettner, “Theory and simulation of the formation and erasure of space-charge gratings in photoconductive polymers,” J. Appl. Phys. 72, 1888 (1992).
    [Crossref]
  33. J. S. Schildkraut and Y. Cui, “Zero-order and first-order theory of the formation of space-charge gratings in photoconductive polymers,” J. Appl. Phys. 72, 5055 (1992).
    [Crossref]
  34. L. B. Schein, “Comparison of charge transport models in molecularly doped polymers,” Philos. Mag. B 65, 795 (1992).
    [Crossref]
  35. J. C. Scott, L. T. Pautmeier, and W. E. Moerner, “Photoconductivity studies of photorefractive polymers,” J. Opt. Soc. Am. B 9, 2059 (1992).
    [Crossref]
  36. S. Ducharme, R. W. Twieg, J. C. Scott, and W. E. Moerner, “Observation of the photorefractive effect in a polymer,” Phys. Rev. Lett. 66, 1846 (1991).
    [Crossref] [PubMed]
  37. M. Liphardt, A. Goonesekera, B. E. Jones, S. Ducharme, J. M. Takacs, and L. Zhang, “High performance photorefractive polymers,” Science 263, 367 (1994).
    [Crossref] [PubMed]
  38. W. E. Moerner and S. Silence, “Polymeric photorefractive materials,” Chem. Rev. 94, 127 (1994).
    [Crossref]
  39. S. Ducharme, “Applicability of the band transport (Kukhtarev) model to photorefractive polymers,” in Xerographic Photoreceptors and Photorefractive Polymers, S. Ducharme and P. M. Borsenberger, eds., Proc. SPIE2526, 144 (1995).
    [Crossref]
  40. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. II. Beam coupling-light amplification,” Ferroelectrics 22, 961 (1979).
    [Crossref]
  41. K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, and N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature 371, 497 (1994).
    [Crossref]

1997 (1)

1996 (1)

1994 (7)

B. E. Jones, S. Ducharme, A. Goonesekera, M. Liphardt, R. V. Athalye, L. Zhang, and J. M. Takacs, “Photoconductivity and grating response time of a photorefractive polymer,” J. Opt. Soc. Am. B 11, 1064 (1994).
[Crossref]

W. E. Moerner, S. M. Silence, F. Hache, and G. C. Bjorklund, “Orientationally enhanced photorefractive effect in polymers,” J. Opt. Soc. Am. B 11, 320 (1994).
[Crossref]

M. Liphardt, A. Goonesekera, B. E. Jones, S. Ducharme, J. M. Takacs, and L. Zhang, “High performance photorefractive polymers,” Science 263, 367 (1994).
[Crossref] [PubMed]

W. E. Moerner and S. Silence, “Polymeric photorefractive materials,” Chem. Rev. 94, 127 (1994).
[Crossref]

J. Frejlich, “Real-time photorefractive hologram phase-shift measurement and self-diffraction effects,” Opt. Commun. 107, 260 (1994).
[Crossref]

D. G. Gray, M. G. Moharam, and T. M. Ayres, “Heterodyne technique for the direct measurement of the amplitude and phase of photorefractive space-charge fields,” J. Opt. Soc. Am. B 11, 470 (1994).
[Crossref]

K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, and N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature 371, 497 (1994).
[Crossref]

1993 (3)

1992 (6)

R. S. Cudney, G. D. Bacher, R. M. Pierce, and J. Feinberg, “Measurement of the photorefractive phase shift,” Opt. Lett. 17, 67 (1992).
[Crossref] [PubMed]

J. S. Schildkraut and A. V. Buettner, “Theory and simulation of the formation and erasure of space-charge gratings in photoconductive polymers,” J. Appl. Phys. 72, 1888 (1992).
[Crossref]

J. S. Schildkraut and Y. Cui, “Zero-order and first-order theory of the formation of space-charge gratings in photoconductive polymers,” J. Appl. Phys. 72, 5055 (1992).
[Crossref]

L. B. Schein, “Comparison of charge transport models in molecularly doped polymers,” Philos. Mag. B 65, 795 (1992).
[Crossref]

J. C. Scott, L. T. Pautmeier, and W. E. Moerner, “Photoconductivity studies of photorefractive polymers,” J. Opt. Soc. Am. B 9, 2059 (1992).
[Crossref]

