Abstract

Al-doped Bi12SiO20 is investigated with respect to optical absorption, magnetic circular dichroism, and the optical detection of electron paramagnetic resonance. Two paramagnetic centers are formed under near-bandgap illumination at low temperatures. Magneto-optics permits their description in terms of holes more or less delocalized (slightly different environment) on the oxygens next to Al at the tetrahedral Si site. We demonstrate that the photoinduced optical absorption in the 0.5–1.2-eV spectral range is due to the charge-transfer transitions Al0+hνAl-+hv. The thermal energies associated with the two Al-/0 acceptor levels are found to be 0.16 and 0.40 eV above the valence-band edge by monitoring and modeling of the thermal bleaching of the IR bands. The associated optical energies are determined by isochronal annealing at 0.95 and 0.78 eV, and the photoionization cross sections of holes are estimated. In the colored state the respective hole populations are in the ratio 1:3.5 for the two states. The large ratio between the optical and thermal energies indicates the occurrence of a strong electron–lattice coupling. Finally, besides original spectroscopic assignments, we demonstrate that optical measurements on the charge-transfer bands of Bi12SiO20:Al and related sillenite crystals provide information similar to that given by thermally stimulated conductivity or luminescence.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. F. Schirmer, H. J. Reyher, and M. Wöhlecke, “Characterization of point defects in photorefractive crystals by paramagnetic resonance methods,” in Insulating Materials for Optoelectronics, F. Agulló-López, ed. (World Scientific, Singapore, 1995), pp. 93–124.
  2. B. Briat, H. J. Reyher, A. Hamri, N. G. Romanov, J. C. Launay, and F. Ramaz, “Magnetic circular dichroism and the optical detection of magnetic resonance for the Bi antisite defect in Bi12GeO20,” J. Phys.: Condens. Matter 7, 6951–6959 (1995).
  3. B. Briat, A. Hamri, F. Ramaz, and H. Bou Rjeily, “Magnetooptical characterization of ligand field bands and charge transfer processes in sillenite oxydes,” in Solid State Crystals: Growth and Characterization, J. Zmija, A. Majchrowski, J. Rutkowski, and J. Zielinski, eds., Proc. SPIE3178, 160–168 (1997).
    [Crossref]
  4. Yu. L. Kopylov, V. B. Kravchenko, and V. V. Kucha, “Effect of doping on the electrooptic properties of Bi12SiO20 single crystals,” Pis’ma Zh. Tekh. Fiz. 8, 205–207 (1982) [Sov. Tech. Phys. Lett. 8, 88–89 (1982)].
  5. A. V. Ivanov, Yu. L. Kopylov, V. B. Kravchenko, V. V. Kucha, and R. Sh. Tukhatulin, “Effects of doping of bismuth silicate crystals on the properties of an electron-beam spatial light modulator,” Zh. Tekh. Fiz. 54, 2418–2419 (1984) [Sov. Phys. Tech. Phys. 29, 1428–1429 (1984)].
  6. N. I. Katsaets, E. I. Leonov, V. M. Orlov, and E. B. Shadrin, “Holographic recording in doped bismuth silicate and germanate crystals,” Pis’ma Zh. Tekh. Fiz. 9424–427 (1983) [Sov. Tech. Phys. Lett. 9, 183–184 (1983)].
  7. N. I. Katsavets and E. I. Leonov, “Transient electrooptic effects in Bi12SiO20 single crystals doped with Al and Mn,” Zh. Tekh. Fiz. 56, 1993–1995 (1986) [Sov. Phys. Tech. Phys. 31, 1191–1192 (1986)].
  8. L. Foldvari, L. E. Halliburton, G. J. Edvards, and L. Otsi, “Photoinduced defects in pure and Al-doped BGO single crystals,” Solid State Commun. 77, 181–188 (1991).
    [Crossref]
  9. J. J. Martin, I. Foldvari, and C. A. Hunt, “The low-temperature photochromic response of bismuth germanium oxide,” J. Appl. Phys. 70, 7554–7559 (1991).
    [Crossref]
  10. J. S. McCullough, A. Harmon, J. J. Martin, M. T. Harris, and J. J. Larkin, “Low-temperature photochromic response of phosphorous-doped bismuth silicon oxide,” J. Appl. Phys. 78, 2010–2014 (1995).
    [Crossref]
  11. Yu. I. Ukhanov, Optical Properties of Semiconductors (Nauka, Moskow, 1977), p. 365.
  12. B. I. Shklovskii and A. L. Efross, Electronic Properties of Doped Semiconductors (Springer-Verlag, Berlin, 1984).
  13. B. K. Ridley, Quantum Processes in Semiconductors (Clarendon, Oxford, 1983).
  14. D. Bois and A. Chantre, “Spectroscopies thermique et optique des niveaux profonds: application à l’étude de leur relaxation de réseau,” Rev. Phys. Appl. 15, 631–636 (1980).
    [Crossref]
  15. C. H. Henry and D. V. Lang, “Nonradiative capture and recombination by multiphonon emission in GaAs and GaP,” Phys. Rev. B 15, 989–1016 (1977).
    [Crossref]
  16. W. Rehwald, K. Frick, G. K. Lang, and E. Meier, “Doping effects upon the ultrasonic attenuation of BSO,” J. Appl. Phys. 47, 1292–1294 (1976).
    [Crossref]
  17. B. C. Grabmaier and R. Oberschmid, “Properties of pure and doped Bi12GeO20 and Bi12SiO20 crystals,” Phys. Status Solidi A 96, 199–210 (1986).
    [Crossref]
  18. R. Oberschmid, “Absorption centers of Bi12GeO20 and Bi12SiO20 crystals,” Phys. Status Solidi A 89, 263–270 (1985).
    [Crossref]
  19. I. J. Saunders, “The thermally stimulated luminescence and conductivity of insulators,” J. Phys. C 2, 2181–2198 (1969).
    [Crossref]
  20. H. D. Bloom and S. W. S. McKeever, “Trap level spectroscopy of undoped and Ga-doped Bi12GeO20 using thermally stimulated conductivity,” J. Appl. Phys. 77, 6521–6533 (1995).
    [Crossref]
  21. M. T. Borowiec, “Equilibrium and non-equilibrium processes in sillenites,” in Solid State Crystals: Growth and Characterization, J. Zmija, A. Majchrowski, J. Rutkowski, and J. Zielinski, eds., Proc. SPIE3178, 173–178 (1997).
    [Crossref]
  22. S. L. Hou, R. B. Lauer, and R. E. Aldrich, “Transport processes of photoinduced carriers in BSO,” J. Appl. Phys. 44, 2652–2658 (1973).
    [Crossref]
  23. U. Kaufmann and J. Windschief, “Origin of the magnetic-circular-dichroism absorption of undoped as-grown GaAs,” Phys. Rev. 38, 10060–10063 (1988).
    [Crossref]
  24. B. K. Meyer, F. Lohse, J. M. Spaeth, and J. A. Weil, “Optically detected magnetic resonance of the [AlO4]0 centre in crystalline quartz,” J. Phys. C 17, L31–L36 (1984).
    [Crossref]
  25. O. F. Schirmer and R. Schnadt, “Bound small polaron optical absorption in tetrahedral symmetry,” Solid State Commun. 18, 1345–1348 (1976).
    [Crossref]
  26. D. Y. Jeon, H. P. Gislason, and G. D. Watkins, “Optical detection of magnetic resonance of the zinc vacancy in ZnSe via magnetic circular dichroism,” Phys. Rev. B 48, 7872–7883 (1993).
    [Crossref]
  27. H. J. Reyher, R. Schulz, and O. Thiemann, “Investigation of the optical-absorption bands of Nb4+ and Ti3+ in lithium niobate using magnetic circular dichroism and optically detected magnetic-resonance techniques,” Phys. Rev. B 50, 3609–3619 (1994).
    [Crossref]
  28. J. P. Zielinger and M. Tapiero, “Assessment of deep levels in photorefractive materials by transient photoelectric methods,” J. Phys. (France) III 3, 1327–1344 (1993).
    [Crossref]
  29. P. N. Keating, “Thermally stimulated emission and conductivity peaks in the case of temperature dependent trapping cross sections,” Proc. Phys. Soc. London 78, 1408–1415 (1961).
    [Crossref]
  30. T. V. Panchenko and G. V. Snezhnoy, “Thermal depolarization analysis of the polarization mechanisms in Bi12SiO20 crystals doped with Al and Ga ions,” Fiz. Tverd. Tela (St. Petersburg) 35, 3248–3258 (1993) [Sov. Phys. Solid State 35, 1598–1603 (1993)].
  31. Sh. M. Efendiev, V. E. Bagiev, A. Kh. Zeinally, M. Grandolfo, and P. Vecchia, “Deep localized centers in sillenite-type nonlinear crystals,” Ferroelectrics 43, 217–221 (1982).
    [Crossref]
  32. R. B. Lauer, “Electron effective mass and conduction-band effective density of states in Bi12SiO20,” J. Appl. Phys. 45, 1794–1797 (1974).
    [Crossref]
  33. V. I. Berezkin, “Optical and thermal transitions in bismuth silicate,” Fiz. Tverd. Tela (St. Petersburg) 25, 490–494 (1983) [Sov. Phys. Solid State 25, 276–279 (1983)].
  34. V. A. Gusev, V. A. Detinenko, and V. P. Sokolov, “The photochromic effect and optical data recording in germanium, silicon and titanium sillenites,” Avtometrija34–44 (1983) [Autom. Monitor. Meas. 35–46 (1983)].