C. A. Walsh and W. E. Moerner, “Two-beam coupling measurements of grating phase in a photorefractive polymer,” J. Opt. Soc. Am. B 9, 1642 (1992).
[Crossref]

1991 (5)

1990 (3)

M. Z. Zha, P. Amrhein, and P. Günter, “Measurement of phase shift of photorefractive gratings by a novel method,” IEEE J. Quantum Electron. 26, 788 (1990).
[Crossref]

R. M. Montgomery and M. R. Lange, “Amplitude and phase measurement technique for photorefractive gratings,” J. Appl. Phys. 68, 4782 (1990).
[Crossref]

K. Sutter and P. Günter, “Photorefractive gratings in the organic crystal 2-cyclooctylamino-5-nitropyridine doped with 7,7,8,8-tetracyanoquinodimethane,” J. Opt. Soc. Am. B 7, 2274 (1990).
[Crossref]

1989 (2)

P. M. Garcia, L. Cescato, and J. Frejlich, “Phase-shift measurement in photorefractive holographic recording,” J. Appl. Phys. 66, 47 (1989).
[Crossref]

A. Twarowski, “Geminate recombination in photorefractive crystals,” J. Appl. Phys. 65, 2833 (1989).
[Crossref]

1988 (2)

1987 (1)

M. Gehrtz, J. Pinsl, and C. Bräuchle, “Sensitive detection of phase and absorption gratings: phase-modulated, homodyne detected holography,” Appl. Phys. B 43, 61 (1987).
[Crossref]

1979 (3)

V. Kondilenko, V. Markov, S. G. Odulov, and M. Soskin, “Diffraction of coupled waves and determination of phase mismatch between holographic grating and fringe pattern,” Opt. Acta 26, 239 (1979).
[Crossref]

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. II. Beam coupling-light amplification,” Ferroelectrics 22, 961 (1979).
[Crossref]

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. I. Steady state,” Ferroelectrics 22, 949 (1979).
[Crossref]

1978 (1)

P. Günter and F. Micheron, “Photorefractive effects and photocurrents in KNbO3:Fe,” Ferroelectrics 18, 27 (1978).
[Crossref]

1977 (1)

V. Markov, S. Odulov, and M. Soskin, “Properties of the three-dimensional phase holograms in activated and reduced LiNbO3 crystals,” Bull. Acad. Sci. USSR Phys. Ser. 41, 144 (1977).

1976 (1)

N. V. Kukhtarev, “Kinetics of hologram recording and erasure in electro-optic crystals,” Sov. Tech. Phys. Lett. 2, 438 (1976).

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909 (1969).
[Crossref]

Amrhein, P.

M. Z. Zha, P. Amrhein, and P. Günter, “Measurement of phase shift of photorefractive gratings by a novel method,” IEEE J. Quantum Electron. 26, 788 (1990).
[Crossref]

Athalye, R. V.

Ayres, T. M.

Bacher, G. D.

Bjorklund, G. C.

Bräuchle, C.

M. Gehrtz, J. Pinsl, and C. Bräuchle, “Sensitive detection of phase and absorption gratings: phase-modulated, homodyne detected holography,” Appl. Phys. B 43, 61 (1987).
[Crossref]

Buettner, A. V.

J. S. Schildkraut and A. V. Buettner, “Theory and simulation of the formation and erasure of space-charge gratings in photoconductive polymers,” J. Appl. Phys. 72, 1888 (1992).
[Crossref]

Bylsma, R. B.

Cescato, L.

P. M. Garcia, L. Cescato, and J. Frejlich, “Phase-shift measurement in photorefractive holographic recording,” J. Appl. Phys. 66, 47 (1989).
[Crossref]

P. A. M. D. Santos, L. Cescato, and J. Frejlich, “Interference-term real-time measurement for self-stabilized two-wave mixing in photorefractive crystals,” Opt. Lett. 13, 1014 (1988).
[Crossref] [PubMed]

Cudney, R. S.

Cui, Y.

J. S. Schildkraut and Y. Cui, “Zero-order and first-order theory of the formation of space-charge gratings in photoconductive polymers,” J. Appl. Phys. 72, 5055 (1992).
[Crossref]

Ducharme, S.

M. Liphardt, A. Goonesekera, S. Ducharme, J. M. Takacs, and L. Zhang, “Effect of beam attenuation on photorefractive grating erasure,” J. Opt. Soc. Am. B 13, 2252 (1996).
[Crossref]

B. E. Jones, S. Ducharme, A. Goonesekera, M. Liphardt, R. V. Athalye, L. Zhang, and J. M. Takacs, “Photoconductivity and grating response time of a photorefractive polymer,” J. Opt. Soc. Am. B 11, 1064 (1994).
[Crossref]

M. Liphardt, A. Goonesekera, B. E. Jones, S. Ducharme, J. M. Takacs, and L. Zhang, “High performance photorefractive polymers,” Science 263, 367 (1994).
[Crossref] [PubMed]

S. Ducharme, R. W. Twieg, J. C. Scott, and W. E. Moerner, “Observation of the photorefractive effect in a polymer,” Phys. Rev. Lett. 66, 1846 (1991).
[Crossref] [PubMed]

S. Ducharme, “Applicability of the band transport (Kukhtarev) model to photorefractive polymers,” in Xerographic Photoreceptors and Photorefractive Polymers, S. Ducharme and P. M. Borsenberger, eds., Proc. SPIE2526, 144 (1995).
[Crossref]

A. Goonesekera, M. Liphardt, S. Ducharme, J. M. Takacs, and L. Zhang, “The role of photoconductivity in molecularly doped photorefractive polymers,” in Xerographic Photoreceptors and Photorefractive Polymers, S. Ducharme and P. M. Borsenberger, eds., Proc. SPIE2526, 109 (1995).
[Crossref]

Feinberg, J.

Frejlich, J.

J. Frejlich, “Real-time photorefractive hologram phase-shift measurement and self-diffraction effects,” Opt. Commun. 107, 260 (1994).
[Crossref]

P. M. Garcia, L. Cescato, and J. Frejlich, “Phase-shift measurement in photorefractive holographic recording,” J. Appl. Phys. 66, 47 (1989).
[Crossref]

P. A. M. D. Santos, L. Cescato, and J. Frejlich, “Interference-term real-time measurement for self-stabilized two-wave mixing in photorefractive crystals,” Opt. Lett. 13, 1014 (1988).
[Crossref] [PubMed]

Garcia, P. M.

P. M. Garcia, L. Cescato, and J. Frejlich, “Phase-shift measurement in photorefractive holographic recording,” J. Appl. Phys. 66, 47 (1989).
[Crossref]

Gehrtz, M.

M. Gehrtz, J. Pinsl, and C. Bräuchle, “Sensitive detection of phase and absorption gratings: phase-modulated, homodyne detected holography,” Appl. Phys. B 43, 61 (1987).
[Crossref]

Glass, A. M.

Goonesekera, A.

M. Liphardt, A. Goonesekera, S. Ducharme, J. M. Takacs, and L. Zhang, “Effect of beam attenuation on photorefractive grating erasure,” J. Opt. Soc. Am. B 13, 2252 (1996).
[Crossref]

B. E. Jones, S. Ducharme, A. Goonesekera, M. Liphardt, R. V. Athalye, L. Zhang, and J. M. Takacs, “Photoconductivity and grating response time of a photorefractive polymer,” J. Opt. Soc. Am. B 11, 1064 (1994).
[Crossref]

M. Liphardt, A. Goonesekera, B. E. Jones, S. Ducharme, J. M. Takacs, and L. Zhang, “High performance photorefractive polymers,” Science 263, 367 (1994).
[Crossref] [PubMed]

A. Goonesekera, M. Liphardt, S. Ducharme, J. M. Takacs, and L. Zhang, “The role of photoconductivity in molecularly doped photorefractive polymers,” in Xerographic Photoreceptors and Photorefractive Polymers, S. Ducharme and P. M. Borsenberger, eds., Proc. SPIE2526, 109 (1995).
[Crossref]

Gray, D. G.

Grunnet-Jepsen, A.

Günter, P.

K. Sutter and P. Günter, “Photorefractive gratings in the organic crystal 2-cyclooctylamino-5-nitropyridine doped with 7,7,8,8-tetracyanoquinodimethane,” J. Opt. Soc. Am. B 7, 2274 (1990).
[Crossref]

M. Z. Zha, P. Amrhein, and P. Günter, “Measurement of phase shift of photorefractive gratings by a novel method,” IEEE J. Quantum Electron. 26, 788 (1990).
[Crossref]

P. Günter and F. Micheron, “Photorefractive effects and photocurrents in KNbO3:Fe,” Ferroelectrics 18, 27 (1978).
[Crossref]

Hache, F.