1995 (3)

B. Briat, H. J. Reyher, A. Hamri, N. G. Romanov, J. C. Launay, and F. Ramaz, “Magnetic circular dichroism and the optical detection of magnetic resonance for the Bi antisite defect in Bi12GeO20,” J. Phys.: Condens. Matter 7, 6951–6959 (1995).

J. S. McCullough, A. Harmon, J. J. Martin, M. T. Harris, and J. J. Larkin, “Low-temperature photochromic response of phosphorous-doped bismuth silicon oxide,” J. Appl. Phys. 78, 2010–2014 (1995).
[Crossref]

H. D. Bloom and S. W. S. McKeever, “Trap level spectroscopy of undoped and Ga-doped Bi12GeO20 using thermally stimulated conductivity,” J. Appl. Phys. 77, 6521–6533 (1995).
[Crossref]

1994 (1)

H. J. Reyher, R. Schulz, and O. Thiemann, “Investigation of the optical-absorption bands of Nb4+ and Ti3+ in lithium niobate using magnetic circular dichroism and optically detected magnetic-resonance techniques,” Phys. Rev. B 50, 3609–3619 (1994).
[Crossref]

1993 (3)

J. P. Zielinger and M. Tapiero, “Assessment of deep levels in photorefractive materials by transient photoelectric methods,” J. Phys. (France) III 3, 1327–1344 (1993).
[Crossref]

D. Y. Jeon, H. P. Gislason, and G. D. Watkins, “Optical detection of magnetic resonance of the zinc vacancy in ZnSe via magnetic circular dichroism,” Phys. Rev. B 48, 7872–7883 (1993).
[Crossref]

T. V. Panchenko and G. V. Snezhnoy, “Thermal depolarization analysis of the polarization mechanisms in Bi12SiO20 crystals doped with Al and Ga ions,” Fiz. Tverd. Tela (St. Petersburg) 35, 3248–3258 (1993) [Sov. Phys. Solid State 35, 1598–1603 (1993)].

1991 (2)

L. Foldvari, L. E. Halliburton, G. J. Edvards, and L. Otsi, “Photoinduced defects in pure and Al-doped BGO single crystals,” Solid State Commun. 77, 181–188 (1991).
[Crossref]

J. J. Martin, I. Foldvari, and C. A. Hunt, “The low-temperature photochromic response of bismuth germanium oxide,” J. Appl. Phys. 70, 7554–7559 (1991).
[Crossref]

1988 (1)

U. Kaufmann and J. Windschief, “Origin of the magnetic-circular-dichroism absorption of undoped as-grown GaAs,” Phys. Rev. 38, 10060–10063 (1988).
[Crossref]

1986 (2)

B. C. Grabmaier and R. Oberschmid, “Properties of pure and doped Bi12GeO20 and Bi12SiO20 crystals,” Phys. Status Solidi A 96, 199–210 (1986).
[Crossref]

N. I. Katsavets and E. I. Leonov, “Transient electrooptic effects in Bi12SiO20 single crystals doped with Al and Mn,” Zh. Tekh. Fiz. 56, 1993–1995 (1986) [Sov. Phys. Tech. Phys. 31, 1191–1192 (1986)].

1985 (1)

R. Oberschmid, “Absorption centers of Bi12GeO20 and Bi12SiO20 crystals,” Phys. Status Solidi A 89, 263–270 (1985).
[Crossref]

1984 (2)

B. K. Meyer, F. Lohse, J. M. Spaeth, and J. A. Weil, “Optically detected magnetic resonance of the [AlO4]0 centre in crystalline quartz,” J. Phys. C 17, L31–L36 (1984).
[Crossref]

A. V. Ivanov, Yu. L. Kopylov, V. B. Kravchenko, V. V. Kucha, and R. Sh. Tukhatulin, “Effects of doping of bismuth silicate crystals on the properties of an electron-beam spatial light modulator,” Zh. Tekh. Fiz. 54, 2418–2419 (1984) [Sov. Phys. Tech. Phys. 29, 1428–1429 (1984)].