Hofmeister, R.

Ilinykh, P. N.

P. N. Ilinykh, O. P. Nestiorkin, and B. Ya. Zel’dovich, “Recording a static hologram with laser beams of different frequencies in photorefractive crystals,” J. Opt. Soc. Am. B 8, 1042 (1991).
[Crossref]

P. N. Ilinykh, O. P. Nestiorkin, and B. Ya. Zel’dovich, “Phase shift in nondegenerate coupling of waves in the photorefractive crystal,” Opt. Commun. 80, 249 (1991).
[Crossref]

Ing, R. K.

Jones, B. E.

Kapoor, R.

Kewitsch, A.

Kippelen, B.

K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, and N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature 371, 497 (1994).
[Crossref]

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909 (1969).
[Crossref]

Kondilenko, V.

V. Kondilenko, V. Markov, S. G. Odulov, and M. Soskin, “Diffraction of coupled waves and determination of phase mismatch between holographic grating and fringe pattern,” Opt. Acta 26, 239 (1979).
[Crossref]

Kukhtarev, N. V.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. I. Steady state,” Ferroelectrics 22, 949 (1979).
[Crossref]

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. II. Beam coupling-light amplification,” Ferroelectrics 22, 961 (1979).
[Crossref]

N. V. Kukhtarev, “Kinetics of hologram recording and erasure in electro-optic crystals,” Sov. Tech. Phys. Lett. 2, 438 (1976).

Lange, M. R.

R. M. Montgomery and M. R. Lange, “Amplitude and phase measurement technique for photorefractive gratings,” J. Appl. Phys. 68, 4782 (1990).
[Crossref]

Lawler, W. B.

Liphardt, M.

M. Liphardt, A. Goonesekera, S. Ducharme, J. M. Takacs, and L. Zhang, “Effect of beam attenuation on photorefractive grating erasure,” J. Opt. Soc. Am. B 13, 2252 (1996).
[Crossref]

B. E. Jones, S. Ducharme, A. Goonesekera, M. Liphardt, R. V. Athalye, L. Zhang, and J. M. Takacs, “Photoconductivity and grating response time of a photorefractive polymer,” J. Opt. Soc. Am. B 11, 1064 (1994).
[Crossref]

M. Liphardt, A. Goonesekera, B. E. Jones, S. Ducharme, J. M. Takacs, and L. Zhang, “High performance photorefractive polymers,” Science 263, 367 (1994).
[Crossref] [PubMed]

A. Goonesekera, M. Liphardt, S. Ducharme, J. M. Takacs, and L. Zhang, “The role of photoconductivity in molecularly doped photorefractive polymers,” in Xerographic Photoreceptors and Photorefractive Polymers, S. Ducharme and P. M. Borsenberger, eds., Proc. SPIE2526, 109 (1995).
[Crossref]

Markov, V.

V. Kondilenko, V. Markov, S. G. Odulov, and M. Soskin, “Diffraction of coupled waves and determination of phase mismatch between holographic grating and fringe pattern,” Opt. Acta 26, 239 (1979).
[Crossref]

V. Markov, S. Odulov, and M. Soskin, “Properties of the three-dimensional phase holograms in activated and reduced LiNbO3 crystals,” Bull. Acad. Sci. USSR Phys. Ser. 41, 144 (1977).

Markov, V. B.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. I. Steady state,” Ferroelectrics 22, 949 (1979).
[Crossref]

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. II. Beam coupling-light amplification,” Ferroelectrics 22, 961 (1979).
[Crossref]

Meerholz, K.

K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, and N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature 371, 497 (1994).
[Crossref]

Micheron, F.

P. Günter and F. Micheron, “Photorefractive effects and photocurrents in KNbO3:Fe,” Ferroelectrics 18, 27 (1978).
[Crossref]

Moerner, W. E.

Moghbel, M.

Moharam, M. G.

Monchalin, J.-P.

Montgomery, R. M.

R. M. Montgomery and M. R. Lange, “Amplitude and phase measurement technique for photorefractive gratings,” J. Appl. Phys. 68, 4782 (1990).
[Crossref]

Nestiorkin, O. P.