1983 (3)

N. I. Katsaets, E. I. Leonov, V. M. Orlov, and E. B. Shadrin, “Holographic recording in doped bismuth silicate and germanate crystals,” Pis’ma Zh. Tekh. Fiz. 9424–427 (1983) [Sov. Tech. Phys. Lett. 9, 183–184 (1983)].

V. I. Berezkin, “Optical and thermal transitions in bismuth silicate,” Fiz. Tverd. Tela (St. Petersburg) 25, 490–494 (1983) [Sov. Phys. Solid State 25, 276–279 (1983)].

V. A. Gusev, V. A. Detinenko, and V. P. Sokolov, “The photochromic effect and optical data recording in germanium, silicon and titanium sillenites,” Avtometrija34–44 (1983) [Autom. Monitor. Meas. 35–46 (1983)].

1982 (2)

Sh. M. Efendiev, V. E. Bagiev, A. Kh. Zeinally, M. Grandolfo, and P. Vecchia, “Deep localized centers in sillenite-type nonlinear crystals,” Ferroelectrics 43, 217–221 (1982).
[Crossref]

Yu. L. Kopylov, V. B. Kravchenko, and V. V. Kucha, “Effect of doping on the electrooptic properties of Bi12SiO20 single crystals,” Pis’ma Zh. Tekh. Fiz. 8, 205–207 (1982) [Sov. Tech. Phys. Lett. 8, 88–89 (1982)].

1980 (1)

D. Bois and A. Chantre, “Spectroscopies thermique et optique des niveaux profonds: application à l’étude de leur relaxation de réseau,” Rev. Phys. Appl. 15, 631–636 (1980).
[Crossref]

1977 (1)

C. H. Henry and D. V. Lang, “Nonradiative capture and recombination by multiphonon emission in GaAs and GaP,” Phys. Rev. B 15, 989–1016 (1977).
[Crossref]

1976 (2)

W. Rehwald, K. Frick, G. K. Lang, and E. Meier, “Doping effects upon the ultrasonic attenuation of BSO,” J. Appl. Phys. 47, 1292–1294 (1976).
[Crossref]

O. F. Schirmer and R. Schnadt, “Bound small polaron optical absorption in tetrahedral symmetry,” Solid State Commun. 18, 1345–1348 (1976).
[Crossref]

1974 (1)

R. B. Lauer, “Electron effective mass and conduction-band effective density of states in Bi12SiO20,” J. Appl. Phys. 45, 1794–1797 (1974).
[Crossref]

1973 (1)

S. L. Hou, R. B. Lauer, and R. E. Aldrich, “Transport processes of photoinduced carriers in BSO,” J. Appl. Phys. 44, 2652–2658 (1973).
[Crossref]

1969 (1)

I. J. Saunders, “The thermally stimulated luminescence and conductivity of insulators,” J. Phys. C 2, 2181–2198 (1969).
[Crossref]

1961 (1)

P. N. Keating, “Thermally stimulated emission and conductivity peaks in the case of temperature dependent trapping cross sections,” Proc. Phys. Soc. London 78, 1408–1415 (1961).
[Crossref]

Aldrich, R. E.

S. L. Hou, R. B. Lauer, and R. E. Aldrich, “Transport processes of photoinduced carriers in BSO,” J. Appl. Phys. 44, 2652–2658 (1973).
[Crossref]

Bagiev, V. E.

Sh. M. Efendiev, V. E. Bagiev, A. Kh. Zeinally, M. Grandolfo, and P. Vecchia, “Deep localized centers in sillenite-type nonlinear crystals,” Ferroelectrics 43, 217–221 (1982).
[Crossref]

Berezkin, V. I.

V. I. Berezkin, “Optical and thermal transitions in bismuth silicate,” Fiz. Tverd. Tela (St. Petersburg) 25, 490–494 (1983) [Sov. Phys. Solid State 25, 276–279 (1983)].

Bloom, H. D.

H. D. Bloom and S. W. S. McKeever, “Trap level spectroscopy of undoped and Ga-doped Bi12GeO20 using thermally stimulated conductivity,” J. Appl. Phys. 77, 6521–6533 (1995).
[Crossref]

Bois, D.

D. Bois and A. Chantre, “Spectroscopies thermique et optique des niveaux profonds: application à l’étude de leur relaxation de réseau,” Rev. Phys. Appl. 15, 631–636 (1980).
[Crossref]

Borowiec, M. T.

M. T. Borowiec, “Equilibrium and non-equilibrium processes in sillenites,” in Solid State Crystals: Growth and Characterization, J. Zmija, A. Majchrowski, J. Rutkowski, and J. Zielinski, eds., Proc. SPIE3178, 173–178 (1997).
[Crossref]

Bou Rjeily, H.

B. Briat, A. Hamri, F. Ramaz, and H. Bou Rjeily, “Magnetooptical characterization of ligand field bands and charge transfer processes in sillenite oxydes,” in Solid State Crystals: Growth and Characterization, J. Zmija, A. Majchrowski, J. Rutkowski, and J. Zielinski, eds., Proc. SPIE3178, 160–168 (1997).
[Crossref]

Briat, B.

B. Briat, H. J. Reyher, A. Hamri, N. G. Romanov, J. C. Launay, and F. Ramaz, “Magnetic circular dichroism and the optical detection of magnetic resonance for the Bi antisite defect in Bi12GeO20,” J. Phys.: Condens. Matter 7, 6951–6959 (1995).

B. Briat, A. Hamri, F. Ramaz, and H. Bou Rjeily, “Magnetooptical characterization of ligand field bands and charge transfer processes in sillenite oxydes,” in Solid State Crystals: Growth and Characterization, J. Zmija, A. Majchrowski, J. Rutkowski, and J. Zielinski, eds., Proc. SPIE3178, 160–168 (1997).
[Crossref]

Chantre, A.

D. Bois and A. Chantre, “Spectroscopies thermique et optique des niveaux profonds: application à l’étude de leur relaxation de réseau,” Rev. Phys. Appl. 15, 631–636 (1980).
[Crossref]

Detinenko, V. A.

V. A. Gusev, V. A. Detinenko, and V. P. Sokolov, “The photochromic effect and optical data recording in germanium, silicon and titanium sillenites,” Avtometrija34–44 (1983) [Autom. Monitor. Meas. 35–46 (1983)].

Edvards, G. J.

L. Foldvari, L. E. Halliburton, G. J. Edvards, and L. Otsi, “Photoinduced defects in pure and Al-doped BGO single crystals,” Solid State Commun. 77, 181–188 (1991).
[Crossref]

Efendiev, Sh. M.

Sh. M. Efendiev, V. E. Bagiev, A. Kh. Zeinally, M. Grandolfo, and P. Vecchia, “Deep localized centers in sillenite-type nonlinear crystals,” Ferroelectrics 43, 217–221 (1982).
[Crossref]

Efross, A. L.

B. I. Shklovskii and A. L. Efross, Electronic Properties of Doped Semiconductors (Springer-Verlag, Berlin, 1984).

Foldvari, I.

J. J. Martin, I. Foldvari, and C. A. Hunt, “The low-temperature photochromic response of bismuth germanium oxide,” J. Appl. Phys. 70, 7554–7559 (1991).
[Crossref]

Foldvari, L.

L. Foldvari, L. E. Halliburton, G. J. Edvards, and L. Otsi, “Photoinduced defects in pure and Al-doped BGO single crystals,” Solid State Commun. 77, 181–188 (1991).
[Crossref]

Frick, K.

W. Rehwald, K. Frick, G. K. Lang, and E. Meier, “Doping effects upon the ultrasonic attenuation of BSO,” J. Appl. Phys. 47, 1292–1294 (1976).
[Crossref]

Gislason, H. P.

D. Y. Jeon, H. P. Gislason, and G. D. Watkins, “Optical detection of magnetic resonance of the zinc vacancy in ZnSe via magnetic circular dichroism,” Phys. Rev. B 48, 7872–7883 (1993).
[Crossref]

Grabmaier, B. C.

B. C. Grabmaier and R. Oberschmid, “Properties of pure and doped Bi12GeO20 and Bi12SiO20 crystals,” Phys. Status Solidi A 96, 199–210 (1986).
[Crossref]

Grandolfo, M.

Sh. M. Efendiev, V. E. Bagiev, A. Kh. Zeinally, M. Grandolfo, and P. Vecchia, “Deep localized centers in sillenite-type nonlinear crystals,” Ferroelectrics 43, 217–221 (1982).
[Crossref]

Gusev, V. A.

V. A. Gusev, V. A. Detinenko, and V. P. Sokolov, “The photochromic effect and optical data recording in germanium, silicon and titanium sillenites,” Avtometrija34–44 (1983) [Autom. Monitor. Meas. 35–46 (1983)].

Halliburton, L. E.

L. Foldvari, L. E. Halliburton, G. J. Edvards, and L. Otsi, “Photoinduced defects in pure and Al-doped BGO single crystals,” Solid State Commun. 77, 181–188 (1991).
[Crossref]

Hamri, A.

B. Briat, H. J. Reyher, A. Hamri, N. G. Romanov, J. C. Launay, and F. Ramaz, “Magnetic circular dichroism and the optical detection of magnetic resonance for the Bi antisite defect in Bi12GeO20,” J. Phys.: Condens. Matter 7, 6951–6959 (1995).

B. Briat, A. Hamri, F. Ramaz, and H. Bou Rjeily, “Magnetooptical characterization of ligand field bands and charge transfer processes in sillenite oxydes,” in Solid State Crystals: Growth and Characterization, J. Zmija, A. Majchrowski, J. Rutkowski, and J. Zielinski, eds., Proc. SPIE3178, 160–168 (1997).
[Crossref]

Harmon, A.

J. S. McCullough, A. Harmon, J. J. Martin, M. T. Harris, and J. J. Larkin, “Low-temperature photochromic response of phosphorous-doped bismuth silicon oxide,” J. Appl. Phys. 78, 2010–2014 (1995).
[Crossref]

Harris, M. T.

J. S. McCullough, A. Harmon, J. J. Martin, M. T. Harris, and J. J. Larkin, “Low-temperature photochromic response of phosphorous-doped bismuth silicon oxide,” J. Appl. Phys. 78, 2010–2014 (1995).
[Crossref]

Henry, C. H.

C. H. Henry and D. V. Lang, “Nonradiative capture and recombination by multiphonon emission in GaAs and GaP,” Phys. Rev. B 15, 989–1016 (1977).
[Crossref]

Hou, S. L.

S. L. Hou, R. B. Lauer, and R. E. Aldrich, “Transport processes of photoinduced carriers in BSO,” J. Appl. Phys. 44, 2652–2658 (1973).
[Crossref]

Hunt, C. A.

J. J. Martin, I. Foldvari, and C. A. Hunt, “The low-temperature photochromic response of bismuth germanium oxide,” J. Appl. Phys. 70, 7554–7559 (1991).
[Crossref]

Ivanov, A. V.

A. V. Ivanov, Yu. L. Kopylov, V. B. Kravchenko, V. V. Kucha, and R. Sh. Tukhatulin, “Effects of doping of bismuth silicate crystals on the properties of an electron-beam spatial light modulator,” Zh. Tekh. Fiz. 54, 2418–2419 (1984) [Sov. Phys. Tech. Phys. 29, 1428–1429 (1984)].

Jeon, D. Y.

D. Y. Jeon, H. P. Gislason, and G. D. Watkins, “Optical detection of magnetic resonance of the zinc vacancy in ZnSe via magnetic circular dichroism,” Phys. Rev. B 48, 7872–7883 (1993).
[Crossref]

Katsaets, N. I.

N. I. Katsaets, E. I. Leonov, V. M. Orlov, and E. B. Shadrin, “Holographic recording in doped bismuth silicate and germanate crystals,” Pis’ma Zh. Tekh. Fiz. 9424–427 (1983) [Sov. Tech. Phys. Lett. 9, 183–184 (1983)].

Katsavets, N. I.

N. I. Katsavets and E. I. Leonov, “Transient electrooptic effects in Bi12SiO20 single crystals doped with Al and Mn,” Zh. Tekh. Fiz. 56, 1993–1995 (1986) [Sov. Phys. Tech. Phys. 31, 1191–1192 (1986)].

Kaufmann, U.

U. Kaufmann and J. Windschief, “Origin of the magnetic-circular-dichroism absorption of undoped as-grown GaAs,” Phys. Rev. 38, 10060–10063 (1988).
[Crossref]

Keating, P. N.

P. N. Keating, “Thermally stimulated emission and conductivity peaks in the case of temperature dependent trapping cross sections,” Proc. Phys. Soc. London 78, 1408–1415 (1961).
[Crossref]

Kopylov, Yu. L.

A. V. Ivanov, Yu. L. Kopylov, V. B. Kravchenko, V. V. Kucha, and R. Sh. Tukhatulin, “Effects of doping of bismuth silicate crystals on the properties of an electron-beam spatial light modulator,” Zh. Tekh. Fiz. 54, 2418–2419 (1984) [Sov. Phys. Tech. Phys. 29, 1428–1429 (1984)].