P. N. Ilinykh, O. P. Nestiorkin, and B. Ya. Zel’dovich, “Phase shift in nondegenerate coupling of waves in the photorefractive crystal,” Opt. Commun. 80, 249 (1991).
[Crossref]

P. N. Ilinykh, O. P. Nestiorkin, and B. Ya. Zel’dovich, “Recording a static hologram with laser beams of different frequencies in photorefractive crystals,” J. Opt. Soc. Am. B 8, 1042 (1991).
[Crossref]

Odulov, S.

V. Markov, S. Odulov, and M. Soskin, “Properties of the three-dimensional phase holograms in activated and reduced LiNbO3 crystals,” Bull. Acad. Sci. USSR Phys. Ser. 41, 144 (1977).

Odulov, S. G.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. I. Steady state,” Ferroelectrics 22, 949 (1979).
[Crossref]

V. Kondilenko, V. Markov, S. G. Odulov, and M. Soskin, “Diffraction of coupled waves and determination of phase mismatch between holographic grating and fringe pattern,” Opt. Acta 26, 239 (1979).
[Crossref]

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. II. Beam coupling-light amplification,” Ferroelectrics 22, 961 (1979).
[Crossref]

Olson, D. H.

Pautmeier, L. T.

Peyghambarian, N.

K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, and N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature 371, 497 (1994).
[Crossref]

Pierce, R. M.

Pinsl, J.

M. Gehrtz, J. Pinsl, and C. Bräuchle, “Sensitive detection of phase and absorption gratings: phase-modulated, homodyne detected holography,” Appl. Phys. B 43, 61 (1987).
[Crossref]

Sandalphon,

K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, and N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature 371, 497 (1994).
[Crossref]

Santos, P. A. M. D.

Schein, L. B.

L. B. Schein, “Comparison of charge transport models in molecularly doped polymers,” Philos. Mag. B 65, 795 (1992).
[Crossref]

Schildkraut, J. S.

J. S. Schildkraut and Y. Cui, “Zero-order and first-order theory of the formation of space-charge gratings in photoconductive polymers,” J. Appl. Phys. 72, 5055 (1992).
[Crossref]

J. S. Schildkraut and A. V. Buettner, “Theory and simulation of the formation and erasure of space-charge gratings in photoconductive polymers,” J. Appl. Phys. 72, 1888 (1992).
[Crossref]

Scott, J. C.

J. C. Scott, L. T. Pautmeier, and W. E. Moerner, “Photoconductivity studies of photorefractive polymers,” J. Opt. Soc. Am. B 9, 2059 (1992).
[Crossref]

S. Ducharme, R. W. Twieg, J. C. Scott, and W. E. Moerner, “Observation of the photorefractive effect in a polymer,” Phys. Rev. Lett. 66, 1846 (1991).
[Crossref] [PubMed]

Sherman, C. J.

Silence, S.

W. E. Moerner and S. Silence, “Polymeric photorefractive materials,” Chem. Rev. 94, 127 (1994).
[Crossref]

Silence, S. M.

Soskin, M.

V. Kondilenko, V. Markov, S. G. Odulov, and M. Soskin, “Diffraction of coupled waves and determination of phase mismatch between holographic grating and fringe pattern,” Opt. Acta 26, 239 (1979).
[Crossref]

V. Markov, S. Odulov, and M. Soskin, “Properties of the three-dimensional phase holograms in activated and reduced LiNbO3 crystals,” Bull. Acad. Sci. USSR Phys. Ser. 41, 144 (1977).

Soskin, M. S.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. I. Steady state,” Ferroelectrics 22, 949 (1979).
[Crossref]

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. II. Beam coupling-light amplification,” Ferroelectrics 22, 961 (1979).
[Crossref]

Sutter, K.

Takacs, J. M.

M. Liphardt, A. Goonesekera, S. Ducharme, J. M. Takacs, and L. Zhang, “Effect of beam attenuation on photorefractive grating erasure,” J. Opt. Soc. Am. B 13, 2252 (1996).
[Crossref]

B. E. Jones, S. Ducharme, A. Goonesekera, M. Liphardt, R. V. Athalye, L. Zhang, and J. M. Takacs, “Photoconductivity and grating response time of a photorefractive polymer,” J. Opt. Soc. Am. B 11, 1064 (1994).
[Crossref]

M. Liphardt, A. Goonesekera, B. E. Jones, S. Ducharme, J. M. Takacs, and L. Zhang, “High performance photorefractive polymers,” Science 263, 367 (1994).
[Crossref] [PubMed]

A. Goonesekera, M. Liphardt, S. Ducharme, J. M. Takacs, and L. Zhang, “The role of photoconductivity in molecularly doped photorefractive polymers,” in Xerographic Photoreceptors and Photorefractive Polymers, S. Ducharme and P. M. Borsenberger, eds., Proc. SPIE2526, 109 (1995).
[Crossref]

Thompson, C. I.

Twarowski, A.

A. Twarowski, “Geminate recombination in photorefractive crystals,” J. Appl. Phys. 65, 2833 (1989).
[Crossref]

Twieg, R. W.

S. Ducharme, R. W. Twieg, J. C. Scott, and W. E. Moerner, “Observation of the photorefractive effect in a polymer,” Phys. Rev. Lett. 66, 1846 (1991).
[Crossref] [PubMed]

Venkateswarlu, P.

Vinetskii, V. L.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. II. Beam coupling-light amplification,” Ferroelectrics 22, 961 (1979).
[Crossref]

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. I. Steady state,” Ferroelectrics 22, 949 (1979).
[Crossref]

Volodin, B. L.

K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, and N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature 371, 497 (1994).
[Crossref]

Walsh, C. A.

Yagi, S.

Yariv, A.

Zel’dovich, B. Ya.

P. N. Ilinykh, O. P. Nestiorkin, and B. Ya. Zel’dovich, “Recording a static hologram with laser beams of different frequencies in photorefractive crystals,” J. Opt. Soc. Am. B 8, 1042 (1991).
[Crossref]

P. N. Ilinykh, O. P. Nestiorkin, and B. Ya. Zel’dovich, “Phase shift in nondegenerate coupling of waves in the photorefractive crystal,” Opt. Commun. 80, 249 (1991).
[Crossref]

Zha, M. Z.

M. Z. Zha, P. Amrhein, and P. Günter, “Measurement of phase shift of photorefractive gratings by a novel method,” IEEE J. Quantum Electron. 26, 788 (1990).
[Crossref]

Zhang, L.

M. Liphardt, A. Goonesekera, S. Ducharme, J. M. Takacs, and L. Zhang, “Effect of beam attenuation on photorefractive grating erasure,” J. Opt. Soc. Am. B 13, 2252 (1996).
[Crossref]

B. E. Jones, S. Ducharme, A. Goonesekera, M. Liphardt, R. V. Athalye, L. Zhang, and J. M. Takacs, “Photoconductivity and grating response time of a photorefractive polymer,” J. Opt. Soc. Am. B 11, 1064 (1994).
[Crossref]

M. Liphardt, A. Goonesekera, B. E. Jones, S. Ducharme, J. M. Takacs, and L. Zhang, “High performance photorefractive polymers,” Science 263, 367 (1994).
[Crossref] [PubMed]

A. Goonesekera, M. Liphardt, S. Ducharme, J. M. Takacs, and L. Zhang, “The role of photoconductivity in molecularly doped photorefractive polymers,” in Xerographic Photoreceptors and Photorefractive Polymers, S. Ducharme and P. M. Borsenberger, eds., Proc. SPIE2526, 109 (1995).
[Crossref]

Appl. Phys. B (1)

M. Gehrtz, J. Pinsl, and C. Bräuchle, “Sensitive detection of phase and absorption gratings: phase-modulated, homodyne detected holography,” Appl. Phys. B 43, 61 (1987).
[Crossref]

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909 (1969).
[Crossref]

Bull. Acad. Sci. USSR Phys. Ser. (1)

V. Markov, S. Odulov, and M. Soskin, “Properties of the three-dimensional phase holograms in activated and reduced LiNbO3 crystals,” Bull. Acad. Sci. USSR Phys. Ser. 41, 144 (1977).