Yu. L. Kopylov, V. B. Kravchenko, and V. V. Kucha, “Effect of doping on the electrooptic properties of Bi12SiO20 single crystals,” Pis’ma Zh. Tekh. Fiz. 8, 205–207 (1982) [Sov. Tech. Phys. Lett. 8, 88–89 (1982)].

Kravchenko, V. B.

A. V. Ivanov, Yu. L. Kopylov, V. B. Kravchenko, V. V. Kucha, and R. Sh. Tukhatulin, “Effects of doping of bismuth silicate crystals on the properties of an electron-beam spatial light modulator,” Zh. Tekh. Fiz. 54, 2418–2419 (1984) [Sov. Phys. Tech. Phys. 29, 1428–1429 (1984)].

Yu. L. Kopylov, V. B. Kravchenko, and V. V. Kucha, “Effect of doping on the electrooptic properties of Bi12SiO20 single crystals,” Pis’ma Zh. Tekh. Fiz. 8, 205–207 (1982) [Sov. Tech. Phys. Lett. 8, 88–89 (1982)].

Kucha, V. V.

A. V. Ivanov, Yu. L. Kopylov, V. B. Kravchenko, V. V. Kucha, and R. Sh. Tukhatulin, “Effects of doping of bismuth silicate crystals on the properties of an electron-beam spatial light modulator,” Zh. Tekh. Fiz. 54, 2418–2419 (1984) [Sov. Phys. Tech. Phys. 29, 1428–1429 (1984)].

Yu. L. Kopylov, V. B. Kravchenko, and V. V. Kucha, “Effect of doping on the electrooptic properties of Bi12SiO20 single crystals,” Pis’ma Zh. Tekh. Fiz. 8, 205–207 (1982) [Sov. Tech. Phys. Lett. 8, 88–89 (1982)].

Lang, D. V.

C. H. Henry and D. V. Lang, “Nonradiative capture and recombination by multiphonon emission in GaAs and GaP,” Phys. Rev. B 15, 989–1016 (1977).
[Crossref]

Lang, G. K.

W. Rehwald, K. Frick, G. K. Lang, and E. Meier, “Doping effects upon the ultrasonic attenuation of BSO,” J. Appl. Phys. 47, 1292–1294 (1976).
[Crossref]

Larkin, J. J.

J. S. McCullough, A. Harmon, J. J. Martin, M. T. Harris, and J. J. Larkin, “Low-temperature photochromic response of phosphorous-doped bismuth silicon oxide,” J. Appl. Phys. 78, 2010–2014 (1995).
[Crossref]

Lauer, R. B.

R. B. Lauer, “Electron effective mass and conduction-band effective density of states in Bi12SiO20,” J. Appl. Phys. 45, 1794–1797 (1974).
[Crossref]

S. L. Hou, R. B. Lauer, and R. E. Aldrich, “Transport processes of photoinduced carriers in BSO,” J. Appl. Phys. 44, 2652–2658 (1973).
[Crossref]

Launay, J. C.

B. Briat, H. J. Reyher, A. Hamri, N. G. Romanov, J. C. Launay, and F. Ramaz, “Magnetic circular dichroism and the optical detection of magnetic resonance for the Bi antisite defect in Bi12GeO20,” J. Phys.: Condens. Matter 7, 6951–6959 (1995).

Leonov, E. I.

N. I. Katsavets and E. I. Leonov, “Transient electrooptic effects in Bi12SiO20 single crystals doped with Al and Mn,” Zh. Tekh. Fiz. 56, 1993–1995 (1986) [Sov. Phys. Tech. Phys. 31, 1191–1192 (1986)].

N. I. Katsaets, E. I. Leonov, V. M. Orlov, and E. B. Shadrin, “Holographic recording in doped bismuth silicate and germanate crystals,” Pis’ma Zh. Tekh. Fiz. 9424–427 (1983) [Sov. Tech. Phys. Lett. 9, 183–184 (1983)].

Lohse, F.

B. K. Meyer, F. Lohse, J. M. Spaeth, and J. A. Weil, “Optically detected magnetic resonance of the [AlO4]0 centre in crystalline quartz,” J. Phys. C 17, L31–L36 (1984).
[Crossref]

Martin, J. J.

J. S. McCullough, A. Harmon, J. J. Martin, M. T. Harris, and J. J. Larkin, “Low-temperature photochromic response of phosphorous-doped bismuth silicon oxide,” J. Appl. Phys. 78, 2010–2014 (1995).
[Crossref]

J. J. Martin, I. Foldvari, and C. A. Hunt, “The low-temperature photochromic response of bismuth germanium oxide,” J. Appl. Phys. 70, 7554–7559 (1991).
[Crossref]

McCullough, J. S.

J. S. McCullough, A. Harmon, J. J. Martin, M. T. Harris, and J. J. Larkin, “Low-temperature photochromic response of phosphorous-doped bismuth silicon oxide,” J. Appl. Phys. 78, 2010–2014 (1995).
[Crossref]

McKeever, S. W. S.

H. D. Bloom and S. W. S. McKeever, “Trap level spectroscopy of undoped and Ga-doped Bi12GeO20 using thermally stimulated conductivity,” J. Appl. Phys. 77, 6521–6533 (1995).
[Crossref]

Meier, E.

W. Rehwald, K. Frick, G. K. Lang, and E. Meier, “Doping effects upon the ultrasonic attenuation of BSO,” J. Appl. Phys. 47, 1292–1294 (1976).
[Crossref]

Meyer, B. K.

B. K. Meyer, F. Lohse, J. M. Spaeth, and J. A. Weil, “Optically detected magnetic resonance of the [AlO4]0 centre in crystalline quartz,” J. Phys. C 17, L31–L36 (1984).
[Crossref]

Oberschmid, R.

B. C. Grabmaier and R. Oberschmid, “Properties of pure and doped Bi12GeO20 and Bi12SiO20 crystals,” Phys. Status Solidi A 96, 199–210 (1986).
[Crossref]

R. Oberschmid, “Absorption centers of Bi12GeO20 and Bi12SiO20 crystals,” Phys. Status Solidi A 89, 263–270 (1985).
[Crossref]

Orlov, V. M.

N. I. Katsaets, E. I. Leonov, V. M. Orlov, and E. B. Shadrin, “Holographic recording in doped bismuth silicate and germanate crystals,” Pis’ma Zh. Tekh. Fiz. 9424–427 (1983) [Sov. Tech. Phys. Lett. 9, 183–184 (1983)].

Otsi, L.

L. Foldvari, L. E. Halliburton, G. J. Edvards, and L. Otsi, “Photoinduced defects in pure and Al-doped BGO single crystals,” Solid State Commun. 77, 181–188 (1991).
[Crossref]

Panchenko, T. V.