Chem. Rev. (1)

W. E. Moerner and S. Silence, “Polymeric photorefractive materials,” Chem. Rev. 94, 127 (1994).
[Crossref]

Ferroelectrics (3)

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. II. Beam coupling-light amplification,” Ferroelectrics 22, 961 (1979).
[Crossref]

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. I. Steady state,” Ferroelectrics 22, 949 (1979).
[Crossref]

P. Günter and F. Micheron, “Photorefractive effects and photocurrents in KNbO3:Fe,” Ferroelectrics 18, 27 (1978).
[Crossref]

IEEE J. Quantum Electron. (1)

M. Z. Zha, P. Amrhein, and P. Günter, “Measurement of phase shift of photorefractive gratings by a novel method,” IEEE J. Quantum Electron. 26, 788 (1990).
[Crossref]

J. Appl. Phys. (5)

P. M. Garcia, L. Cescato, and J. Frejlich, “Phase-shift measurement in photorefractive holographic recording,” J. Appl. Phys. 66, 47 (1989).
[Crossref]

R. M. Montgomery and M. R. Lange, “Amplitude and phase measurement technique for photorefractive gratings,” J. Appl. Phys. 68, 4782 (1990).
[Crossref]

A. Twarowski, “Geminate recombination in photorefractive crystals,” J. Appl. Phys. 65, 2833 (1989).
[Crossref]

J. S. Schildkraut and A. V. Buettner, “Theory and simulation of the formation and erasure of space-charge gratings in photoconductive polymers,” J. Appl. Phys. 72, 1888 (1992).
[Crossref]

J. S. Schildkraut and Y. Cui, “Zero-order and first-order theory of the formation of space-charge gratings in photoconductive polymers,” J. Appl. Phys. 72, 5055 (1992).
[Crossref]

J. Opt. Soc. Am. B (10)

M. Liphardt, A. Goonesekera, S. Ducharme, J. M. Takacs, and L. Zhang, “Effect of beam attenuation on photorefractive grating erasure,” J. Opt. Soc. Am. B 13, 2252 (1996).
[Crossref]

J. C. Scott, L. T. Pautmeier, and W. E. Moerner, “Photoconductivity studies of photorefractive polymers,” J. Opt. Soc. Am. B 9, 2059 (1992).
[Crossref]

W. E. Moerner, S. M. Silence, F. Hache, and G. C. Bjorklund, “Orientationally enhanced photorefractive effect in polymers,” J. Opt. Soc. Am. B 11, 320 (1994).
[Crossref]

B. E. Jones, S. Ducharme, A. Goonesekera, M. Liphardt, R. V. Athalye, L. Zhang, and J. M. Takacs, “Photoconductivity and grating response time of a photorefractive polymer,” J. Opt. Soc. Am. B 11, 1064 (1994).
[Crossref]

W. B. Lawler, C. J. Sherman, and M. G. Moharam, “Direct measurement of the amplitude and the phase of photorefractive fields in KNbO3:Ta and BaTiO3,” J. Opt. Soc. Am. B 8, 2190 (1991).
[Crossref]

P. N. Ilinykh, O. P. Nestiorkin, and B. Ya. Zel’dovich, “Recording a static hologram with laser beams of different frequencies in photorefractive crystals,” J. Opt. Soc. Am. B 8, 1042 (1991).
[Crossref]

D. G. Gray, M. G. Moharam, and T. M. Ayres, “Heterodyne technique for the direct measurement of the amplitude and phase of photorefractive space-charge fields,” J. Opt. Soc. Am. B 11, 470 (1994).
[Crossref]

K. Sutter and P. Günter, “Photorefractive gratings in the organic crystal 2-cyclooctylamino-5-nitropyridine doped with 7,7,8,8-tetracyanoquinodimethane,” J. Opt. Soc. Am. B 7, 2274 (1990).
[Crossref]

C. A. Walsh and W. E. Moerner, “Two-beam coupling measurements of grating phase in a photorefractive polymer,” J. Opt. Soc. Am. B 9, 1642 (1992).
[Crossref]

R. S. Cudney, R. M. Pierce, G. D. Bacher, and J. Feinberg, “Absorption gratings in photorefractive crystals with multiple levels,” J. Opt. Soc. Am. B 8, 1326 (1991).
[Crossref]

Nature (1)

K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, and N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature 371, 497 (1994).
[Crossref]

Opt. Acta (1)

V. Kondilenko, V. Markov, S. G. Odulov, and M. Soskin, “Diffraction of coupled waves and determination of phase mismatch between holographic grating and fringe pattern,” Opt. Acta 26, 239 (1979).
[Crossref]

Opt. Commun. (2)