T. V. Panchenko and G. V. Snezhnoy, “Thermal depolarization analysis of the polarization mechanisms in Bi12SiO20 crystals doped with Al and Ga ions,” Fiz. Tverd. Tela (St. Petersburg) 35, 3248–3258 (1993) [Sov. Phys. Solid State 35, 1598–1603 (1993)].

Ramaz, F.

B. Briat, H. J. Reyher, A. Hamri, N. G. Romanov, J. C. Launay, and F. Ramaz, “Magnetic circular dichroism and the optical detection of magnetic resonance for the Bi antisite defect in Bi12GeO20,” J. Phys.: Condens. Matter 7, 6951–6959 (1995).

B. Briat, A. Hamri, F. Ramaz, and H. Bou Rjeily, “Magnetooptical characterization of ligand field bands and charge transfer processes in sillenite oxydes,” in Solid State Crystals: Growth and Characterization, J. Zmija, A. Majchrowski, J. Rutkowski, and J. Zielinski, eds., Proc. SPIE3178, 160–168 (1997).
[Crossref]

Rehwald, W.

W. Rehwald, K. Frick, G. K. Lang, and E. Meier, “Doping effects upon the ultrasonic attenuation of BSO,” J. Appl. Phys. 47, 1292–1294 (1976).
[Crossref]

Reyher, H. J.

B. Briat, H. J. Reyher, A. Hamri, N. G. Romanov, J. C. Launay, and F. Ramaz, “Magnetic circular dichroism and the optical detection of magnetic resonance for the Bi antisite defect in Bi12GeO20,” J. Phys.: Condens. Matter 7, 6951–6959 (1995).

H. J. Reyher, R. Schulz, and O. Thiemann, “Investigation of the optical-absorption bands of Nb4+ and Ti3+ in lithium niobate using magnetic circular dichroism and optically detected magnetic-resonance techniques,” Phys. Rev. B 50, 3609–3619 (1994).
[Crossref]

O. F. Schirmer, H. J. Reyher, and M. Wöhlecke, “Characterization of point defects in photorefractive crystals by paramagnetic resonance methods,” in Insulating Materials for Optoelectronics, F. Agulló-López, ed. (World Scientific, Singapore, 1995), pp. 93–124.

Ridley, B. K.

B. K. Ridley, Quantum Processes in Semiconductors (Clarendon, Oxford, 1983).

Romanov, N. G.

B. Briat, H. J. Reyher, A. Hamri, N. G. Romanov, J. C. Launay, and F. Ramaz, “Magnetic circular dichroism and the optical detection of magnetic resonance for the Bi antisite defect in Bi12GeO20,” J. Phys.: Condens. Matter 7, 6951–6959 (1995).

Saunders, I. J.

I. J. Saunders, “The thermally stimulated luminescence and conductivity of insulators,” J. Phys. C 2, 2181–2198 (1969).
[Crossref]

Schirmer, O. F.

O. F. Schirmer and R. Schnadt, “Bound small polaron optical absorption in tetrahedral symmetry,” Solid State Commun. 18, 1345–1348 (1976).
[Crossref]

O. F. Schirmer, H. J. Reyher, and M. Wöhlecke, “Characterization of point defects in photorefractive crystals by paramagnetic resonance methods,” in Insulating Materials for Optoelectronics, F. Agulló-López, ed. (World Scientific, Singapore, 1995), pp. 93–124.

Schnadt, R.

O. F. Schirmer and R. Schnadt, “Bound small polaron optical absorption in tetrahedral symmetry,” Solid State Commun. 18, 1345–1348 (1976).
[Crossref]

Schulz, R.

H. J. Reyher, R. Schulz, and O. Thiemann, “Investigation of the optical-absorption bands of Nb4+ and Ti3+ in lithium niobate using magnetic circular dichroism and optically detected magnetic-resonance techniques,” Phys. Rev. B 50, 3609–3619 (1994).
[Crossref]

Shadrin, E. B.

N. I. Katsaets, E. I. Leonov, V. M. Orlov, and E. B. Shadrin, “Holographic recording in doped bismuth silicate and germanate crystals,” Pis’ma Zh. Tekh. Fiz. 9424–427 (1983) [Sov. Tech. Phys. Lett. 9, 183–184 (1983)].

Shklovskii, B. I.

B. I. Shklovskii and A. L. Efross, Electronic Properties of Doped Semiconductors (Springer-Verlag, Berlin, 1984).

Snezhnoy, G. V.

T. V. Panchenko and G. V. Snezhnoy, “Thermal depolarization analysis of the polarization mechanisms in Bi12SiO20 crystals doped with Al and Ga ions,” Fiz. Tverd. Tela (St. Petersburg) 35, 3248–3258 (1993) [Sov. Phys. Solid State 35, 1598–1603 (1993)].

Sokolov, V. P.

V. A. Gusev, V. A. Detinenko, and V. P. Sokolov, “The photochromic effect and optical data recording in germanium, silicon and titanium sillenites,” Avtometrija34–44 (1983) [Autom. Monitor. Meas. 35–46 (1983)].

Spaeth, J. M.

B. K. Meyer, F. Lohse, J. M. Spaeth, and J. A. Weil, “Optically detected magnetic resonance of the [AlO4]0 centre in crystalline quartz,” J. Phys. C 17, L31–L36 (1984).
[Crossref]

Tapiero, M.

J. P. Zielinger and M. Tapiero, “Assessment of deep levels in photorefractive materials by transient photoelectric methods,” J. Phys. (France) III 3, 1327–1344 (1993).
[Crossref]

Thiemann, O.

H. J. Reyher, R. Schulz, and O. Thiemann, “Investigation of the optical-absorption bands of Nb4+ and Ti3+ in lithium niobate using magnetic circular dichroism and optically detected magnetic-resonance techniques,” Phys. Rev. B 50, 3609–3619 (1994).
[Crossref]

Tukhatulin, R. Sh.

A. V. Ivanov, Yu. L. Kopylov, V. B. Kravchenko, V. V. Kucha, and R. Sh. Tukhatulin, “Effects of doping of bismuth silicate crystals on the properties of an electron-beam spatial light modulator,” Zh. Tekh. Fiz. 54, 2418–2419 (1984) [Sov. Phys. Tech. Phys. 29, 1428–1429 (1984)].

Ukhanov, Yu. I.

Yu. I. Ukhanov, Optical Properties of Semiconductors (Nauka, Moskow, 1977), p. 365.

Vecchia, P.

Sh. M. Efendiev, V. E. Bagiev, A. Kh. Zeinally, M. Grandolfo, and P. Vecchia, “Deep localized centers in sillenite-type nonlinear crystals,” Ferroelectrics 43, 217–221 (1982).
[Crossref]

Watkins, G. D.

D. Y. Jeon, H. P. Gislason, and G. D. Watkins, “Optical detection of magnetic resonance of the zinc vacancy in ZnSe via magnetic circular dichroism,” Phys. Rev. B 48, 7872–7883 (1993).
[Crossref]

Weil, J. A.

B. K. Meyer, F. Lohse, J. M. Spaeth, and J. A. Weil, “Optically detected magnetic resonance of the [AlO4]0 centre in crystalline quartz,” J. Phys. C 17, L31–L36 (1984).
[Crossref]

Windschief, J.

U. Kaufmann and J. Windschief, “Origin of the magnetic-circular-dichroism absorption of undoped as-grown GaAs,” Phys. Rev. 38, 10060–10063 (1988).
[Crossref]

Wöhlecke, M.

O. F. Schirmer, H. J. Reyher, and M. Wöhlecke, “Characterization of point defects in photorefractive crystals by paramagnetic resonance methods,” in Insulating Materials for Optoelectronics, F. Agulló-López, ed. (World Scientific, Singapore, 1995), pp. 93–124.

Zeinally, A. Kh.

Sh. M. Efendiev, V. E. Bagiev, A. Kh. Zeinally, M. Grandolfo, and P. Vecchia, “Deep localized centers in sillenite-type nonlinear crystals,” Ferroelectrics 43, 217–221 (1982).
[Crossref]

Zielinger, J. P.

J. P. Zielinger and M. Tapiero, “Assessment of deep levels in photorefractive materials by transient photoelectric methods,” J. Phys. (France) III 3, 1327–1344 (1993).
[Crossref]

Avtometrija (1)

V. A. Gusev, V. A. Detinenko, and V. P. Sokolov, “The photochromic effect and optical data recording in germanium, silicon and titanium sillenites,” Avtometrija34–44 (1983) [Autom. Monitor. Meas. 35–46 (1983)].

Ferroelectrics (1)

Sh. M. Efendiev, V. E. Bagiev, A. Kh. Zeinally, M. Grandolfo, and P. Vecchia, “Deep localized centers in sillenite-type nonlinear crystals,” Ferroelectrics 43, 217–221 (1982).
[Crossref]

Fiz. Tverd. Tela (St. Petersburg) (2)

V. I. Berezkin, “Optical and thermal transitions in bismuth silicate,” Fiz. Tverd. Tela (St. Petersburg) 25, 490–494 (1983) [Sov. Phys. Solid State 25, 276–279 (1983)].

T. V. Panchenko and G. V. Snezhnoy, “Thermal depolarization analysis of the polarization mechanisms in Bi12SiO20 crystals doped with Al and Ga ions,” Fiz. Tverd. Tela (St. Petersburg) 35, 3248–3258 (1993) [Sov. Phys. Solid State 35, 1598–1603 (1993)].

J. Appl. Phys. (6)

R. B. Lauer, “Electron effective mass and conduction-band effective density of states in Bi12SiO20,” J. Appl. Phys. 45, 1794–1797 (1974).
[Crossref]

H. D. Bloom and S. W. S. McKeever, “Trap level spectroscopy of undoped and Ga-doped Bi12GeO20 using thermally stimulated conductivity,” J. Appl. Phys. 77, 6521–6533 (1995).
[Crossref]

S. L. Hou, R. B. Lauer, and R. E. Aldrich, “Transport processes of photoinduced carriers in BSO,” J. Appl. Phys. 44, 2652–2658 (1973).
[Crossref]

J. J. Martin, I. Foldvari, and C. A. Hunt, “The low-temperature photochromic response of bismuth germanium oxide,” J. Appl. Phys. 70, 7554–7559 (1991).
[Crossref]

J. S. McCullough, A. Harmon, J. J. Martin, M. T. Harris, and J. J. Larkin, “Low-temperature photochromic response of phosphorous-doped bismuth silicon oxide,” J. Appl. Phys. 78, 2010–2014 (1995).
[Crossref]

W. Rehwald, K. Frick, G. K. Lang, and E. Meier, “Doping effects upon the ultrasonic attenuation of BSO,” J. Appl. Phys. 47, 1292–1294 (1976).
[Crossref]

J. Phys. (France) III (1)

J. P. Zielinger and M. Tapiero, “Assessment of deep levels in photorefractive materials by transient photoelectric methods,” J. Phys. (France) III 3, 1327–1344 (1993).
[Crossref]

J. Phys. C (2)

I. J. Saunders, “The thermally stimulated luminescence and conductivity of insulators,” J. Phys. C 2, 2181–2198 (1969).
[Crossref]

B. K. Meyer, F. Lohse, J. M. Spaeth, and J. A. Weil, “Optically detected magnetic resonance of the [AlO4]0 centre in crystalline quartz,” J. Phys. C 17, L31–L36 (1984).
[Crossref]

J. Phys.: Condens. Matter (1)

B. Briat, H. J. Reyher, A. Hamri, N. G. Romanov, J. C. Launay, and F. Ramaz, “Magnetic circular dichroism and the optical detection of magnetic resonance for the Bi antisite defect in Bi12GeO20,” J. Phys.: Condens. Matter 7, 6951–6959 (1995).

Phys. Rev. (1)

U. Kaufmann and J. Windschief, “Origin of the magnetic-circular-dichroism absorption of undoped as-grown GaAs,” Phys. Rev. 38, 10060–10063 (1988).
[Crossref]

Phys. Rev. B (3)

D. Y. Jeon, H. P. Gislason, and G. D. Watkins, “Optical detection of magnetic resonance of the zinc vacancy in ZnSe via magnetic circular dichroism,” Phys. Rev. B 48, 7872–7883 (1993).
[Crossref]

H. J. Reyher, R. Schulz, and O. Thiemann, “Investigation of the optical-absorption bands of Nb4+ and Ti3+ in lithium niobate using magnetic circular dichroism and optically detected magnetic-resonance techniques,” Phys. Rev. B 50, 3609–3619 (1994).
[Crossref]

C. H. Henry and D. V. Lang, “Nonradiative capture and recombination by multiphonon emission in GaAs and GaP,” Phys. Rev. B 15, 989–1016 (1977).
[Crossref]

Phys. Status Solidi A (2)

B. C. Grabmaier and R. Oberschmid, “Properties of pure and doped Bi12GeO20 and Bi12SiO20 crystals,” Phys. Status Solidi A 96, 199–210 (1986).
[Crossref]

R. Oberschmid, “Absorption centers of Bi12GeO20 and Bi12SiO20 crystals,” Phys. Status Solidi A 89, 263–270 (1985).
[Crossref]

Pis’ma Zh. Tekh. Fiz. (2)

Yu. L. Kopylov, V. B. Kravchenko, and V. V. Kucha, “Effect of doping on the electrooptic properties of Bi12SiO20 single crystals,” Pis’ma Zh. Tekh. Fiz. 8, 205–207 (1982) [Sov. Tech. Phys. Lett. 8, 88–89 (1982)].