P. N. Ilinykh, O. P. Nestiorkin, and B. Ya. Zel’dovich, “Phase shift in nondegenerate coupling of waves in the photorefractive crystal,” Opt. Commun. 80, 249 (1991).
[Crossref]

J. Frejlich, “Real-time photorefractive hologram phase-shift measurement and self-diffraction effects,” Opt. Commun. 107, 260 (1994).
[Crossref]

Opt. Lett. (7)

Philos. Mag. B (1)

L. B. Schein, “Comparison of charge transport models in molecularly doped polymers,” Philos. Mag. B 65, 795 (1992).
[Crossref]

Phys. Rev. Lett. (1)

S. Ducharme, R. W. Twieg, J. C. Scott, and W. E. Moerner, “Observation of the photorefractive effect in a polymer,” Phys. Rev. Lett. 66, 1846 (1991).
[Crossref] [PubMed]

Science (1)

M. Liphardt, A. Goonesekera, B. E. Jones, S. Ducharme, J. M. Takacs, and L. Zhang, “High performance photorefractive polymers,” Science 263, 367 (1994).
[Crossref] [PubMed]

Sov. Tech. Phys. Lett. (1)

N. V. Kukhtarev, “Kinetics of hologram recording and erasure in electro-optic crystals,” Sov. Tech. Phys. Lett. 2, 438 (1976).

Other (3)

A. Goonesekera, M. Liphardt, S. Ducharme, J. M. Takacs, and L. Zhang, “The role of photoconductivity in molecularly doped photorefractive polymers,” in Xerographic Photoreceptors and Photorefractive Polymers, S. Ducharme and P. M. Borsenberger, eds., Proc. SPIE2526, 109 (1995).
[Crossref]

Measured by P. Snyder by means of a J. A. Woollam Company spectroscopic ellipsometer.

S. Ducharme, “Applicability of the band transport (Kukhtarev) model to photorefractive polymers,” in Xerographic Photoreceptors and Photorefractive Polymers, S. Ducharme and P. M. Borsenberger, eds., Proc. SPIE2526, 144 (1995).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup to measure the photorefractive phase shift. The glass plates of the sample are omitted for clarity.  

Fig. 2
Fig. 2

Amplitude of the coupling strength ΓL coefficient from index (ΓR) and absorption (ΓI) gratings as a function of the applied electric field strength along the grating wave vector. The solid curve is a least-squares fit of the index grating gain to Eq. (8).

Fig. 3
Fig. 3

Real (squares) and imaginary (circles) parts of (a) the index grating and of (b) the absorption grating as a function of the applied electric field strength along the grating wave vector. The solid curves are least-squares fits of the index grating gain to Eqs. (8) and (9).

Fig. 4
Fig. 4

Phase shift of the index grating as a function of the applied electric field strength along the grating wave vector. The solid curve is a least-squares fit to Eq. (9).

Tables (2)

Tables Icon

Table 1 Contributions to the Complex Coupling Constant Γ when Both Probe and Pump Beams Are Monitored

Tables Icon

Table 2 Contributions to the Complex Coupling Constant Γ for Both Directions (+, -) of the Applied Electric Field

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

n˜=n0+n1 cos(Kx+ϕn)+i[κ0+κ1 cos(Kx+ϕκ)],
cos θ1 dE1(z, t)dz=-Γ14 m*(z, t)tE2(z, t)-α2 E1(z, t),
cos θ2 dE2(z, t)dz=-Γ24 m(z, t)tE1(z, t)-α2 E2(z, t),
I2[0]=I20 exp(ΓRL),
I2[Ω]=2μI20 exp(ΓRL/2)sin(ΓIL/2),
I2[2Ω]=μ22 I20[exp(ΓRL/2)cos(ΓIL/2)-1],
tan ϕPR=ΓR/ΓI.
1/2(Γ+R-Γ-R)=nPR sin(ϕPR),
1/2(Γ+R+Γ-R)=κPOP cos(ϕPOP)+κPC,
1/2(Γ+I+Γ-I)=nPR cos(ϕPR),
1/2(Γ+I-Γ-I)=κPOP sin(ϕPOP).
Esc=mEqE02+Ed2E02+(Ed+Eq)21/2,
tan ϕPR=Im(Esc)Re(Esc)=Ed(Ed+Eq)+E02E0Eq.

Metrics