N. I. Katsaets, E. I. Leonov, V. M. Orlov, and E. B. Shadrin, “Holographic recording in doped bismuth silicate and germanate crystals,” Pis’ma Zh. Tekh. Fiz. 9424–427 (1983) [Sov. Tech. Phys. Lett. 9, 183–184 (1983)].

Proc. Phys. Soc. London (1)

P. N. Keating, “Thermally stimulated emission and conductivity peaks in the case of temperature dependent trapping cross sections,” Proc. Phys. Soc. London 78, 1408–1415 (1961).
[Crossref]

Rev. Phys. Appl. (1)

D. Bois and A. Chantre, “Spectroscopies thermique et optique des niveaux profonds: application à l’étude de leur relaxation de réseau,” Rev. Phys. Appl. 15, 631–636 (1980).
[Crossref]

Solid State Commun. (2)

L. Foldvari, L. E. Halliburton, G. J. Edvards, and L. Otsi, “Photoinduced defects in pure and Al-doped BGO single crystals,” Solid State Commun. 77, 181–188 (1991).
[Crossref]

O. F. Schirmer and R. Schnadt, “Bound small polaron optical absorption in tetrahedral symmetry,” Solid State Commun. 18, 1345–1348 (1976).
[Crossref]

Zh. Tekh. Fiz. (2)

N. I. Katsavets and E. I. Leonov, “Transient electrooptic effects in Bi12SiO20 single crystals doped with Al and Mn,” Zh. Tekh. Fiz. 56, 1993–1995 (1986) [Sov. Phys. Tech. Phys. 31, 1191–1192 (1986)].

A. V. Ivanov, Yu. L. Kopylov, V. B. Kravchenko, V. V. Kucha, and R. Sh. Tukhatulin, “Effects of doping of bismuth silicate crystals on the properties of an electron-beam spatial light modulator,” Zh. Tekh. Fiz. 54, 2418–2419 (1984) [Sov. Phys. Tech. Phys. 29, 1428–1429 (1984)].

Other (6)

B. Briat, A. Hamri, F. Ramaz, and H. Bou Rjeily, “Magnetooptical characterization of ligand field bands and charge transfer processes in sillenite oxydes,” in Solid State Crystals: Growth and Characterization, J. Zmija, A. Majchrowski, J. Rutkowski, and J. Zielinski, eds., Proc. SPIE3178, 160–168 (1997).
[Crossref]

O. F. Schirmer, H. J. Reyher, and M. Wöhlecke, “Characterization of point defects in photorefractive crystals by paramagnetic resonance methods,” in Insulating Materials for Optoelectronics, F. Agulló-López, ed. (World Scientific, Singapore, 1995), pp. 93–124.

Yu. I. Ukhanov, Optical Properties of Semiconductors (Nauka, Moskow, 1977), p. 365.

B. I. Shklovskii and A. L. Efross, Electronic Properties of Doped Semiconductors (Springer-Verlag, Berlin, 1984).

B. K. Ridley, Quantum Processes in Semiconductors (Clarendon, Oxford, 1983).

M. T. Borowiec, “Equilibrium and non-equilibrium processes in sillenites,” in Solid State Crystals: Growth and Characterization, J. Zmija, A. Majchrowski, J. Rutkowski, and J. Zielinski, eds., Proc. SPIE3178, 173–178 (1997).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Absorbance of a crystal of thickness 4.68 mm in the thermally bleached state (1) and after illumination with UV light (2). The spectra are corrected for reflectivity, and A=0.12 has been substracted somewhat arbitrarily to cancel the absorbance at 0.5 eV. The photoinduced spectrum (translated for clarity) is shown in curve 3, and curve 4 gives the transmission spectrum (right-ordinate scale) of the filter used for blue coloration.

Fig. 2
Fig. 2

Temperature dependence of the maximum absorbance at 0.79 eV (1) and of its first derivative (2) versus temperature. The crystal thickness was 2.55 mm, and coloration was achieved with blue light. The heating rate was (a) 0.45 K s-1, and (b) 0.07 K s-1 in our two experiments, and the spectral bandwidth was set equal to 1 nm.

Fig. 3
Fig. 3

Isochronal annealing of the photoinduced absorbance dA of a sample of thickness 3.56 mm. In (a) coloration 1 was achieved at 85 K with blue light after several thermal bleaching and coloring processes. Curves 2 and 3 show the partial bleaching of dA after heating to 125 and 190 K, respectively, and then freezing to 85 K. In (b) we show the residual photoinduced absorbance at 85 K after heating to 190, 258, and 286 K in the absence of additional illumination.

Fig. 4
Fig. 4

(a) Near-IR MCD (1.4 K, 2.5 T) in the initial state (1) and after blue illumination (2). The feature marked with an asterisk (0.966 eV) is real and is reduced under illumination. The absorption curve at 85 K is also shown for comparison. (b) ODMR with microwaves at 36 GHz and the monochromator set at 0.82 eV (1) and 1.07 eV (2). The magnetic field was applied along a tetragonal axis. All units are arbitrary.

Fig. 5
Fig. 5

Configuration coordinate diagram for the Al-/0 (or Al3+/4+) aluminum acceptor level. Curve 1 represents the total (electronic+elastic) energy of the system with the level empty (we have Al0) and an electron in the valence band; curve 2 represents the system with an electron trapped on the level to form Al-. Ept (thermal energy) is the energy that is needed to transfer an electron from the top of the valence band to the Al0 center and to transfer the surrounding lattice to the new equilibrium configuration. EpO is the optical energy related to Ept via EpO=Ept+Sω, where S is the Huang–Rhys factor and ℏω is the frequency of the lattice phonon coupled to the electronic levels. Ebt is the thermal activation energy for the nonradiative release of an electron from Al-.

Fig. 6
Fig. 6

Fits (solid curves) of the normalized [Y=dA(T)/dA(85)] temperature dependence of the photoinduced absorption dA at 0.79 eV for heating rates of (a) 0.07 K s-1, and (b) 0.45 K s-1.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

dN/dt=-Nept,
ept=SptNvVt exp(-Ept/kT),
Spt=Sp0tT-0.5 exp(-Ebt/kT),
Y=δα(T)/δα(T0)=dA(T)/dA(85)=N(T)/N(85)=A1 exp(-Z1)+A2 exp(-Z2),
Z=B0β T0TTb exp-EtkTdT,
Z=B0β kTb+2Et 1-(b+2)kTEtexp-EtkT.
-dN/dt=dp/dt-p/τ,
Et1=0.16eV,B01=4×105s-1,
Et2=0.40eV,B02=4×109s-1.

Metrics